
cefischer

OS/2 Lab Notes, Issue 1

cefischer

OS/2 Lab Notes, Issue 1

Software Engineering Magazine

Bibliographic Information Published by the
Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek lists this publication in the
Deutsche Nationalbibliografie; detailed bibliographic data
are available in the Internet at http://dnb.dnb.de.

The authors and publisher took care in preparation and realization of this work but make no
claim that the material herein is entirely correct, make no warranty of any kind, neither expressed
nor implied, and assume no responsibility for any possible or remaining errors, omissions, or
misconceptions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information, programs, schematics, and designs contained
in this work.

Many product and company names identified in this publication may be trademarks of their
respective owners. They are used in editorial fashion for identification only and for the benefit
of such owners. No such uses is intended to convey endorsement or other affiliation with the
work, its authors, and its publisher.

All parts of this work are copyright protected. All rights reserved. Any form of publication and
replication especially copying, translation into other languages, processing and storage through
electronic systems without prior written permission from the publisher is prohibited.

Copyright © cefischer Buchverlag + Embedded Solutions, Germany. All rights reserved.

Internet: http://verlag.cefischer.de

E-mail: post@cefischer.de

Accompanying website of this publication: http://os2labnotes.cefischer.de

Technical support: support@cefischer.de

1. Printing, March 2016
Printed and bound in Germany.

ISBN 978-3-944037-50-9

Contents

Page

List of Tables vii

List of Figures viii

Code Listings ix

1 Preparing a Minimalistic Software Development Environment for OS/2 1

1.1 Introduction . 1

1.2 Traditional Development Paths and Projections . 2

1.2.1 Revision of Platform Independent Software Development 4

1.2.2 The Role of OS/2 in Open Platform Engineering . 6

1.3 Tools for Basic Development Cycles . 11

1.3.1 Choosing the Macroassembler . 11

1.3.2 Choosing the Linker . 12

1.4 Preparing of a Working Minimal Development Environment . 15

1.4.1 Preparing the Tools . 17

1.4.2 Preparing the Environment . 18

1.4.3 A Simple Make Utility . 19

1.4.4 Simple Methodologies for Project File Management . 24

1.5 Release Notes . 30

References . 30

2 Principal Structure of OS/2 Programs at the Assembly Language Level 31

2.1 Introduction . 31

2.2 Layout of OS/2 1.x and 2.x Programs in Assembly . 31

2.3 Minimal Working OS/2 1.x Assembly Program . 35

2.3.1 Assembly Source File of the Minimal Program . 35

2.3.2 Module Definition File of the Minimal Program . 37

2.4 Accessing System Services . 38

2.5 Creating OS/2 2.x Programs . 39

2.6 Invoking the Tools . 40

2.7 Release Notes . 42

References . 42

3 A Simple Skeleton Program for Test Purposes 43

3.1 Introduction . 43

3.2 Programming with µODE on OS/2 . 43

3.2.1 Specification of Basic Program Structures . 44

3.2.2 Specification of Special System Level Statements . 49

v

vi Contents

3.2.3 An OS/2 Application Structure Package . 51

3.3 A Simple OS/2 Skeleton Program . 57

3.3.1 Changing to OS/2 2.x Programs . 58

3.3.2 A Simple Test Driver . 59

3.4 Release Notes . 64

References . 65

Tables

Page

1.1 Projected elementary and advanced development tools. 10

1.2 Input/ Output of traditional and projected development tools. 14

1.3 Traditional development tools, their purpose, and replacements. 15

vii

Figures

Page

1.1 Platform dependencies and compatibility. 5

1.2 Development tools and paths for the OS/2 software projects. 8

1.3 Flow chart of a simple make utility. 20

1.4 Sytax of the mk utility. 21

1.5 Sample project directory structure. 25

1.6 Sample project directory structure with multiple root modules. 26

1.7 Sample project directory structure with module trails included. 27

1.8 Sample project directory structure with multiple root modules. 29

2.1 Structure of OS/2 programs at the assembly language level. 33

2.2 Invocation of the assembler to translate the minimal OS/2 programs. 40

2.3 Invocation of the segmented and linear executable linkers to create the minimal OS/2

program modules. 41

2.4 Output of exehdr for the minimal OS/2 1.x program. 41

2.5 The MAP file created by link for the minimal OS/2 1.x program. 42

3.1 Outline of the basic PROGRAM block structure. 44

3.2 Specification of the IS statement and its followers. 45

3.3 Specification of the INSTANCEDATA and SHAREDDATA statements. 46

3.4 Specification of the FUNCTION statement and its followers. 48

3.5 Specification of the REQUIRES statement and its followers. 50

3.6 Specification of the TERMINATE statement. 51

3.7 Output of exehdr for the 2.x version of TEST01. 59

3.8 Flow chart of the simple test driver for the 1.x and 2.x version of TEST01. 60

3.9 Runtime trail of the TEST01 program execution. 63

viii

Listings

Page

1.1 Simple batch file to set up the environment for masm. 18

1.1 Sample batch file to automatize module creation. 22

1.2 Batch file implementation of the tiny make utility mk. 23

2.1 A minimal OS/2 1.x program in assembly language. 35

2.2 Module Definition File (DEF file) for the minimal OS/2 program. 37

3.1 Complete listing of first working edition of the OS2APP.ODE package. 56

3.2 Minimal OS/2 1.x program for test purposes in µODE using the OS2APP.ODE package. 58

3.3 A simple test driver as batch file. 61

3.4 A simplified “Hello world!” program with error checking. 64

ix

1

Preparing a Minimalistic Software Development
Environment for OS/2

1.1 Introduction

The most precious resource programmers spend in software development projects is the
total amount of times their hearts beat until they get their job done. What is important to
programmers, therefore, is to lose as little time as possible to implement their programs.

Saving time in programming is a twofold issue as with any other craft. Tools are
required to make something. Mastering these tools is required to use them. The quality
of the tools directly influences the quality of the products made with them as the method
to use them does. In the same way one can use a good tool with the wrong technique
and achieve bad results, the correct use of bad tools yields not better an outcome. In
order to save time, therefore, a tool need meet these requirements:

1. It must be simple enough so that it can be mastered quickly and applied with ease.

2. It must be effective enough so that it can be used efficiently and yields robust
products of the desired quality.

The first point addresses the learning curve that characterizes the amount of effort
invested by the user of the tool to master it as a function of time. In a nutshell, this
curve should be flat so that little effort need be spent in a short amount of time. This
directly yields the prime criterion for making good tools, namely that its complexity
should be as low as possible. Clearly, the more complex the tool, the longer it takes to
learn how to use it and to get used to it.

The second point calls for the effectiveness of a tool which directly is connected to the
circumstance that the grade of a tool’s complexity should not be higher than that of the
product to make. Simple tools lend themselves more to effective use than complex ones
and suffer less from malfunction. Moreover, their simplicity makes them more robust by
themselves, not only in handling them, and easy mechanisms are likely to produce other
easy mechanisms which bear with them robustness alike. All these factors save time:
Less time is required for training, less for successful use. Of course, a tool must not be
too simple since this might result in a lack of functionality needed to make products with
certain standard requirements.

Besides the desired character good tools should have, their accessibility and afford-
ability are paramount. Tools should be permanently accessible, that is they should be
market-resistant: whatever happens to their creator and however market circumstances
change, the tools need be available under all circumstances. In programming, this is refers

2 1. Preparing a Minimalistic Software Development Environment for OS/2

to the language, the translator and test tools, and the target platform itself. Usually,
all investments in learning, studying, and understanding as well as in the making of the
products created—and the products themselves—are lost once any of the aforementioned
components disappear into oblivion1. Accessibility of tools also means that one can pay
the bill to get them. It would be best if tools were free but often this is not possible.
For example, a high-speed oscilloscope simply cannot be made for free. Fortunately, the
situation is less severe in software engineering. Here, very good tools often are available
freely. Anyway, this should not lead to the misinterpretation that only free tools are
good tools. The tools we will create in the course of our OS/2 projects can be used and
replicated free of charge. Both affordability and accessibility are thus granted.

This article shows, by example of OS/2 as historic yet still widely used platform, what
can be done to preserve skills, effort, and existing products created for a specific system;
and how to set up a minimalistic development environment to explore this system while
creating simple but powerful tools for further development of both new products and a
new platform that evolves from studying a matured environment.

1.2 Traditional Development Paths and Projections

Since the advent of computers for personal computing a high competition between op-
erating systems, programming languages and its associated tools, as well as design and
implementation tenets exists. When OS/2 first came out it had to compete with DOS
and later with Windows, as DOS had to compete with CP/M once. While the develop-
ment strategies under DOS and CP/M were not thus different, OS/2 pointed developers
in a totally different direction most programmers simply did not adopt. The system kept
this tradition when its graphical runtime environment, Presentation Manager (PM), was
introduced which, although very similar to Windows, confronted programmers accus-
tomed to Windows with few but important differences. Over all, the change from typ-
ical DOS to event driven programming marked a considerable move away from widely
adopted methodology. At the advent of OS/2 2.0, another radical change of application
development concepts was presented by IBM, namely from event- driven procedural to
language neutral object-oriented software construction with WorkplaceShell (WPS)2 and
its underlying technology, SOMobjects (SOM). All these changes in OS/2 related soft-
ware engineering did not take place in isolation. Windows advanced at the same time
and took over great parts of the market while constant changes in hardware technology
drove software companies to strive for platform independent program development so
that applications became interchangeable between different operating systems as much

1 Or their documentation does. Most software is not sufficiently documented or, as in many cases,
not at all and many good programs which might be accessible still are virtually useless since their
documentation is lost. This also holds true for programs available in source form. Depending on
the size of software components, sources alone might not be sufficient to understand the program
good enough for maintenance or refinement. Program source texts are implementations, not design
material.

2 A graphical application environment based on a runtime-adaptable tree of object classes. WPS follows
object-oriented concepts of use and programming and is unparalleled in conception, implementation,
and function, still.

1.2 Traditional Development Paths and Projections 3

as possible. Platform independence is considered paramount today, still. It can and
could be achieved by the following means:

1. Introduction of compatibility layers into new platform products to maintain back-
ward compatibility to existing ones. This allows the further use of adopted devel-
opment standards and products on the new platform to full or at least some extent.
An example is the bind utility of OS/2 1.x which allows to create so called family
applications, programs that run both under OS/2 and DOS without modification.

2. Using programming languages which are supported by a wide range of tools avail-
able on many platforms. An example of such a language is C.

3. Employing virtual machines and emulators. Emulators are platform dependent
programs that mimic another platform and thus allow programs written for the
latter to run on the first. By using emulators, a complete platform can be preserved,
including all software tools and development methodologies as well as the hardware
architecture on which the software depends. For example, an 8085 MCU emulator
written for OS/2 would allow the flawless execution of 8085 firmware on the system.

4. Applying combined approaches which consist of an emulator which offers an own
system architecture. An example of such a solution is Java.

The aforementioned points also show that the concept of platform independence goes
hand in hand with a separation of hardware and software architectures. The term ar-
chitecture is used in the common sense here, that is the set of resources and facilities
programmers see when they use a system. Platform independence itself and the concepts
to achieve it by means of appropriate development methodologies have been treated
as essential in software engineering traditionally so the idea has been carried over into
contemporary product development strategies, also. Therefore, any platform dependent
concepts mostly are deprecated, especially:

1. Development of “native software”, for a specific, often hardware dependent (and
thus less good portable) platform that is, or threading platform specific optimiza-
tions into normally platform-neutral software.

2. Programming in machine languages viz. their symbolic representation in form of
assembly languages which are naturally dependent on specific processor architec-
tures.

Anyway, these resentments which lead to the tenet of encapsulating software from its
underlying hardware at almost all cost no longer hold true at the time of this writing.
As programmable logic device technology has progressed rapidly since the late 1990ies,
a broad spectrum of devices are available to very affordable prices, especially advanced
PLAs, CPLDs, and, to some extent, FPGAs. In addition to that, tiny logic devices allow
for the construction of discrete circuits in form of highly dense board-level solutions. All
that paves the way to construct an open hardware platform which is reproducible with
ease and affordable to everyone given that:

1. The platform is open, freely usable, and thus available to everyone unlimited in time
so that any investment in mastering the platform never is lost. A broad spectrum
of applications and a wide repository of development methodology can thus evolve.

4 1. Preparing a Minimalistic Software Development Environment for OS/2

2. The platform can be implemented by using industry standard parts in order to
eliminate dependencies on specific manufacturers.

3. The platform is simple by design so that it is likewise simple to reproduce, yielding
a wide variety of different implementations, or devices respectively, which are highly
interoperable.

4. The platform is simple to program and simplicity is key in programming tool and
procedure creation alike, so to ease development further and make it more time-
efficient.

5. The platform’s architecture is standardized, including its extensibility features,
and comprehensively documented so that application development methodology
becomes stable.

Therefore, an architecture can be chosen at leisure, implemented following the above-
mentioned guidelines, and development take place in a strictly platform dependent way—
taking all platform features into account, including most specific optimizations—without
worrying about the inclusion of compatibility and hardware abstraction layers or tools
to make software run on variety of different architectures.

1.2.1 Revision of Platform Independent Software Development

The aforementioned concept bases on the assumption that it is no longer necessary to
support a variety of proprietary hardware architectures by highly adaptable software
and system compatibility layers since the architecture itself is completely open as well
as freely and easy reproducible at any one time and thus always available. The software
then becomes highly platform dependent—but this platform keeps stable. The underlying
hardware can evolve at the same time—but not by changing the platform’s architecture:
only its implementation might change when it becomes worthwhile as implementation
technology advances. This concept is the base for the following discussions and the
engineering projects on which this magazine reports.

Figure 1.1 shows a sketch of the proposed platform in regards to key development tools
and dependencies as they evolve from compatibility issues. As can be seen, we will define
a high-level design exposition and implementation language (called µODE) with which
we can create both systems and applications software at a macro and microlevel. The
segmented protected 80x86 architecture represents the foundation of the projected final
architecture which is a superset of its ancestor with enhancements drawn from common
microcontrollers. Development thus can start on a well known and supported processor
platform and yields an open extensible host processor architecture (called Ginger).

Compatibility need not necessarily be carried to the binary level. By exchanging the
assembler, machine language programs can be retranslated. As far as programmers are
concerned, they need not apply any changes to existing programs nor need learn anything
new should the binary representation of their applications change. Anyway, it becomes
difficult to interchange translated modules between systems if binary compatibility is
broken. The original 8086 variable length machine language instruction set is good to
yield compact programs so it is reasonable to build on it and shield programmers from
any changes on the hardware side. This can perfectly be achieved in a standardized way
by microprogramming which takes place on a level unreachable by software developers.

1.2 Traditional Development Paths and Projections 5

Figure 1.1: Platform dependencies and compatibility. µODE is the system and object expo-
sition language suitable for both micro and macroprogramming. The architecture of the new
platform as seen by the programmer at the object level remains compatible with the 80x86
protected segmented architecture, thus protecting investments of time and effort spent in appli-
cation development. Keeping the architecture stable yet extensible at the microlevel employing
the same programming paradigms as on the macrolevel keeps learning curves low and allows
for the development of efficient, since platform dependent, software. The systems software
components inherit from many concepts of OS/2, the higher-level components from Presenta-
tion Manager and WorkplaceShell, and can be macroprogrammed to be executed like common
machine language programs or microprogrammed to be put “on a chip”.

In the devised concept, microprogramming is the means to afford technological changes
at the basic hardware level and achieve more optimal implementations of macroprograms
at the mircolevel as hardware implementation technologies advance. This ensures a sta-
ble architecture and stable binary representations of programs over time. In addition,
extensions to the architecture are not implemented by changing the basic instruction set
but by adding new instruction sets implemented through co-processing units (Processor
Extensions or PXs) which can be added to the base system as necessary. The only issue
with this approach is that enhancing the architecture by processor extensions must be
taken into consideration early during base platform definition. This is achieved by build-

6 1. Preparing a Minimalistic Software Development Environment for OS/2

ing mechanisms into the host processor which either interpret any external instruction
by executing emulation microprograms, ignore these instructions, or asking other exten-
sions to execute them. All this, however, is of no importance to programmers. The most
important design goal is to keep the architecture stable and, along with it, programming
tools and procedures3.

1.2.2 The Role of OS/2 in Open Platform Engineering

The role OS/2 plays as a matured environment in the development of an open platform
as the one proposed is twofold:

1. It serves as example of an excellent multitasking environment which greatly sup-
ports the development of multiprogrammed, highly modular applications. Studying
it thoroughly thus yields important knowledge which can be used to advantage in
the construction of new systems software components.

2. It introduced object-oriented concepts of use as well as object-based programming
procedures and runtime environments which resulted in working implementations
useful to draw from during the development of strictly object-based application
runtime and development environments.

The first point can be illustrated best by studying OS/2 1.x, while OS/2 2.x merits
close inspection in regards to point two and the conception of system compatibility
features. Studying the operating system is done in a practical way, not only by conducting
experiments with sample applications exploiting various features of the system so to
derive knowledge from a matured platform; also, development tools will be created which
can be used on the new platform. This ensures that software created on and for OS/2 in
the course of this publication can directly be used later without any waist of time and
loss of skills acquired. We thus need focus on the creation of tools first.

Leaving designing and writing a program out of sight, the conventional or traditional
development path consists of compiling program source text files to object modules and
linking those modules together, usually with further pre-compiled modules, to produce
a version of the program which is directly loadable and then executable on the platform
at which the program is targeted.

Executing a compiled version of a program can be done by several means. Either
the program was compiled to machine code in which case it is directly executable by
the hardware; or to some intermediate language or code which need be processed by an
emulator, or virtual machine respectively. Also, the step of typical compiling can be
dropped and the source form of the program executed directly by a special emulator
which does not translate the program text at all but executes on behalf of it. Hence this
type of program execution also is called interpretation or interactive compiling and the
special compiler performing it an interpreter. We will assume that program source texts
are translated or compiled into machine code for direct execution on the hardware.

3 An interesting corollary of this concept is that the ongoing development of operating systems becomes
obsolete an issue. Once systems software is defined for a stable architecture there is no need to
change this software layer at all. Other means, like object classes and their inherent features such as
extensibility at runtime through the introduction of replacement modules defining feature overrides,
then serve for enhancing the systems software layer.

1.2 Traditional Development Paths and Projections 7

Conceiving a program as a fabric made of executable traces of control or threads, usual
programs cannot be run directly on the hardware. Instead, user or special program logic
is combined with other default or standard threads thus enabling programs of any kind to
run in a specific runtime environment which makes available the resources of the target
platform in a predefined manner. If the runtime environment is an operating system,
then the user program must comply with a certain format so that the system can read
it into memory and prepare it for execution. This process is called loading. Making a
loadable fabric of a program using the compiled program code itself and the system’s
standard threads, if needed, and bringing this fabric into a distributable form is called
linking. Often, linking and loading are highly mutually dependent processes. We will
assume that compiled program source texts need be linked in order to be loaded by the
system.

The foregoing definitions may sound familiar to professional readers and obviously
superfluous. Anyway, they were presented here to give readers getting in touch with the
matter for the first time a place from where to start; and to have a initial position we
can contrast with alternative approaches later.

OS/2 was designed to be programmable using high-level languages from the very start4.
The API was structured thus to follow typical compiler conventions: Parameters are
pushed on the stack by the caller, from left to right; results are passed through buffers so
a pointer to that buffer is passed as a parameter; the error code is returned in register AX
and the stack cleaned up by the callee. Therefore, programming OS/2 with C or Pascal
is a straightforward task. Furthermore, we will see that OS/2 programs are structured to
lend themselves perfectly to what C compilers produce. Fortunately, at the time OS/2
was designed, programming the PC in assembly language still was much more standard;
and to make OS/2 attractive for DOS programmers to change platforms, the system does
not exclude assembly language programming by making it cumbersome. In fact, OS/2
programs can be written in assembly as comfortably as in high-level languages like C.
The calling conventions even help in structuring the program sources when it comes to
interfacing with the system which allows to automate the process of invoking the system
for service well. In the course of this article and the discussions following it, we take
these aspects to advantage and will focus on:

1. The authoring of OS/2 programs written solely in assembly language.

2. The automatization of common bookkeeping tasks including calls to operating sys-
tem services.

We will achieve this by the construction of a high-level language using the capabilities
of a macro macro assembler thus yielding self-documenting program texts easy to digest
on one side and clear and lucid assembly listings on the other.

It will be shown that, following these objectives, programming on OS/2 with a macro
assembler alone is sufficient from both a design an implementation viewpoint. In addition,
standardization of the devised high-level language used as input for the assembler can
be used to advantage in:

1. Treating the program texts input to the assembler as hardware independent pro-
gram sources and thus decoupling them from the assembly process,

4 Like the 8086 and its successors. The 80x86 instruction set and addressing modes lend themselves
well to the conventions of high-level language compilers.

8 1. Preparing a Minimalistic Software Development Environment for OS/2

Figure 1.2: Development tools and paths for the OS/2 software projects. Starting with simple
tools and following common development cycles, new basic tools are created which allow for
independence of third-party software and following new trails in software engineering.

2. Treating the assembly listing output by the assembler as hardware dependent in-
termediate language expression of the original sources,

1.2 Traditional Development Paths and Projections 9

3. Substituting the macro assembler for a translator solely transcribing the program
texts to their assembly form and an assembler translating the assembly form into
actual machine language instructions.

The division of the macro assembler used during early design an prototyping phases of
the development system into two separate programs reveals several interesting aspects:

1. The programs used to translate the source text to its assembly form as well as the
assembly form to its machine language representation are small and simple.

2. The source text is independent of the actual assembly language representation, that
is by exchanging the transcriptor the program can be translated into any assembly
language while the program sources remain static.

3. The assembly text is independent of the actual machine language representation,
that is by exchanging the assembler the program can be translated into its exe-
cutable form for any platform while the assembly language sources remain static.

We will thus develop three important basic tools, namely a transcriptor to transcribe
the high-level µODE program texts to assembly listings including information about how
the program is to be inserted into the target system; a simple assembler to translate the
assembly listing into machine language; and a packer to transform the binary machine
language representation and meta information of the program into a module loadable by
the system. Table 1.1 lists these tools along some information about them.

Some words are in order regarding the principal trails of software development we will
follow in the course of this magazine’s articles. First, we use the designation OS/2 1.x
for any version of OS/2 up to 1.3 or for 16-bit OS/2 in common speak. Likewise, OS/2
2.x is used for any version of OS/2 starting at version 2.0 up to 4.5 or for 32-bit OS/2.
Next, the first programs presented in this and forthcoming articles will produce OS/2
programs that can run on any OS/2 system, on OS/2 1.x and up that is. Where and
when using features of OS/2 2.x, or programming in 32-bit in general, is necessary we will
do so and step into the development of OS/2 2.x programs from this direction. We will
always carefully weigh different flavours of OS/2 programs and system features against
each other so to arrive at a software system consisting of both 1.x and 2.x applications.
This will result in a hybrid application and development environment in very much the
same way OS/2 itself is (for historical reasons) which combines the best of both systems,
OS/2 1.x and 2.x.

In using OS/2 system services, we will make any 1.x program compatible with OS/2
1.1 and any 2.x program with OS/2 2.11 respectively. New features of version 3 and 4
of the operating systems are neither of great use nor importance in the realm of these
development projects. We will look at them, of course, but have our focus on providing
similar services on base of the ground covered so far when we encounter such features.
This is in accordance with object-oriented development philosophy where existing parts
of a system remain untouched and new features are derived from them by additional
components using existing ones instead of directly changing existing parts of a program.
Following this approach especially will become of practical value when we reach the
highest level of programming under OS/2, namely application class development with
WorkplaceShell.

10 1. Preparing a Minimalistic Software Development Environment for OS/2

Projected Elementary Development Tools

Tool Name Description Technology Language

tr

(Transcriptor)
Transcribes µODE source texts
to ASM286/ 386 assembly.

DOS (*.COM),
OS/2 (1.x .EXE),
µPMOS LCM

ASM286,
µODE

as

(Assembler)
Translates output of tr to
80286/ 80386 machine code.

DOS (*.COM),
OS/2 (1.x .EXE),
µPMOS LCM

ASM286,
µODE

pk

(Packer)
Creates OS/2 1.x + 2.x .EXEs/
DLLs and µPMOS Loadable
Class Modules (LCMs) directly
from output of as.

DOS (*.COM),
OS/2 (1.x .EXE),
µPMOS LCM

ASM286,
µODE

ed

(Editor)
Simple line-based fullscreen
text editor for programming
purposes.

DOS (*.COM),
OS/2 (1.x .EXE),
µPMOS LCM

ASM286,
µODE

Projected Advanced Development Tools

op

(Object Processor)
Creates instances from class
modules created by pk on DOS
and OS/2.

DOS (*.COM),
OS/2 (1.x/ 2.x
.EXEs)

ASM286,
µODE

ec

(Error Corrector)
Protected mode capable ECD
tool (debugger) similar to
symdeb.

DOS (*.COM),
OS/2 (1.x/
2.x .EXEs),
µPMOS LCM

ASM286,
µODE

dm

(Dataflow Monitor)
Monitors the flow of data be-
tween objects created by op

for interobject communication
ECD.

OS/2 (1.x/
2.x .EXEs),
µPMOS LCM

ASM286,
µODE

Table 1.1: Projected elementary and advanced development tools. These are the tools created
in the course of the OS/2 development projects. They offer a smooth transition from the R&D
to the new platform. Making DOS versions of the tools allows for cross-platform development
on any computer capable of executing DOS programs in an appropriate VM.

On the hardware side, we treat the 80286 as primary target processor regarding sys-
tem programming and the 80386 regarding the instruction set available for application
development. This is done to set a limit of the instruction set level to make the develop-
ment of our simple assembler reasonably easy. Consequently, instructions of higher-level
processors need be implemented in software. This may sound awkward at glance; but the
main rationale behind that is that the machine language representation of our software
remains at a fairly simple level and is independent of any 80x86 processor higher than
the 80386. Making software dependable on specific instruction set extensions is the worst
one can do to introduce several anchor points of incompatibility into one’s own line of
products. Moreover, by keeping the machine language representation of our programs
on a simplistic and consistent level, the foundation is laid for creating the aforemen-

1.3 Tools for Basic Development Cycles 11

tioned extensible processor in a relatively straightforward manner. Setting a limit on the
complexity of the instruction set to be used opens the way to such modular processor
implementations while keeping existing programming methodology absolutely stable and
software modules backward compatible unlimited in time.

1.3 Tools for Basic Development Cycles

Using OS/2 as development platform is rewarding since there are no commercial high-
level language compilers and development toolkits these programs require available from
the manufacturer anymore. Of course, free and also open source compilers can be used to
program with OS/2 in C, Pascal, and other languages and sets of header files and import
libraries can either be created or existing ones made by programmers who have done this
already be reused. Anyway, the intention of the OS/2 software development projects
this magazine accompanies is to program OS/2 using only what the system offers after a
default installation plus a macroassembler which is, besides a linker, the only elementary
tool we need. The linker is included in OS/2. An assembler we need add since it was
unfortunately never part of the OS/2 distribution. We need these two tools only for the
first initial steps. They are substituted progressively for our own.

1.3.1 Choosing the Macroassembler

For the purpose of these article series, the Microsoft Macro Assembler (MASM) 5.10
is used as macroassembler of choice. Any assembler compatible with this version of
MASM is usable, also, although we do not test nor develop for interchangeability of
the tool. Readers using other assemblers, therefore, must look for any possibly necessary
adaptations of the code in this publication by themselves. Those owning a copy of MASM
5.10 are recommended to use this one, anyway, especially if an OS/2 version is at hand
or a bound variation such as MASM 5.10A.15, the one we use5.

Maintaining compatibility with MASM 5.10 is intended for reasons of simplicity since
the resulting high-level language should be plain and implementable in form of macros
with reasonable ease. This is important since the macro implementation will serve as
pseudo-code representation of a working system used during the development of the
transcriptor program which is comparable with the macro part of the assembler. Any
specialities of assemblers more advanced as MASM 5.10 thus should not be employed
since using advanced assembler features makes the development of the simple assembler
to be made part of the intended development system unnecessarily complex. Complexity
is to be moved upwards, towards the high-level language level that is, not in the other
direction. Over all, we wish to have intelligible assembly source texts.

Alternatively to MASM 5.10, Borland’s Turbo Assembler (TASM) can be used yielding
the same results. We successfully cross-checked the statement macro implementations
and sample programs with TASM 3.2. Turbo Assembler is a DOS program that works
flawlessly under OS/2.

5 MASM 5.10A.15 of July 7, 1989, is part of the IBM OS/2 Device Driver Kit which was accessible free
of charge after registration with IBM’s website.

12 1. Preparing a Minimalistic Software Development Environment for OS/2

IBM’s Assembly Language Processor (ALP) version 4.00.005, made available with
OS/2 Warp Developer’s Toolkit 4, is compatible with MASM 5.10 but, unfortunately,
not an option. The version we tested had problems with macro parameter passing in
connection with pass-dependent conditional assembly which we employ in several key
parts of the language implementation. Anyway, it is not worth to find a solution to
resolve this issue since few readers should have access to a copy of ALP, anyway.

MASM 5.10 consists of a single file named masm.exe. It is recommended to copy it in
the \OS2 directory on the boot drive where it then resides alongside the linker(s).

1.3.2 Choosing the Linker

The forgoing discussion defined the translation side of program creation. We found that
only by using a decent macro assembler we can start program authoring on OS/2 inde-
pendent of any other tools. In addition to a text editor, this is all that is necessary to
produce object files which are used further to build executable OS/2 programs, dynlink
libraries, and device drivers. The part of linking files containing machine language rep-
resentations of the programs the assembler produces to yield loadable applications need
be discussed next.

There are two OS/2 linkers available, one for each major flavour of the operating
system:

1. The segmented executable linker link with which OS/2 1.x modules (programs,
dynlink libraries, and drivers) can be created. It comes as single file link.exe with
any copy of OS/2 and is located in the \OS2 directory on the boot drive.

2. The linear executable linker link386 with which OS/2 2.x modules (programs and
dynlink libraries, the latter including presentation drivers) can be created. It comes
as single file link386.exe with any copy of OS/2 2.x and is located in the \OS2

directory on the boot drive.

Since both linkers are readily available with any copy of OS/2 no further concern need
be spent regarding this point. However, the topic of linking in general is well worth
considering since we can gain insights into the mechanisms our own replacement tool for
the linkers must implement.

As above mentioned, we need create own simple transcriptor and assembler programs;
but, as will be shown later, a linker is not necessary to write OS/2 programs. We must
rely on a linker for the first steps we take; but we can drop it soon later on and it will
be the first tool that becomes obsolete. The linker basically does two important things:

1. It takes the object files produced by the translators as input and produces an
executable program image as output.

2. It performs all necessary inclusions of library object files and import libraries and
resolves all external references we make in our programs for the loader to fix when
the program is brought into memory and prepared for execution.

1.3 Tools for Basic Development Cycles 13

The first point relates to a simple function. Principally, given we create the output of
the assembler straight enough, we can produce an OS/2 executable file using a simply
structured binary template into which the translated program is embedded. This process
can better be described as packing than linking and a packer is the third component we
will create to produce executable program files, or dynlink libraries of our translated pro-
gram texts. It would also be possible to enhance the assembler thus to create executable
program files directly. But this is contradictory to these two points:

1. Simplicity of the assembler: letting the assembler produce more than raw machine
language representations of program source texts would unnecessarily complicate
the assembler.

2. Environment independence: the assembler would be bound to the application run-
time environment, OS/2 in our case, and cross-environment development would
become a goal harder to attain.

So, the packer is to the assembler what the assembler is to the transcriptor: it shields
the assembler from the runtime component of the system. This way, we can use machine
language representations of our programs created on, say DOS machines, directly on
OS/2. The packer then would produce the platform dependent executable file. Moreover,
the assembler needed to distinguish between programs and dynlink libraries, further
complicating the picture. Besides, the assembler should be plain enough to become
part of a microprogrammed hardware implementation, eventually. So, the simpler the
assembler, the more likely it can be implemented on a chip and the more modular the
overall development system becomes.

The main job of a traditional linker we will lay at a side when it comes to producing our
packer: the merging of different object files to one executable file and the resolving of any
intermodule dependencies. Because we will do so, our object files, the one we produce
through the use of the macroassembler now, must be as simple and self-contained as
possible. In other words, we shall not produce any intermodule dependencies to be
resolved at linktime. The rationale behind that is threefold:

1. We will no be able to work on object files of that type with our own simple tools.
Never produce now what you cannot use later.

2. The programs we construct because of this limitation become simpler which makes
them smaller, both in their source text and binary representations, and more de-
pendable on other such small entities.

3. The program systems we compose become more modular and their components
more reusable and isolated (and, thus, easier to error-correct6.

Realizing these points yields a program design philosophy and implementation method-
ology that match the original OS/2 design tenets astoundingly well. Once arrived at the
level of objects and WorkplaceShell, we will see that following highly modular develop-
ment approaches at the most plain levels of program construction pays. Besides, simple

6 We will generally avoid the misleading term debugging and use the more precise designation error
detection and correction, or EDC, for the toil of finding and eliminating program errors, bugs in
common speak.

14 1. Preparing a Minimalistic Software Development Environment for OS/2

programs are more robust, more easy to master intellectually, and lend themselves per-
fectly to demonstrating programming techniques and system documentation purposes
for which these series of articles are intended.

Tables 1.2 and 1.3 give an overview of the existing low-level tools traditionally used
in OS/2 software development, their input and and output, and their substitutes we will
create.

Input/ Output of development tools

Tool Input Output Processed
by

masm 80X86 source texts (*.asm)
µODE language packages +
µODE source texts (*.ode)

Object code OMF files
(*.obj)

link

link386

link

link386

Object OMF files (*.obj) Executable/ loadable modules
(*.exe/ *.dll)

System

tr µODE source texts +
µODE extensions (*.ode)

Simplified 80x86 source texts
(*.a86)

as

as Simplified 80x86 source texts
(*.a86)

Raw structured binary files
(*.rsb)

pk

pk Raw structured binary files Loadable Class Modules
(*.lcm)

Executable/ loadable modules
(*.exe/ *.dll)

op

System

op Loadable Class Modules
(*.lcm)

Object/ Object Class (Run-
time construct)

System

Table 1.2: Input/ Output of traditional and projected development tools.

OS/2 has always been lacked a simple EDC tool such as debug DOS shipped with or its
enhanced symbolic version symdeb, an excellent tool. Microsoft offered their source-level
debugger CodeView as IBM did with IPMD for Presentation Manager which was part
of the IBM CSet but both were not true an option nor are they now good templates to
draw from. Instead, we will develop a tandem of two simple tools for error detection and
correction, ec, the Error Corrector, and dm, the Data Monitor. They are akin to symdeb

and draw from MiniBug7 also. Besides, they are closely related to the rest of the tools
and offer a wonderful opportunity to show interprocess communication techniques and
process monitoring in protected mode systems. Later, they integrate seamlessly into the
object systems we will compose. They are simple low-level tools which can connect to
various front ends and thus follow different concepts as usual EDC tools do. It is very
important to take the issue of EDC into account early in the design phase of software
systems and before their implementation. The lack of a built-in system for detecting and

7 MiniBug is an excellent EDC tool that was part of the 386|ASM package for the 386|DOS Extender
from Phar Lap Software Inc.

1.4 Preparing of a Working Minimal Development Environment 15

Development tools, their purpose, and replacements

Tool Purpose Replaced
by

masm Translates 80x86 and µODE source texts to machine code
in intermediate object file format.

tr, as

link+
link386

Creates loadable/ executable files pk, op

implib Creates import libraries for resolving external references
through dynamic linking

tr, as, pk

lib Creates and maintains object libraries used for static link-
ing of precompiled modules

op

cref Creates human readable cross-references files from binary
output of masm

tr, as, pk

exehdr Reads module headers and displays key information in
human-readable form

pk

CodeView Allows for source-level error detection and correction ec, dm

Table 1.3: Traditional development tools, their purpose, and replacements.

correcting errors is even more fatal to the success of an operating environment as the
absence of integrated language tools. A system that is not self-contained enough to be
programmed is a mess; one that cannot be monitored, field-corrected, and maintained a
catastrophe. It is always better to use simple tools embedded into their host systems that
work than applying sophisticated external programs that in turn need their own support
systems. We want to make environments and development tools as simple as possible so
for us to finalize system development and focus upon the real goal, the development of
useful yet simple programs to explore, educate, and create. This is where we want to go.

1.4 Preparing of a Working Minimal Development Environment

Because OS/2 actually is a 16/32-bit hybrid system, we will develop several different
flavours of modules in the course of our development projects:

1. Executable modules (EXEs) of both 16-bit segmented and 32-bit linear type with
the first running on all versions of OS/2 and the latter only on OS/2 2.x and higher.
These modules are used by OS/2 to build processes.

2. Dynamic link modules, dynlink modules or libraries (DLLs) respectively, of both
16-bit segmented and 32-bit linear type with the same constraints that apply to
EXE modules. These modules are used by OS/2 to merge their content, both data
and function, with processes at runtime.

16 1. Preparing a Minimalistic Software Development Environment for OS/2

3. Device drivers, actually a special form of dynlink modules, of 16-bit segmented type,
the only one available that can be used on any version of OS/2. These modules
are used by OS/2 to merge them with the kernel instead of processes at system
initialization time.

All 1.x modules can contain privileged I/O instructions in code segments that are
executed at IPL 2, while 2.x modules cannot, a fact we will exploit. This IOPL code,
however, can be executed from 2.x executable modules using appropriate 1.x DLLs.
OS/2’s compatibility features are impressive and can be used to great advantage in the
construction of highly efficient hybrid 80x86 software systems. Therefore, all development
projects will have a strong focus on OS/2 1.x application programming8, which also allows
for various simple implementations of programs with quite sophisticated function.

Device drivers are always 16-bit modules9 and actually extensions of the OS/2 kernel.
This classes them as highly critical components and they are, unfortunately. However,
their construction actually is fairly simple. Using our self-devised means for automatic
code generation and employing an incremental development methodology, writing OS/2
device drivers is a straightforward process. Because these modules need be constructed
around a stringent interface, they lend themselves perfectly to testing them by means of
simulation before threading them into the runtime structures at kernel level. There are
various types of OS/2 device drivers which mainly differ in their runtime character, the
point in time when they are called by OS/2 during requests from applications that is.

The structures of all these modules are very similar: executable and dynlink modules
are nearly identical; and drivers differ only slightly from normal dynlink libraries by de-
sign. We can develop all these modules with the primitive environment described here.
Caveats do exist, of course, any type of module comes with its own; but they cannot be
treated well by using more sophisticated tools. Better to be aware of them during design
phase and to adopt a defensive style of programming.

In conducting experiments and realizing our programming projects, we will not move
away from the low level symbolic representation of programs and take advantage of high-
level languages and their translators. By doing so, we can take three facts to advantage:

1. The binary representations of our modules are smaller since our code is not machine-
generated and does not depend on runtime function libraries with which compilers
come and which they include in our own code.

8 It is disadvantageous to shy away from OS/2 1.x programming and composing applications of 2.x
modules completely. It will be shown that the price paid for intermodule compatibility such as
thunking, limited virtual address spaces, and LDT tiling is much less than that what comes along
with size exploded modules, memory overmanagement of local heaps, and the impact of paging on the
application. Whereas reloading a few segment registers on behalf of the programmer is a completely
deterministic process, countless page faults caused by extensive memory use for handling large virtual
address spaces are not. And while the programmer sees any issues involved with segment handling
early in the design phase of her or his modules, the actual behaviour of large 32-bit applications is
unpredictable in nature and becomes evident at runtime only. Programming with segments has its
drawbacks, also; but these are less severe, can be managed intellectually much better, and alleviated
by more simple means.

9 Although it is possible to write drivers as 32-bit modules with higher versions of OS/2, there is no real
advantage in doing so, not for our purposes at least. Where and when this should becomes necessary
specialities will be touched.

1.4 Preparing of a Working Minimal Development Environment 17

2. Only our code need be tested for errors and error corrected and there are only
dependencies between our code—our own modules—and the system but no inter-
relations with any third party products.

3. In order to program our modules on the symbolic level, we must necessarily imple-
ment our solutions in a simple way, keep our documentation clean and up-to-date,
and thus arrive at small programs and program systems with a high grade of mod-
ularization.

The first two points proved invaluable in practice. Once program systems become very
large, intermodule dependencies start to show up faster and side effects take over in more
severe ways. Having code of language products threaded into each of the modules can
lead to the strangest of all error situations which are tedious or, sometimes, impossible
to correct—except, probably, for the introduction of workarounds, additional function
layers, or even the exchange of certain modules for variants created with other translators.
By excluding complex high-level language compilers from the set of variables in our
program development equation, we have many subtle issues out of our way with nothing
between our code and the system and, more importantly, between our intention and
the actual code. The necessity to implement more simply and the production of small,
efficient modules is an acceptable corollary, also, a better understanding of the very
structure, purpose, and function of our modules aside. At last, these points help in
documenting the system in a direct and clear way so to watch its mechanics directly, not
through the shutters of a high-level language. They do not come for free, anyway.

From the previous discussion it follows, that we need not take any issues stemming from
platform dependencies into account. However, time must be considered. Programming
at the symbolic or assembly language level actually means that programs are composed
in an instruction-by-instruction process, that is the grade of abstraction at this program-
ming level is relatively low. Thus, implementing the flow of control inside a program
which usually comes excellently with the overall structure of a high-level language can
become a tedious and time consuming task at the assembly level. We can alleviate and
even completely resolve this problem by defining appropriate design language structures
through macros thus automatizing the generation of program code and combine the best
of both worlds, abstract high-level language and efficient symbolic programming.

1.4.1 Preparing the Tools

As discussed in the previous section, we will develop any tool we require as we explore
and document OS/2 and realize our projects and only need three basic tools to start:

1. MASM 5.10 or a compatible macro assembler which can produce code for both the
80286 and the 80386 (standard and privileged instructions) and generate output in
relocatable object format, or object (.OBJ) files respectively.

2. link and link386 or compatible linkers which accept .OBJ files as input and
produce all various types of both OS/2 1.x and OS/2 2.x modules.

3. An editor with which ASCII text files can be created.

Additional tools are not necessary. This includes applications for source code manage-
ment, sophisticated make utilities, and other such components.

18 1. Preparing a Minimalistic Software Development Environment for OS/2

Besides the aforementioned programs, we will make extensive use of OS/2’s command
line interpreter CMD and its ability to interpret batch programs with which we not only
can reduce general bookkeeping work during module development; also, we can use them
to test our programs and let them interact under our direct supervision. In addition to
that, we will explore the system itself using the command line interpreter and later carry
over this type of interface by giving each object on the workplace an own prompt view
so, CMD is well worth studying.

The type of editor is of no great concern. Recommended is the use of EPM which comes
with OS/2 2.x and higher, runs under Presentation Manager, and is a comfortable tool for
programming. EPM aside, OS/2 lacks a good simple built-in editor for programming right
from the start but there are numerous editors available in the public domain. Because
OS/2 can execute DOS programs, a good and simple choice, also, is EDIT which can run
in a DOS window on the workplace, side-by-side with other applications. We can use a
wide variety of good DOS tools on OS/2 as long as our own are not finished, including
editors and MASM compatible assemblers10.

1.4.2 Preparing the Environment

In preparing the development environment, we only need take care of the addition of the
macroassembler to the system.

MASM 5.10 is in a single, independent file called masm.exe. We simply copy it in the
\OS2 directory on the system’s boot drive where link.exe and link386.exe (only on
2.x and higher OS/2 versions) are located already.

MASM looks for any files included in primary source file passed to it in the current
directory. If the requested file cannot be found there, MASM looks up each directory
specified by the INCLUDE variable in the environment. We will make use of this circum-
stance and store our µODE language files in an appropriate directory separate from our
module directories and include the path to this directory in the environment. We pre-
pare this environment with a small batch file instead of editing CONFIG.SYS. The latter
method would require a system reboot and make the setting global which not always is a
good choice. By moving environment alterations into separate batch files, they are made
local to the processes that run in the same command line session that run the batch file.
The file we use is called ev.cmd (for environment) and simply reads thus:

@ECHO OFF

SET INCLUDE=C:\µODE;

Listing 1.1: Simple batch file to set up the environment for masm.

This assumes that the language package directory is called µODE and located on drive
C:. For simplicity, all language package files are placed in this single directory. We will
add further statements to the environment batch file later if necessary. The batch file
itself is stored best in the \OS2 directory on the boot drive alongside the other tools.

10 The website of the FreeDOS project at www.freedos.org is an excellent address to find tools suitable
for our purposes.

1.4 Preparing of a Working Minimal Development Environment 19

To make the environment work, we simply open an OS/2 command prompt, either a
windowed or fullscreen session, type ev, press ENTER, and we are ready to go.

1.4.3 A Simple Make Utility

We now devise a simple make utility with which we can conveniently call the actual
development tools, macro assembler and linker. We call this make utility mk. First, a
few aspects regarding the development process should be considered.

Because we develop our software following a modular concept each of our modules
usually consist of a single source file containing the input for the assembler. We assign
the extension *.asm to source files which contain pure assembly texts and *.ode to those
containing either µODE language statement implementations or sources of programs
written in µODE. MASM can use either files but assumes a default extension of *.asm so
we need specify a full file specification on the command line for our µODE files. The file
types are assigned thus for forward compatibility with our own tools since the assembler
as will only accept *.asm files and the transcriptor tr *.ode files only. If we follow the
proposed type convention now we can rework our existing projects with the new tools
directly and have everything in the right place. MASM creates object files which are fed
into the linker.

The OS/2 programming concepts themselves reflect highly modular methodology so we
construct our software systems on a module-by-module basis, writing one module at time
and store it each in a separate file as input for the assembler. Each such module source
file usually is accompanied by a module definition file containing information about this
module which is passed to the linker in order to construct it in the actual making of the
binary module loadable by the system. The OS/2 linkers use default options when they
shall link object files with no module definition specified but we will define these files
right from the start. They have the extension *.def.

Tinkering with two different types of files to feed two different programs is not nice.
Fortunately, we can automate the creation of the module definition file accompanying
a program or library module through the macroassembler’s %out feature which allows
us to display any type of string on the console (or standard output device). The article
Principal Structure of OS/2 Programs at the Assembly Language Level in this issue shows
the actual use of the feature. In a nutshell, we will put parts of the module definition
file at certain points in the source text of our programs which then are displayed on
the screen along other output the assembler produces during assembly time. Once the
source translates correctly, we simply suppress the statistics on successful assembly and
the assembler’s copyright notice. Data defined by %out then represent the only output.
Redirecting it in a file creates an appropriate module definition file. For example, the
command:

masm /t test1c.obj,test1c.lst,, > test1c.def

will create the program’s object code test1c.obj, an assembly list file test1c.lst, and
uses CMD’s redirection features to write any output we trigger during assembly in the
module definition file test1c.def which accompanies the module. After assembly the
program is then immediately ready to be linked:

20 1. Preparing a Minimalistic Software Development Environment for OS/2

�� �
START -�
�
�
�

@
@
@
@

�
�
�
�

@
@
@
@

No
parameters?

Yes

No

- Display

Error Msg

?

?

�
�
�
�

@
@
@
@

�
�
�
�

@
@
@
@

Show Help?
Yes

No

- Display

Info Msg
- Display

Help Msg

?

�
�
�
�

@
@
@
@

�
�
�
�

@
@
@
@

Create
module?

No

Yes

- Assemble only -

?

Assemble and
create DEF file

?

�
�
�
�

@
@
@
@

�
�
�
�

@
@
@
@

Create
2.x module?

Yes

No

-�
�
�
�

@
@
@
@

�
�
�
�

@
@
@
@

Create dynlink

module?

Yes

No

- Create 2.x DLL -

- Create 2.x EXE -

?

�
�
�
�

@
@
@
@

�
�
�
�

@
@
@
@

Create 1.x
dynlink module?

No

Yes

-�
�
�
�

@
@
@
@

�
�
�
�

@
@
@
@

Create device
driver module?

Yes

No

- Create device
driver (.sys)

-

- Create 1.x EXE -

?

Create 1.x DLL -
�� �
EXIT �

Figure 1.3: Flow chart of the simple make utility mk.

1.4 Preparing of a Working Minimal Development Environment 21

mk [/h] <source file>[.ext] [/f] [/32] [/lib] [/drv]

Parameters : <source file>

name of input file; obligatory.

[.ext]

extension of input file; optional. If not specified

*.asm is assumed.

/f

final option: create module; optional. If specified

alone, a 1.x EXE module is created.

/32

final option modifier: create 2.x module; optional.

This option cannot be combined with /drv.

/lib

final option modifier: create DLL instead of EXE;

optional. This option is mutually exclusive with /drv.

/drv

final option modifier: create device driver;

optional. This option cannot be used with /32.

/h

help option; displays program information

Notes : If /h is specified a help message is displayed and

all parameters following /h are ignored

Options can be given in all lower or all upper case.

Example of use: mk test

-> process file test.asm, assemble only

mk test.ode /f

-> process file test.ode, create 1.x EXE

mk test /f /lib

-> process file test.asm, create 2.x DLL

mk test.asm /f /drv

-> process file test.asm, create device driver

Figure 1.4: Sytax of the mk utility.

22 1. Preparing a Minimalistic Software Development Environment for OS/2

link test1c,test1c.exe,test1c,,test1c

In order to make these invocations a little more comfortable, a simple batch file can be
deceived thus:

@ECHO OFF

IF %2. == /F. GOTO Final

IF %2. == /f. GOTO Final

masm %1,,%1,,

GOTO Exit

:Final

ECHO Performing final assembly...

masm /t %1,,%1,, > %1.def

ECHO Creating program module...

link /NOLOGO %1,%1.exe,%1,,%1

:Exit

ECHO.

ECHO Done.

Listing 1.2: Sample batch file to automatize module creation.

In this example, it is assumed that an OS/2 1.x executable is to be created. Taking
the possible types of modules we will develop into account, we can specify the syntax of
our smarter make utility mk as shown in Fig. 1.4. Its internal flow of control is depicted
by Fig. 1.3. Listing 1.2 represents an implementation of the mk utility.

1 @echo off
2 REM ===
3 REM mk.cmd
4 REM Syntax: mk [/h] <source file >[.ext] [/f] [/32] [/lib] [/drv]
5 REM ---
6 REM Check for help switch or if no parameters were specified
7 REM ---
8 IF %1. == /h. GOTO Help
9 IF %1. == /H. GOTO Help

10 IF %1. == /?. GOTO Help
11 IF %1. == . GOTO Error
12 GOTO Assemble
13
14 :Help
15 ECHO.
16 ECHO make: Assembles a source file or creates a module.
17 GOTO Info
18
19 :Error
20 ECHO.
21 ECHO ERROR: No source file specified. Check syntax.
22 GOTO Help
23
24 :Info
25 ECHO Syntax: mk [/h] ^<source^>[.ext] [/f] [/32] [/lib] [/drv]
26 ECHO All options can be given in upper case.
27 ECHO If no options are given the source file is assembled only.
28 GOTO Exit

1.4 Preparing of a Working Minimal Development Environment 23

29 :Assemble
30 REM ---
31 REM Assemble only
32 REM ---
33 IF %2. == /F. GOTO Final
34 IF %2. == /f. GOTO Final
35 masm %1,,%1,,
36 GOTO Exit
37 REM ---
38
39 :Final
40 REM ---
41 REM Create module
42 REM ---
43 ECHO Performing final assembly...
44 masm /t %1,,%1,, > %1.def
45
46
47 ECHO Creating program module...
48 IF %3. == /32. GOTO 32
49 IF %3. == /lib. GOTO LIB
50 IF %3. == /LIB. GOTO LIB
51 IF %3. == /drv. GOTO DRV
52 IF %3. == /DRV. GOTO DRV
53 link /NOLOGO %1,%1.exe ,%1,,%1
54 GOTO Exit
55 :LIB
56 link /NOLOGO %1,%1.dll ,%1,,%1
57 GOTO Exit
58 :DRV
59 link /NOLOGO %1,%1.sys ,%1,,%1
60 GOTO Exit
61
62 :32
63 IF %4. == /lib. GOTO LIB32
64 IF %4. == /LIB. GOTO LIB32
65 link386 /NOLOGO %1,%1.exe ,,,%1
66 GOTO Exit
67 :LIB32
68 link386 /NOLOGO %1,%1.dll ,,,%1
69
70 :Exit
71 ECHO.
72 ECHO Done.
73 REM ===

Listing 1.2: Batch file implementation of the tiny make utility mk.

As can be seen in the listing, we simply call the assembler and linker with the correct
switches to yield the desired output files. This is in contrast to common make utilities
such as nmake from the OS/2 Developer’s Toolkits which support incremental updates,
partial compilation of files, the inclusion of different tools, etc, and even base on an own
scripting language to set build processes in motion that span complex directory struc-
tures, subprojects, and possibly thousands of source code files. We will not follow this
trail since it introduces flexibility into the development process were it is not needed. The
process can be simplified to great an extent by keeping actual software crafting, that is
the authoring of program text or writing program code respectively, on a module level
and thus develop an application module by module keeping each module small. Applying
this methodology makes complex make programs superfluous and creating project direc-
tory structures as proposed in the next section eliminates the need for any sophisticated
source file repository management and its associated tools.

24 1. Preparing a Minimalistic Software Development Environment for OS/2

1.4.4 Simple Methodologies for Project File Management

In designing and implementing our projects, we will always work on two separate levels, a
module and module system level. That is, a project is broken conceptually into as many
independent modules as appropriate, usually as possible; then each module is created
separately; and finally the devised interaction between these modules is implemented on
a module system level by means of employing intermodule communication protocols and
corresponding control sequencing schemes11.

The consequence of this approach is that each module is small and that there are
no intermodule relationships at the source text level as there are in the case of large
monolithic projects that often comprise dozens or even hundreds of source code files.
Practically, therefore, we work with very few files to create any one module and com-
bine these modules later at runtime to yield a functional entity. Dependencies between
modules that exist at runtime only are dynamic or transient and not static or persistent
as they are as a result from source test interdependencies. We thus work with very few
files per module, usually only one which contains the modules source text, and in some
cases a few more to store resources or other module related data separately from the
program source text. All other files are created by the development tools, such as object,
list, module definition, and executable files. This fact simplifies source code management
tremendously.

At runtime, each module will be used by others and often hierarchies of modules exist.
Under OS/2, these hierarchies are called process trees. Process trees consist of parent
nodes and child nodes and can take on any form. They can be modelled very well by
creating a hierarchy of directories in a file system. This fact can be used to advantage for
project file management in that the a main directory is created for the project, then each
module gets an own subdirectory under the project main directory. Further modules are
then inserted into the subdirectory structure thus that the structure itself documents
the structure of the working module system at runtime. For example, an assembler
project system might consist of a source code parser, file storage controller, translator,
and console module and might take on the form as depicted by Fig. 1.5.

Each subdirectory in this tree represents one module and holds the source files of only
this module. Later, when all modules are tested, the module in the top (the project’s
main) directory can be copied together with all other modules of its tree to a common
subdirectory on the system drive which holds all modules in the system and started from
there. This top module then builds the tree of modules and orchestrates their working
and interacting12. The overall project management procedure reads thus:

1. Create a project directory and for each module that becomes part of that project
an own subdirectory.

2. Create source files on a per-module basis and store them in the corresponding
module directories.

11 This sounds much like a mixture of event-driven and object-based programming and it is. It will
be shown that the concepts of event-driven programming are independent of graphic user interfaces
based on messaging systems, although programmers on the PC got in contact with events and messages
mainly through such GUIs the first time. We will employ the concepts of events, messages, and objects
early in our projects, long before we get in touch with Presentation Manager.

12 This principal design will be implemented later in form of WorkplaceShell classes directly thus resulting
in a simple, robust, object-oriented development environment.

1.4 Preparing of a Working Minimal Development Environment 25

Root module
(as)

[C:\projects\as]

-
Submodule 1

(parser)

[...\parser]

-
Submodule 2
(file manager)

[...\filemgr]

-
Submodule 3
(translator)

[...\transltr]

-
Submodule 4

(console)

[...\console]

The ellipses ... represent the project main

directory, here C:\projects\as. The

names of the directory follow the FAT 8.3

convention which also is applied to file names.

File names can be much longer under OS/2 if

HPFS is used instead of FAT. However, dealing

with short file names on the command line is
much more convenient and the files can be
exchanged with other systems without getting

into any hassle. This is advantageous for

cross-platform development.

Each of the modules is written and tested
in isolation. The project’s overall function

then is composed by applying appropriate

intermodule communication and control
sequencing schemes, usually implemented inside

the main module, here the as module in the
main directory.

Figure 1.5: Sample project directory structure. The structure of the directory tree directly
corresponds to the tree of processes at runtime created by the root module and thus is part of
the project documentation.

3. Work on the nodules in an isolated way. Never create source text dependencies
between modules. Note that intermodule dependencies exist during runtime only,
may vary, and can take on any form.

4. Working on modules actually means to change into the module subdirectory and
manipulate the files in those directories directly.

5. Under OS/2, open a new command line session for each module so you can work
on various modules in parallel.

6. Place all development tools in a directory added to the PATH environment variable
so that CMD can find them.

7. Call the ev batch file to prepare the environment for each command line session.

8. Modules are always independent so they can be run from the development console
directly and then tested. Put any test drivers directly in the module’s subdirectory
and write a short batch file to pass data into the module and display data the
module returns. This allows for an easy, interactive way of program testing.

An interesting fact follows from the proposed directory structure, namely that modules
can be classed as private and public in the sense that any module that resides physically
beneath a root module belongs to this root and any root can be a logical subordinate

26 1. Preparing a Minimalistic Software Development Environment for OS/2

module for any other module in the system of modules. Thus, in Fig. ??, the as, pk,
file manager, and console modules can be considered public, whereas the modules
parser and translator are private to as.

These public-private relationship is more of conceptual meaning, however, there are no
root-submodule interrelationships at the program text level that is and thus each module
is developed and tested in isolation, still. Private modules simply are not used outside
the application of a certain root module.

Root module
(as)

[C:\projects\as]

-
Submodule 1

(parser)

[...\parser]

-
Root module

(file manager)

[C:\projects\filemgr]

-
Submodule 2
(translator)

[...\transltr]

-
Root module

(console)

[C:\projects\console]

Root module
(pk)

[C:\projects\pk]

�

�

Modules of general purpose are placed

in own main directories and thus are
roots themselves. They then are only

logically submodules of the modules

that use them, here as and pk.

At runtime, each root module at the
logical top either works with an own

instance of the logically subordinate

root modules, filemgr and console,

or they use single instances of these

modules, in case of console for
example which serializes access to a

single physical console as it receives

requests from multiple other modules.

We thus should think of modules as
independent functional entities right

from the start.

Figure 1.6: Sample project directory structure with multiple root modules. Each module of
general purpose is assigned an own root directory. Under WorkplaceShell, a shadow of each
general purpose root module directory can be created in the root module directory that uses
other roots as subordinate modules so that the physical structure of each module project still
reflects the logical structure of the module system at runtime.

Virtual inheritance, or virtual subclassing respectively, is another concept we draw
from µPMOS and introduced early in the OS/2 development projects since it can be
implemented using OS/2 processes nicely. To understand it, we need take a look at class
trails and class trees.

In µPMOS, classes are modules that usually are merged with the runtime context of
a generic or prototype task thus yielding a construct called an object. At the runtime
level, deriving an object from a class thus means to splice the generic class handler of
the prototype class with one class module registered with the system. This process also
is called morphing. Although there is only one class from the viewpoint of the prototype
task, this class actually might be a head of a train or (at runtime) trail of classes, that
is it can build on another class, and this one on just another class, and so forth, until
a tail class is reached. This class hierarchy normally is linear only and enables a class

1.4 Preparing of a Working Minimal Development Environment 27

designer to introduce new features into the class’ functionality accessible through the
head module of the class trail. Also, corrective updates can be threaded into the class
trail by adding new modules at any place in the sequence of class modules. This is
one point we carry over to our development tenet reflected by the environment we are
preparing: Any module, private or public, can have any number of submodules strictly
belonging to this module, residing in subdirectories below the module directory. This is
depicted by Fig. 1.7 from which we can derive two important facts:

1. Subdirectory trees of actual modules holding the module trails do not get deeper
than one level.

2. Intermodule relationships introduced by applying the concept of class trails are
restricted to one type of modules only, namely those which are part of the trail but
there are no intertrail dependencies.

Root module
(as — current)

[C:\projects\as]

trail module 2
(as — rev. 2)

[...\02]

trail module 1
(as — rev. 1)

[...\01]

-
Submodule 1

(parser — current)

[...\parser]

trail module 2
(parser — rev. 2)

[...\parser\02]

trail module 1
(parser — rev. 1)

[...\parser\01]

.

.

.

The directory structure here is

generic, that is the 01, 02

subdirectories can hold just former

editions of the module in their
parent thus offering a convenient

and safe place where to store them;

or a true class inheritance scheme
can be applied where the 01, 02

subdirectories contain different
levels of the class. The 01
directory, the trail tail, then

would hold the ancestor and the
parent directory, the trail head,

the most current descendant class
module. Therefore, the use of the
directories is implementation

dependent.

Under OS/2, each directory would

contain a functional executable
module in the the first case. In
the second, only the trail head

directory would contain an

executable module while all other
trail modules can (but need not)

be implemented in form of dynlink

modules. Both approaches will be

applied.

Figure 1.7: Inheritance schemes can be realized independent of the proposed directory use.
Either the type of inheritance is fully virtual or intermodule and trails become logical constructs,
or the inheritance is a hybrid scheme of intramodule (intern to trails) and intertrail (see text).

In common object-oriented environments, such intertrail connections do exist. It is
usual that there is a single root class from which all other classes derive so that certain

28 1. Preparing a Minimalistic Software Development Environment for OS/2

basic features are common to every class in the system13. Adaptations are then made by
means of subclassing as in the trail concepts but now all classes derive from the preceding
root class and can also have further classes descending from them in the same manner.
This yields a tree of classes with principally any number of branches with each branch
being more or less related to one another but, eventually, all leaves of the tree are related
in some way since all stem from the same root class (or set of root classes) at the very
top of the structure. The direct result is flexibility; but as inherent the tree concept is
to object-oriented programming as many side effects are inherent to its implementation.
Imagining a tree with many branches and two leaf classes, one at the extreme right,
the other at the extreme left of that bushy tree, then it is clear that these two classes
are completely different in function, yet they are related in some way. Intermodule
dependencies exist and wind through the whole tree building complex paths. Since all
those modules run in the same context of an object, eventually, a great spectrum of side
effects evolves that might or might not materialize in erratic behaviour but if and when
it does the resulting failures are usually complex, of unpredictable character in both time
(when they occur during runtime) and context (at what occasion they appear). This is
one serious drawback of object-oriented software systems.

To alleviate the situation, µPMOS applies the concept of virtual inheritance. This
simply means that intermodule dependencies exist inside class trails only and wind up
along that trail until its tail is reached. Now, to let the trail stem from a common strain,
the link to the head of another trail is established dynamically at runtime. That is,
the intermodule dependency that would be introduced by letting one module descend
from another is substituted for an intertrail dependency. Both trails exist in separate
runtime contexts so they are encapsulated and even work asynchronously (and, therefore,
do not even have to share the same local machine). Where the head of one branch of
a class tree interacts with the leaf of another one branch by calling procedures of the
ancestor class in the common model, the tail of one class trail interacts with the head
of another trail by means of intermodule communication. In practice, two separate
processes exist, each implementing one runtime implementation of a module trail. They
are physically independent yet functionally dependent, still. The ancestor trail thus
gives the descendant trail its features by means of interprocess communication instead of
intraprocess calls between modules. Hence the inheritance scheme is called virtual. The
results of both models are exactly the same but in the virtual inheritance scheme each
class trail can be assigned another one trail at runtime14, temporarily or persistent over
the life time of the application. This way, errors can be detected and traced logically
along a full inheritance path yet their analysis and treatment can be done inside each
physically isolated fragment which simplifies error correction. In practice, most errors
spread along a trail and then show up at the communication port to the ancestor trail(s)
where they can be intercepted and eliminated but they cannot infect a complete system
of class modules. This is one important premise in the construction of robust, dynamic,
and highly complex distributed software systems. Besides, changes to ancestor classes
often are critical since they affect all descending classes. Virtual inheritance makes
it possible to run multiple versions of one ancestor trail side by side and let various
subtrails execute in parallel with each of the available ancestor trails. This way, erratic

13 An architecture with which we become acquainted when we explore SOMobjects and WorkplaceShell.

14 Or even multiple trails thus implementing a robust form of multiple inheritance.

1.4 Preparing of a Working Minimal Development Environment 29

trail interoperabilities can be defeated that might affect only specific descendant trails or
new experimental features can be introduced by substituting a tested ancestor trail for
an advanced version, including a fallback to the prior edition on failure of the new one15.
Figure 1.8 depicts the concept of virtual inheritance which, besides, has no impact on
the directory structure we maintain in our simple environment, it is a runtime feature.

as trail head
(Executable instance)

[op loaded: as03]

?
trail module 3

(as03 — rev. 3)

[as03 ancestor: as02]

?
trail module 2

(as02 — rev. 2)

[as02 ancestor: as01]

?
trail module 1 (tail)

(as01 — rev. 1)

[as01 ancestor: base]

-
base trail head

(Executable instance)

[op loaded: base02]

?
trail module 2

(base02 — rev. 2)

[base02 ancestor: base01]

?
trail module 1 (tail)

(base01 — rev. 1)

[base01 is root]

Virtual ancestor trail

parser trail head

(Executable instance)

[op loaded: parse01]

?
trail module 1 (tail)

(parse01 — rev. 1)

[parse01 ancestor: base]

�

op is the prototype program

which creates instances (objects)

from class modules. The as and
parser trail heads thus are

objects deriving from the class

modules down their module trails.
The trail tail modules descend
virtually from the base class

trail. Again, this virtual ancestor

trail is headed by an instance

(object) derived from its class

modules.

Figure 1.8: The interaction between trail tail modules and their virtual ancestors takes place
based on intertrail (object) communication rather than invoking class module functions and is
transparent to the trail head modules and—depending on implementation—even to themselves.

Each module still is created and maintained in isolation and any possible module trail
is hidden behind a single module other modules see. Virtual inheritance is a feature
whose discovery is beyond the scope of this article and thus need be discussed as part
of the interprocess communication (IPC) services of OS/2. The important point to note
at this time is that complex systems of highly intercommunicative modules can be built
on top of OS/2 with ease, only using the simple tools presented here which work in a
bare-bones development environment as the one we devised.

15 This sort of dynamic class replacement is used in the implementation of ObjectWorkplace ED for
OS/2. Here, only a single workplace object class exits in the workplace process which is dynamically
connected to different document class trails running separately from WorkplaceShell.

30 1. Preparing a Minimalistic Software Development Environment for OS/2

1.5 Release Notes

This article explained how to prepare a minimal command line centred software develop-
ment environment under OS/2 by simplest means only using components included in the
system distribution, except for a macroassembler which need be added and, probably,
a text editor with which the reader is most familiar. Also, it showed two simple batch
file utilities one of which helps in making the creation of executable modules much more
comfortable.

Besides the few necessary tools required for studying the operating system and creat-
ing further components for software construction, the rationale behind such studying was
explained and how a new open architecture can be derived from research taking place on
a matured platform such as OS/2. In addition to a design exposition and implementation
language, at least three basic development tools to create the new architecture and pro-
totype its systems software layers can be constructed using the proposed environment,
a transcriptor, assembler, and packer, making the basic development tools with which
software development starts, namely linkers and macroassemblers, superfluous.

The foundation was laid for software engineering by simplest means, modular system
construction, reusability of program functionality by distributing finished modules in-
stead of code, and the elimination of static linking as well as the management of complex
source code repositories. Following the guidelines and design tenets proposed in the ar-
ticle, the way is open to explore the OS/2 operating system at all its levels and let open
and freely usable solutions evolve on the experiences so gained.

References

[1] Fischer, Carla. The µPMOS Primer. cefischer. ISBN-13 978-3-944037-83-7.

[2] Jamsa, Kris. Concise Guide to MS-DOS Batch Files. Microsoft Press. ISBN-10
1-55615-638-3. 1994.

[3] Duncan, Ray. Advanced OS/2 Programming. Microsoft Press. ISBN-10 1-55615-
045-8. 1989.

[4] Iacobucci, Ed. OS/2 Programmer’s Guide. Osborne McGraw-Hill. ISBN-10 0-07-
881300-X. 1988.

[5] Deitel, H.M. and Kogan, M.S. The Design of OS/2. Addison-Wesley Publishing.
ISBN-10 0-201-54889-5. 1992.

[6] Letwin, Gordon. Inside OS/2. Microsoft Press. ISBN-10 1-55615-117-9. 1988.

2

Principal Structure of OS/2 Programs at the
Assembly Language Level

2.1 Introduction

This article shows, by a simple example, the principal structure of OS/2 programs when
seen from the assembly language level. Therefore, it reveals the most basic programming
architecture OS/2 has to offer. The actual binary structure of programs at runtime, or
their memory footprints respectively, as well as the layout of executable files resulting
from the build process after linking are touched in passing.

In the course of this article, the designation OS/2 1.x comprises all OS/2 versions from
1.1 up to 1.3 (the last of the 1.x series), and OS/2 2.x all versions from 2.0 to 4.5 (the
last of the 2.x series). In contrast, the widespread terms 16-bit OS/2 and 32-bit OS/2
principally are not used because they are technically imprecise and confusing. OS/2 is
a 16/32-bit hybrid system; and any application under OS/2 can (and will) execute in
either 16-bit or 32-bit code segments at any one time. Besides, it is a marketing myth
that applications composed of only 16-bit segments generally execute slower than their
counterparts made of only 32-bit segments. Many of the OS/2 development projects
will show that there is no general gain in performance when moving code from 16-bit
to 32-bit addressing schemes. The overall performance of applications generally depends
on the structure of the underlying software system; and in case of OS/2, which is a
multiprogrammed system that can execute multithreaded program modules, also, the
overall performance especially depends on additional factors such as the number and size
of modules composing the application, intermodule communication, thread synchroniza-
tion, and other crucial points.

The articles introduces a minimal working OS/2 program in assembly language which
can either be made a segmented executable module that runs on all versions of OS/2 or
a linear executable module compatible with OS/2 2.x only.

2.2 Layout of OS/2 1.x and 2.x Programs in Assembly

As mentioned above, OS/2 is a 16/32-bit hybrid system, it consists of both 16-bit and
32-bit components that is. Put more precisely, it is a system that employs two different
protected memory models and addressing schemes, namely a 16-bit segmented model
as introduced by the 80286 processor which addresses objects in memory by variable
16-bit long selectors and 16-bit long offsets; and a 32-bit linear or flat model introduced

32 2. Principal Structure of OS/2 Programs at the Assembly Language Level

by OS/2 2.0 the first time1 in which objects in memory are addressed by an invariant2

selector and a 32-bit long offset. This differentiation is important during examination
of the system at the binary level and for runtime related analysis since the two memory
models are implemented differently by the 1.x and 2.x variants of the operating system.
However, all OS/2 versions starting at 2.0 are backward compatible with any 1.x version.
Support for both, the complete 1.x memory model and 1.x programs on higher versions
of OS/2 is integrated into the system absolutely seamlessly so, little to no differences
show up at the assembly language level. Basically, the assembly language programmer
sees an OS/2 program as depicted by Fig. 2.1.

Before discussing the parts that make up an OS/2 program, some words are in order
regarding the runtime character of applications under OS/2. We will see later that the
principal OS/2 application unit is the process which is a compound of resources (code,
data, files, pipes, etc) and processing time (threads). In its most simple form, a process
refers to three elementary runtime building blocks:

1. An own stack solely used by (the first thread in) the process (the so called main
thread which is started by the system when the process is created). It is impor-
tant to note that the OS/2 kernel uses its own stack, that is stacks are switched
automatically when execution enters the kernel (during system service invocation).

2. A data segment that contains the data upon which the process works. Although
this segment is defined by the programmer, a new copy of it is assigned to each
new process of the same type.

3. A code segment that contains (all or at least key components of) the application
specific program text executed during the lifetime of the process. All processes of
the same type use this single code segment.

The data segment mentioned in point two is called the automatic data segment since
it is created automatically for each new process the systems starts. It contains the stack,
also. Physically, therefore, per-process data and stack are stored in one and the same
segment. The automatic data segment constitutes what is called an instance of a program
whose functional characteristics are defined by its code segment. As many instances of a
program can be created as the user desires, or the amount of system memory and internal
control resources permit respectively, which all share a single copy of the code segment
that is brought into memory by the loader the first time a process referring to that code
is started. Thus, OS/2 programs are reentrant, that is we must be aware that our code
segment is entered by many instances of a program simultaneously. Figure 2.1 illustrates
these points.

1 Although this linear model was implemented on the 80386, it is not 80386 specific, much in in contrast
to the segmented model of OS/2 1.x which was specifically developed for the 80286, although it is
much more complicated than the underlying hardware would suggest.

2 The term invariant means that the selector value does not change during the lifetime of a process (in
contrast to the segmented model in which any segment has its own selector). However, it is not zero as
the common 0:32 notation for the linear addressing scheme might suggest. The zero in this notation
must be read as “don’t care” selector value so, effectively, only the offset is necessary to address any
datum in the segment so referred. Anyway, the selector refers to a true segment in the linear (or
virtual) address space of the process.

2.2 Layout of OS/2 1.x and 2.x Programs in Assembly 33

Figure 2.1: Structure of OS/2 programs at the assembly language level.

The data portion of the automatic data segment is defined by the programmer. In order
to denote what data go into this automatic data segment, logical segments are grouped
together using the group name DGROUP3. Under OS/2 1.x, the size of the DGROUP cannot
exceed 64 Kbytes, including the size of the stack which is denoted as STACKSIZE in the
figure. The data segment is not thus size restricted under OS/2 2.x whose flat addressing
scheme allows for a linear address space of 512 Mbytes4. Anyway, one should be very

3 For simplicity, it is sufficient to define a single data segment which holds all the program’s data and is
to be instantiated by the system. The distribution of data definitions among multiple logical segments
is of little practical value and should be avoided in order to make assembly source texts forward
compatible with as.

4 For compatibility reasons. If OS/2 was are pure 32-bit system, the linear (virtual) address space of each
process would comprise all 4 Gbytes addressable by a 32-bit offset. Although it sounds tempting, one
should not make use of such extended memory addressability features, not in defining the automatic
data segment at least, since a new copy of these data is created by the system for each new process of
the same type (referring to the same module). Exhausting huge address spaces only makes sense in
building big monolithic applications which should be avoided.

34 2. Principal Structure of OS/2 Programs at the Assembly Language Level

selective what data goes into the automatic data segment so, usually 64 Kbytes are
sufficient, especially because OS/2 programs can allocate additional memory at runtime
as necessary and only need store compact word-sized selectors (or double word pointers
in 2.x programs) to reference these additional objects.

Data segments defined in the source text that do not go into the DGROUP are treated like
the code segment, that is shared between all instances of a program. They are collected

1 ;===
2 ; TEST01
3 ; Input : None
4 ; Output: 1 - Normal termination
5 ;---
6 ; Assembler directives
7 ;---
8 PAGE 64 ,128
9 TITLE OS/2 1.x minimal program #01

10
11 .286 ; select instruction set
12
13 ;---
14 ; System calls
15 ;---
16 EXTRN DosExit:FAR
17
18 ;---
19 ; Instance data (automatic data segment)
20 ;---
21 DGROUP GROUP Data
22 Data SEGMENT PARA PUBLIC ’auto’
23 @Buffer DB 256 DUP(0)
24 Data ENDS
25
26 ;---
27 ; Shared data
28 ;---
29 Const SEGMENT PARA PUBLIC ’shared ’
30 @Info DW 16 DUP(0)
31 Const ENDS
32
33 ;---
34 ; Program code
35 ;---
36 Code SEGMENT PARA PUBLIC ’code’
37 ASSUME CS:Code , DS:DGROUP , ES:Const
38
39 Sanity:
40 PUSH Const ; make Const accessible
41 POP ES ; through ES
42
43 Program:
44 NOP
45
46 Exit:
47 PUSH 1 ; End process (all threads)
48 PUSH 1 ; Set return code to 1 and exit
49 CALL DosExit ; Through OS/2
50 Code ENDS
51
52 ;---
53 ; Entry point
54 ;---
55 END Sanity
56 ;===

Listing 2.1: A minimal OS/2 1.x program in assembly language.

2.3 Minimal Working OS/2 1.x Assembly Program 35

in a separate segment called additional segment in Fig. 2.1 which is optional. Constant
data like resources are common items stored in such additional segments.

This principal program layout is the same for both 1.x and 2.x OS/2 program modules
(and, some minor modifications of this scheme aside, for dynlink modules, or dynamic
link libraries (DLLs) respectively, also). Although all these modules appear differently
at runtime, the basic structure at the assembly language level remains the same.

2.3 Minimal Working OS/2 1.x Assembly Program

Carving a minimal working program out of the concepts presented so far results in two
files we need make:

1. An assembly language source file which contains the segments OS/2 uses to compose
a working process in memory. Here we implement our program, actually.

2. A module definition file the linker uses to create a loadable module from the output
the assembler has generated.

The structure of the assembly language file almost always can be left completely un-
changed regardless of the nature of the modules we create. This way we can let a
program generate this structure, relieving us from all the bookkeeping tasks, so we can
avoid clerical errors and concentrate on actual programming work. Anyway, a thorough
understanding of the program structure at the symbolic level is necessary since we get
in touch with it in the transcriptions of our own utilities and during error correction,
also. In a later step, we will derive the first high-level skeleton program from the simple
template introduced next.

2.3.1 Assembly Source File of the Minimal Program

Keeping the information from the preceding section in mind, we can now implement the
structure of Fig. 2.1 as shown in Listing 2.1.

The automatic data segment is defined in lines 21 to 24. There is only one segment
that makes up the group named Data. The align type PARA aligns data items to WORD

boundaries. This is the default setting but it was specified to set the segment aside
from those we define for 2.x programs which are DWORD aligned. A stack was not defined
in the source file explicitly as one would do under DOS. Although it could have been
defined this way, this is done much better by means of the Module Definition File or
DEF file respectively (Listing 2.2). This is a control file used by the linker to set up
the module correctly, especially its header. The stack is defined in the DEF file by a
simple statement and then configured for the program by OS/2. Since the default stack
is a system-supplied runtime feature it need not be defined in the assembly source file
from a conceptual viewpoint and not technically, either, since it would go into the object
file where it unnecessarily took up space5. The Data segment is to receive any instance

5 Anyway, the stack can be changed once the program is running. In this case, a separate segment is
allocated through OS/2 which is made the new stack. The selector to this stack segment must be
placed in the automatic data segment (otherwise all instances of a program would use the same stack).
The default stack then is no longer in use and does not need any special treatment since it is located
in the automatic data segment. Space reserved for the stack in the segment can then be reused.

36 2. Principal Structure of OS/2 Programs at the Assembly Language Level

related data items. The Buffer item in line 23 was defined for illustrative purposes
only. Again, it should be noted that this segment should be kept small, the smaller the
better, since a fresh copy is created for every instance of the program. Data vital to
an instance but which is generated at runtime, should therefore be stored in a separate
segment. This approach is more flexible, requires only a word be reserved in Data, and
comes with the additional benefit of aiding in error detection and correction (debugging).

An additional segment is defined in lines 29 to 31 which is not part of DGROUP and hence
shared among all instances of the program by default. It is called Const and intended as
storage location for any kind of data to which all instances need frequent access. Shared
segments there are usually many during runtime but not always they are shared between
all instances of a program. Such data should go into dynamically allocated segments
later. This also is true for data which only are accessed seldom or temporarily. We
should always strive for a strict separation of data by utilization so that information can
be discarded, refreshed, replaced, etc, at our own discretion. The definition of the Info

item line 30 again is for illustration only.

The code segment is defined in lines 36 to 50. The ASSUME statement in line 37 only
is of interest to the assembler in order to create offsets appropriately during translation.
We need not set up the vital segment registers CS, DS, and SS on entry of the program
to match these assumptions, as we had to do under DOS, since OS/2 initializes them so
that CS points to Code, DS to Data, and SS to the default stack6. Only ES need be loaded
with the segment we wish to access through it, Const in the example. This is done in
lines 40-41 by a PUSH/ POP sequence. The rationale behind applying this sequence is
that segment registers cannot be loaded with constant values, only from a register or
memory location. If a register transfer was used the contents of at least one register
would be destroyed but OS/2 passes other information on entry of the program through
the registers we have not yet processed so, it is most easy to circumvent register use at
this point in program execution.The stack provides a convenient way to achieve this goal.

Actual program code follows the Program label. The further structure between Program

and Exit can be chosen arbitrarily. For example, a typical top-down approach with pro-
cedures organized in a hierarchy would result in a single CALL to the top main procedure
coded after Exit, followed by further subroutines. Alternatively, each part of the pro-
gram could be written directly between Program and Exit but the epilogue following
Exit is obligatory. To satisfy system conventions, it consists of a call to an API function,
DosExit, at a minimum. Coded as shown in lines 47 to 49 it simply ends the process in
an orderly fashion.

The END statement in line 55 marks the end of input to the assembler and defines the
entry point into the program. This is the offset to a location in the Program segment that
will become the initial value of IP when the program has been prepared for execution and
control is handed over to it. Here, the label Sanity is defined as entry point. It is used
as general point for initialization and it is good practice to define it before the actual
program text. It should contain instructions that not only set up the instance data for
operation but that also reset the program to a known, safe state whenever this should
become necessary, for example in serious error situations in which processing is aborted

6 To recap, DS and SS point to the same physical segment, the automatic data segment, or to DGROUP

respectively, since the stack is part of that group.

2.3 Minimal Working OS/2 1.x Assembly Program 37

somewhere in the Program section and control transferred to the beginning. Hence the
use of the term Sanity for this place.

2.3.2 Module Definition File of the Minimal Program

The second part of the program connects to the linking process necessary to create a
loadable module of the assembler’s output, the object (OBJ) file. In order to instruct
the linker what sort of module to create, what its name is, the size of the stack, etc, a
control file is created, the module definition (DEF) file.

Similar to the structure of the assembly source file, the DEF file principally need be
created only once. It is used to instruct the linker to produce modules that fit our
requirements but, for the most time, the linker’s default options can be used. We need
only redefine very few key items in the DEF file for every module and can thus automatize
the generation of the file well. Where an when special options are required, their inclusion
in the DEF file can easily be done by means of a simple macro. Listing 2.2 shows the
DEF file for the minimal program module.

1 ;===
2 ; Module definition
3 ;---
4 NAME "TEST01" WINDOWCOMPAT
5 DESCRIPTION "OS/2 1.x minimal program #01"
6 PROTMODE
7 STACKSIZE 4096
8 ;---
9 IMPORTS

10 DosExit = DOSCALL1.5
11 ;===

Listing 2.2: Module Definition File (DEF file) for the minimal OS/2 program.

The DEF file is the same for both linkers we use, the segmented and linear one.

Line 4 is the most important. NAME tells the linker to create an executable (program)
module and assigns a name to this module. The name need not but can be set in quotes
(which is unavoidable when we use the assembler to create the DEF file). The second
parameter defines the type of the module. There are three available from which to choose:

1. WINDOWCOMPAT which allows for execution of the program in a windowed OS/2
session under Presentation Manager (PM). This is the default.

2. NOTWINDOWCOMPAT which excludes execution of the program in a windowed OS/2
session under PM, the program only runs in a fullscreen session that is.

3. WINDOWAPI which defines the program as PM application.

For the time being, we use WINDOWCOMPAT for all our modules.

Line 6 makes the module executable in protected mode only. This is the default and
need not be specified. We only make protected mode modules, besides, but keep the
PROTMODE keyword for documentation so that the DEF file is a little more verbose in
regards to describing the assembly file it accompanies.

38 2. Principal Structure of OS/2 Programs at the Assembly Language Level

Line 7 is important since it defines the size of the default stack. The unit of the number
is bytes. We set it to 4,096 bytes or 4K here which usually is sufficient.

Line 9 opens the IMPORTS section where all external function references are listed. We
use the IMPORTS feature to get access to the OS/2 API through the loader by letting the
linker define a table with module dependencies. The next section defines this feature in
more detail.

2.4 Accessing System Services

OS/2 itself makes intensive use of dynamic linking. Since we strive for distributed com-
puting and a highly dynamic program environment, dynamic linking is a key feature
for our projects alike. Usually, therefore, we avoid to involve the linker in statically
resolving external references and in [1] a method is introduced by which programs can
resolve references to external functions on their own. However, at this early time in the
development process, the linkers can be a used to yield immediate results.

In a nutshell, each module is assigned a module dependency tables which lists the
names of modules, usually dynlink libraries (DLLs), and the features (procedures) they
provide. Any feature that resides in a DLL can be referenced by choosing a name used
as symbol in the assembly language file. Referring back to Listing 2.1, we see in line 16
how this is done by example of the DosExit system feature:

EXTRN DosExit:FAR

This instructs the assembler to create an external symbol and a corresponding record in
the OBJ file. The symbol is declared as FAR since the feature resides in another module7,
here one supplied by the system, namely the basic DOSCALL1 module. The declaration of
an external symbol allows for using that symbol as if its target was defined in the same
source file. When the program is linked, the linker uses the external symbol record in
the OBJ file to lookup the IMPORTS table for an appropriate entry as shown in line 10 of
Listing 2.2:

DosExit = DOSCALL1.5

This entry instructs the linker to create an entry in the module dependency table
reading the name of the module, here DOSCALL1, and the so called ordinal, the index
with which the feature is exported by the module that implements it. Modules can
export features by name, also, and in these cases the IMPORTS entry can read thus:

FeatureLabel = MODULE.FeatureName

7 In OS/2 2.x, the feature also resides in another module but the label actually is a 32-bit and, therefore,
a NEAR pointer when used in a 32-bit code segment. This is possible since the address of the external
feature, here the system API function, is mapped into the flat linear address space of the process.

2.5 Creating OS/2 2.x Programs 39

The import by ordinal, however, is faster and there are some modules, DOSCALL1 being
an example, that export their features, or a subset of them, by ordinal number only.
Anyway, given each external symbol defined by the assembler can be resolved by the
linker to update the appropriate table in the resulting module, the loader can in turn
resolve the corresponding import entry thus making the external library and the desired
feature accessible to the process through the external label. This linker-loader scheme is
the most simple to apply, hence we use it here.

Principally, every system service can be imported this way. The article A Simple
Skeleton Program for Test Purposes in this issue shows how the process can be simplified
by employing appropriate high-level language statements.

Also, there is the possibility to declare all external symbols possibly required in an
external header file included in any program and then define a so called import library
which defines the import definitions for whole sets of system functions. This library
then is used during linking to resolve all module dependencies automatically through the
linker. We will not follow this approach, however, since it makes our modules dependable
on the linker, and another tool, implib, which is required to create the import library.
Besides we tripped the wire of creating and maintaining header files which resembles
typical toolkit authoring. Since we want to become independent of additional tools and
avoid any additional header files, we opt for the aforementioned approach so far and
let the assembler generate the linker-loader relevant statements automatically. Although
this does not eliminate the dependency on the linker and requires import statements
knowing the ordinals or export names of the features to be imported, no other tools are
involved and it is the most simple way to go until a completely dynamic import feature
has been implemented.

2.5 Creating OS/2 2.x Programs

Making an OS/2 2.x program of the 1.x variant is not difficult. The assembler only need
be instructed to use a proper align type for the segments which flags them appropriately
to the linker and causes the generation of 32-bit encoded instructions in code segments.
Also, the instruction set of the 80386 need be activated so that all extended instructions,
registers, and addressing modes become available. Referring to Listing 2.1, the following
steps are necessary:

1. In line 11, the .286 directive is substituted for .386.

2. In lines 22, 29, and 36 the align type PARA in the SEGMENT statements is substituted
for USE32.

This enables 80386 programming in assembly. Besides using a 32-bit architecture of the
processor, the only change noticeable is that segments now can grow beyond 64 Kbytes.
This circumstance can be used to advantage in certain applications.

The aforementioned changes affect the whole program, all segments that is. The stack
is accessed 4 bytes a time, no longer two; default addressing is 32-bit, not 16-bit, which
affect operand sizes; and items in the data segments are aligned to DWORD boundaries
to optimize access. Of course, it is possible to make hybrid programs containing both

40 2. Principal Structure of OS/2 Programs at the Assembly Language Level

16-bit and 32-bit code segments which call each other, and even the use of two differently
sized stacks is possible. Neither the assembler nor the processor is a hindrance for such
applications but their practical value remains questionable in the creation process of new
modules. These should either be all 16-bit or all 32-bit. OS/2 2.x provides us with ex-
cellent support to use both types interchangeably at the same time and as long as they
are kept encapsulated the system’s compatibility features work seamlessly and efficiently.

The DEF file remains the same for both 1.x and 2.x modules and even the workflow
remains unchanged, except that the linear executable linker link3686 is used to create
the program module instead of link. The next section explains the process in detail.

2.6 Invoking the Tools

The sample program introduced in this article only need be assembled and linked. The
assembler is invoked as shown in Figure 2.2.

masm test01,,test01;

Figure 2.2: Invocation of the assembler to translate the minimal OS/2 programs. The command
is the same for any type of OS/2 program source texts, be it modules for 1.x or 2.x programs,
libraries, or device drivers.

The first parameter is the name of the assembly source file. masm assumes *.asm as
extension of the file if not otherwise specified. The second parameter specifies the name
of the output file. It is omitted since the default is to store the output in a file with the
extension *.obj and the same name as the input file. We leave it this way. The third
parameter is the listing file. By default, no listing is generated. We should always create
a listing, however, it will become an important part of the program’s documentation. We
let the assembler create a listing file with the same name as the input file. Its default
extension is *.lst so we need not specify one. We then end the input with a semicolon
thus omitting the specification of a cross-reference file8. The invocation of the assembler
to generate output of OS/2 2.x program sources is the same. Once the program sources
assemble without errors or warnings, the resulting OBJ file need be linked. Figure 2.3
shows how the linkers are invoked.

The syntax of both the segmented and linear executable linker is the same, only the
program names differ. The first parameter is the name of the object file, the extension
*.obj is assumed. Next comes the name of the output file. The linkers assume that an
executable program file with the extension *.exe and the same name as the input file is

8 A good cross-reference file is a valuable source of information during error detection. It lists all symbols
used by the assembler and assigns each symbol the numbers of lines in which it is referenced in either
the assembly listing or source text file (masm generates references to the first). We do not use this
feature here since the cross-reference file masm creates is not human-readable but intended as input
for the cref utility on which we do not want to depend. Also, we will not support the proprietary
*.crf file format by own tools. Instead, our own assembler as and the transcriptor tr will create
cross-reference information by default which can also be input directly into ec for error detection.

2.6 Invoking the Tools 41

link test01,,test01,,test01

link386 test01,,test01,,test01

Figure 2.3: Invocation of the segmented and linear executable linkers to create the minimal
OS/2 program modules.

the target. We keep it this way and can omit the second parameter. It should be noted,
however, that the name of the module was specified through the NAME statement in the
DEF file and that the actual filename of the module can differ from that. The third
parameter specifies the mapping file. It lists all segments of the module as the linker sees
them in a similar way as exehdr does and we always generate it for documentation. The
default extension is *.map, which we accept, so only the name is specified. By default,
no mapping file is generated. The fourth parameter is used for passing the name of
further object code files, often also called library files, to the linker. These additional
object files are searched by the linker for external references in the primary object file
and resolved. Resolving intermodule dependencies at link time is one of the primary
features of a linker but we do not make use of it. Instead, we instruct the linker to build
a module dependency table to resolve external references through the DEF file and later
substitute resolving module dependencies at linktime for dynamic methods as explained.
We thus leave the forth parameter blank. The last parameter specifies the name of the
DEF file. The default is that no DEF file is used so we specify the name of our own.
The extension *.def is assumed.

Operating System/2 Executable File Header Utility

Version 3.00.002 Mar 1 1995

Copyright (C) IBM Corporation 1988-1995

Copyright (C) Microsoft Corp. 1988-1992.

All rights reserved.

Module: TEST01

Description: OS/2 1.x minimal program #01

Data: NONSHARED

Initial CS:IP: seg 3 offset 0000

Initial SS:SP: seg 1 offset 0000

Extra stack allocation: 1000 bytes

DGROUP: seg 1

Runs in protected mode only

no. type address file mem flags

1 DATA 00000000 00000 00100

2 DATA 00000000 00000 00100

3 CODE 00000200 0000a 0000c

Figure 2.4: Output of exehdr for the minimal OS/2 1.x program.

42 2. Principal Structure of OS/2 Programs at the Assembly Language Level

TEST01

Start Length Name Class

0001:0000 00100H DATA AUTO

0002:0000 00100H CONST SHARED

0003:0000 0000CH CODE CODE

Origin Group

0001:0 DGROUP

Program entry point at 0003:0000

Figure 2.5: The MAP file created by link for the minimal OS/2 1.x program.

Invoking the tool exehdr on the resulting EXE file reveals its structure. The output
of exehdr is depicted by Figure 2.4. It is not necessary to have exehdr since the same
data can be found in the mapping file the linker produces as Fig. 2.5 shows. exehdr is
only useful to gather information of modules for which no MAP file is available. This is
not the case for our own modules so, the linker’s MAP file and the assembler’s listing file
contribute profoundly to the documentation of our programs.

2.7 Release Notes

The minimal assembly program introduced in this article provides the very basis on
which further OS/2 software development can evolve. Besides depicting the structure of
both OS/2 1.x and 2.x executable modules at the assembly language level, it effectively
demonstrates that only two simple yet powerful tools are necessary to create a working
OS/2 program, access system services directly without employing any other programs
or toolkits, and to yield highly compact program modules accompanied by a sufficiently
detailed set of information created automatically during the make process.

References

[1] Duncan, Ray. Advanced OS/2 Programming. Microsoft Press. ISBN-10 1-55615-
045-8. 1989.

[2] Iacobucci, Ed. OS/2 Programmer’s Guide. Osborne McGraw-Hill. ISBN-10 0-07-
881300-X. 1988.

[3] Deitel, H.M. and Kogan, M.S. The Design of OS/2. Addison-Wesley Publishing.
ISBN-10 0-201-54889-5. 1992.

3

A Simple Skeleton Program for Test Purposes

3.1 Introduction

This article presents a simple yet flexible and extensible way of defining the principal
structure of OS/2 programs by means of high-level language statements implemented in
form of assembly language macros. Based on the information given in the preceding two
articles of this issue, a framework of statements is derived whose transcription yields the
minimal working programs given in assembly language in the article Principal Structure
of OS/2 Programs at the Assembly Language Level.

The statements are an extension of the µODE programming language and take the
support of both OS/2 1.x and 2.x modules into account. This article only deals with
statements for program construction so that a simple skeleton program for further de-
velopment becomes available. The article in [1] uses the statements developed here and
adapts them appropriately to develop DLLs by the same simple methodology.

Besides the development of the necessary language extensions, the article introduces
into the principal process architecture of OS/2 from a high level and shows the develop-
ment of simple but effective test drivers in form of batch file utilities.

3.2 Programming with µODE on OS/2

µODE is an extensible plain block structured design exposition and assembly language
devised for the creation of true objects. Besides, it is a system design and implementation
language. It combines the advantages of the development approaches of both symbolic
and high-level programming languages offering a well-balanced set of self-explanatory
terms with which software object designs can directly be expressed in simple English
statements of self-documenting nature. All statements are defined and implemented thus
that they can directly be transcribed to assembly sources of uniform structure. The arti-
cles in [4,5,6] give further insight into µODE while [7] contains the complete specification
and assembly macro implementation of the language as part of its documentation.
µODE is a transcriptor language but since the language is implemented to completion

in form of assembly language macros first, it lends itself perfectly to the simple tools
used to realize the OS/2 programming projects this magazine accompanies. While we
do not discuss general language elements, we do focus on the extensibility features of
µODE and will develop, step by step, a full-fledged language extension package to cover
all important fields of OS/2 programming.

44 3. A Simple Skeleton Program for Test Purposes

3.2.1 Specification of Basic Program Structures

Although our ultimate goal is the creation of true objects and object systems on OS/2, we
first must develop our own basic tools introduced in the article Preparing a Minimalistic
Software Development Environment for OS/2 in this issue1. Therefore, we will first write
language extensions with which simple, directly executable programs can conveniently be
defined. Then we need similar extensions to write dynamically linkable program libraries
as well as device drives. Also, in parallel to these activities, we must add appropriate
system-level statements in order to access the underlying environment, the kernel and
subsystems of OS/2 that is, in a systematic fashion. This article describes the first part,
the definition of extensions for program authoring. The articles [1] and [3] introduce to
the language extensions for dynlink library and device driver programming respectively.

As mentioned above, we must start working on a level below objects, that is we first
need write programs in the more traditional sense so to be able to create our basic de-
velopment tools. We will, therefore, use only elementary µODE statements and internal
procedures but define a basic program layout from scratch. It is intended that this layout
be as general as possible and shields us from the idiosyncrasies of the underlying operating
system alike. Figure 3.1 depicts the proposed basic structure for our program. We will
stick with this structure throughout all OS/2 projects when we need create executable
programs that are made processes by OS/2 at runtime2.

PROGRAM "Test"

IS <Type>

<Description, runtime options, ...>

REQUIRES

<External feature imports>

INSTANCEDATA

<Private data definitions>

SHAREDDATA

<Public data definitions>

FUNCTION

<Entry, start, termination sections>

ENDOFPROGRAM "Test"

Figure 3.1: Outline of the basic PROGRAM block structure.

The PROGRAM .. ENDOFPROGRAM block definition follows general µODE style. All en-
closed statements become part of the OS/2 language package, however. Although some
oft them do appear in the standard packages, they are not imported from there but

1 Simply put, to create the first true object we cannot in turn use objects but first must define their
elementary building blocks.

2 And across platforms for any program that is of such a basic nature that it is not nor cannot be part
of any higher-level runtime environment.

3.2 Programming with µODE on OS/2 45

completely redefined since they bear very different meaning under OS/2 as they do on
other platforms3. As shown in [1,3], dynlink libraries and device drivers can use the
very same statements which need be adapted only slightly to meet the different modules’
requirements. This way all modules can be made symmetrical from a high-level language
point of view4. The statements inside the PROGRAM block are defined thus that their
transcription to assembly yields the principal structure of an executable OS/2 program
as introduced in the preceding article. Figures 3.2 to 3.6 show the specifications of each
statement.

IS directly follows PROGRAM and defines the three obligatory key characteristics of the
module, namely its type, a free form description in form of a text string, the size of
the default stack (as part of the automatic data segment), and the target processor
which either is the 80286 or 80386. Choosing the first processor makes the program
compatible with OS/2 1.x and thus a segmented executable module is created; choosing
the second makes it a linear executable program which runs under OS/2 2.x only. All
three characterizing statements must be specified.

IS "<WINDOWABLE, FULLSCREEN | PMAPPLICAION>"

Must be contained in: PROGRAM

Must be followed by : DESCRIPTION "<Program description>"

STACKSIZE <Size of default stack in bytes>

TARGET <286 | 386>

REQUIRES (closes block)

Notes : The number following STACKSIZE is base 10.

Example of use : The following example makes the program compatible

for execution in an OS/2 windowed session, sets the

size of the default stack in the automatic data

segment to 1 Kbyte and marks it as native OS/2 1.x

application:

IS WINDOWABLE

STACKSIZE 1024

TARGET 286

Figure 3.2: Specification of the IS statement and its followers.

INSTANCEDATA and SHAREDDATA open the instance data and shared data sections re-
spectively. All data declarations following each statement go in either the automatic or

3 For illustrative purposes, the µODE standard macro packages are not included in these examples to
avoid clutter. Once the statements defining the structure of OS/2 modules and system API access are
finished, the standard packages are added so programs can actually be written entirely in µODE. Till
then, a fallback to plain assembly inside the µODE structures is made (as it is always possible) which
is ideal doing for the purpose of system documentation, besides.

4 Symmetry of the module creation processes is provided through the simple make utility mk. In the
most abstract sense, mk is a filter, taking a single µODE module source text file as input and creates
its directly usable binary representation as output.

46 3. A Simple Skeleton Program for Test Purposes

default shared segment and both statements open and close the segments appropriately.
While INSTANCEDATA must be specified, SHAREDDATA is optional. Since the second state-
ment closes the segment definition of the first during transcription, a missing SHAREDDATA

statement cannot close the segment of INSTANCEDATA. As usual in µODE, an internal
flag is used by each statement to mark it as open block which is checked by the next
statement in line to close it. If that first next statement is optional, the second next
statement takes on the role of its optional predecessor and closes the foregoing block.
Here, the next statement of SHAREDDATA is FUNCTION which would finalize the segment
definition started by INSTANCEDATA should it be open, still. This form of transcription
context checking is typical in µODE and protects the sequencing of statements by sim-
plest means. The technique is shown later in section 3.2.2. Also, [4,5,6] explain this
feature in detail. The specifications of the two data section declaration statements are
identical so only the one of INSTANCEDATA is shown in Fig. 3.3.

INSTANCEDATA

Must be contained in: PROGRAM

Must be followed by : SHAREDDATA or FUNCTION (either closes block)

May contain : DEFINE, all \mode\ default advanced data declarations,

standard assembly declarations

Notes : INSTANCEDATA opens the section of the program whose

data declarations go into the automatic data

segment. All data here are allocated statically and

a new copy of them is created by the system for each

new instance of PROGRAM in the system memory.

The statement can appear only once in a PROGRAM

since each program can only have one automatic data

segment. INSTANCEDATA must be specified.

Example of use : The following example opens the instance data

section of the program and declares an array of

100 words, a flag word, and two double word

attributes:

INSTANCEDATA

DEFINE @a AS ARRAY OF 100 WORDS

DEFINE @status AS FLAG AT BIT 1 OF 1 WORD

@dword1 DD 0

@dword2 DD 0

Figure 3.3: Specification of the INSTANCEDATA and SHAREDDATA statements.

The FUNCTION statement physically opens the code segment of the program. There
can only be one FUNCTION section and thus only one code segment but this merely is
a convention. OS/2 1.x programs, relying on a 16-bit selector:offset addressing scheme
with variable selectors, can comprise many code segments, all defined in a single or
multiple source files, with each segment having a maximum size of 64 Kbytes. In contrast,

3.2 Programming with µODE on OS/2 47

OS/2 2.x programs, using a linear 32-bit memory addressing model, one with invariable
selectors that is, have just one code segment but, in practice, approximately 6,000 times
as big5. We will not make use of either feature, anyway. When we write OS/2 1.x
programs we will only create a single static code segment per program module, namely
that defined by FUNCTION. OS/2 2.x programs naturally go along with the single segment
FUNCTION opens and although it can get much larger than 64 Kbytes, we will set ourselves
a limit to keep 32-bit code segments as small as possible. We will see that the segments
of our 2.x programs seldom get larger than 96 Kbytes, exceeding the 256 Kbyte being
an exception. These are no limitations that needed to be respected under pressure. The
figures represent marks derived from praxis and simply come with the overall design of the
software systems we create. Anyway, we will make an interesting use of several OS/2 1.x
system functions to work with code segments on a dynamic basis without resorting to the
system supplied dynlink library features. This sort of program supplied dynamic loading
and linking is used by op to instantiate objects from class modules. Therefore, although
only one code segment can be defined using FUNCTION, many more can be created during
runtime and made accessible by the program thus augmenting its functionality. Hence
our programs can consist of more than just one code segment, but only one of them can
be introduced by any one module. Because it is defined when the program is written
we can call this single code segment the static code segment to contrast it with the
segments added once the program runs or the dynamic ones respectively. Code segments
thus are treated in very much the same way as data segments: what does not fit in one
static segment, either physically or conceptually, is added later by dynamically creating
segments, for each of which a selector need be stored within the automatic data (or even
static code) segment6.
FUNCTION defines three subsections, designated by SANITY, ENTRY and EXIT. Physically,

SANITY marks the entry point to the program for the system, a one-time entry into the
program under normal circumstances. It should be used thus, that is whenever a program
returns to this point, a complete restart is implied, hence the term SANITY: go back here—
and the program is reset to a safe and known state to start everything from scratch. The
opposite point is EXIT: go there—and the program terminates in an orderly fashion
and leaves the system gracefully. Correct entering and exiting a program are operations
critical to the overall quality and robustness of an application and, eventually, a whole
system so we need take good care of these special sections in FUNCTION. One thing that
SANITY does is to save the initial state of the program at entry so that this state can
be restored whenever SANITY is reset. Resetting our programs thus has the very same

5 Theoretically, the 32-bit linear address space of OS/2 2.x programs cover segments as large as 4
Gbytes but for compatibility with OS/2 1.x, a limit of 512 Mbytes per process is imposed. Practically,
however, not all of these 512 Mbytes can be used by the application, the utmost limit lies somewhere
near the 384 Mbyte mark. This is of not thus great importance for real-world programs, anyway.
Applications using a private code base of that size can safely be rated as principally “misdesigned”.

6 This should not give rise to the simple idea just to scatter a program’s function about a fabric of
many segments this program creates and owns. Such an approach would take the valuable feature
of segmentation to only little advantage—only to easier error detection and program monitoring—
as little the advantage of distributing large, monolithic data structures over multiple segments is.
When it comes to segmentation and programming, one must think in human (object and associative)
terms, not in that (linear and one-dimensional) of a compiler. Working with huge self-managed linear
address spaces mapped onto a segmented architecture is awkward at best, inefficient in the worst case.
Metaphorically, a big linear program in a segmented environment is a square peg in a round hole.
Segmented software is much more composed than simply compiled.

48 3. A Simple Skeleton Program for Test Purposes

FUNCTION

Must be contained in: PROGRAM

Must be followed by : SANITY

ENTRY

EXIT

ENDOFPROGRAM (closes block)

Notes : EXIT is usually followed by TERMINATE. If not,

ENDOFPROGRAM defines a default termination

operation. SANITY marks the initial program entry

point, the first instruction following SANITY thus

is the first executed after the program received

control the first time. Control falls through from

SANITY to ENTRY to EXIT by default.

Example of use : The following example defines a no-operation

function for the program and terminates with a

condition code of 0 (the termination is defined

by default if EXIT is not followed by TERMINATE):

FUNCTION

SANITY

ENTRY

EXIT

Figure 3.4: Specification of the FUNCTION statement and its followers.

effects like a warm boot of a computer system: the current runtime context mostly is
not affected but the operational state is brought back to a known status from which the
(probably failed) program can be analyzed, fatal operations reversed, data fields reset,
or the complete status reinitialized. Such a feature is not necessarily easy to implement
but extremely useful once the grade of interaction between programs advances. In the
current implementation, the SANITY statement is not implemented. Its implementation
reserves an article of its own.

Following SANITY, the ENTRY statement marks the actual beginning of the program’s
true function. Here all features, functions or procedures in common speak, are defined,
the program’s operational states and the sequencing through them. When control enters
the program from the system, the operational state of the application is well defined.
The SANITY section leads from this point through basic initialization and bookkeeping
sequences, then control falls through to ENTRY where normal program operation begins.
This resembles a two-tire system of initialization. As with SANITY, returning to ENTRY

means to rewind to the start of the program but not as some means of taking the thumb
off a dead man’s button. Instead, any return to ENTRY from somewhere in the program
is a usual, orderly step to end a current operation: go there—and you have completed
whatever you have done and can take on the next assignment. This concept nicely leads
to the communicative nature of the programs we will create, namely that one program
cannot do everything on its own, it requires others to carry out its tasks as others need

3.2 Programming with µODE on OS/2 49

it to carry out theirs so, we plan for a requestor-server-requestor or peer architecture
right from the start. The implementation of ENTRY will reflect that when the section
is filled with default language blocks such as SEQUENCING, FEATURE, STATE, EXCEPTION,
and SIGNAL.
EXIT has been mentioned already as the opposite to SANITY. Here the program is

terminated and whatever has been done in the SANITY section is made undone in EXIT.
Usually, EXIT features the TERMINATE statement as its very last one to take care of
obligatory cleanup steps. If not, ENDOFPROGRAM will issue a call to TERMINATE. TERMINATE
is a system level statement as well as REQUIRES. Both are defined next.

3.2.2 Specification of Special System Level Statements

The REQUIRES block, following IS and closed by INSTANCEDATA is obligatory. It is a
default language block defined for use under µPMOS and its purpose is to construct a so
called Class Dependency Table or CDT for short. The CDT lists all features offered by
other object classes the object defining the CDT needs to request from other objects to
perform. Each entry in the CDT lists a name of the feature along with the class which
implemented it. On class load time, the system resolves each feature name into a class-
specific index, or ordinal number. Later, when the object creates other objects, it passes
to its objects the indices of the features it wants them to carry out. This is called an
External Feature Request or EFR. The feature index then is used by the receiving object
to actually invoke its feature regardless whether it has implemented it by itself (in its
own class module) or just inherited from its parent. The internal use of feature indices
aside, they play a key role in the inheritance scheme and the CDT is the corresponding
data structure inherent to any object. Also, the system is treated as object (or pseudo
object, the kernel of an object environment itself cannot be an object), namely one to
which all objects have immediate access. As any object, the system has a (pseudo) class,
designated by .System which is used in EFRs7 and we will follow that convention. The
.System designation stems from the .<class name> syntax of µODE we will adopt, also.
Under OS/2, then, .System refers to the OS/2 kernel. REQUIRES is obligatory because:

1. No program can execute under OS/2 without at least one call into the kernel,
namely to the above-mentioned DosExit feature.

2. No program we will create can execute alone without requesting service from other
programs of the same kind.

Thus we need at least one external feature and hence the statement to access it.
Besides, it is advantageous to adopt the REQUIRES language feature early since the objects
we will create later base on highly dynamic inheritance schemes and we can make use
of OS/2’s dynlink library services in order to import external features in a completely
dynamic way, without the need for the linker or loader to resolve the addresses of external
references as we have done so far. Figure 3.5 depicts the specification for REQUIRES.
REQUIRES is not implemented to completion in this article since a thorough investiga-

tion into the system’s dynamic link features is necessary prior to such an attempt. The

7 Which masks calls into the micro object system kernel, or MOSK for short, as normal EFRs and thus
ensures symmetry of feature requests across object boundaries. At the assembly language level, EFRs
to .System are transcribed differently than EFRs to usual objects, however, since the MOSK’s few
features are accessed through a simple but efficient INT 2xh interface.

50 3. A Simple Skeleton Program for Test Purposes

REQUIRES

Must be contained in: PROGRAM

Must follow : IS

Must be followed by : FEATURE <feature name> FROM <object class> AS <alias>

SERVICE <feature name> FROM .System AS <alias>

ALL <SERVICES | FEATURES> FROM <object class | .System>

INSTANCEDATA (closes block)

Notes : If ALL is used (to force a general import) no aliases

can be defined and the default export names must both,

be used and known.

.System is a reserved class and refers to system

kernel type functions.

Example of use : The following example imports three system services,

one feature from a self-defined object class and

all features from a datatype class:

REQUIRES

SERVICE DosExit FROM .System

SERVICE DosEnterCritSec FROM .System AS $atomic_ON

SERVICE DosExitCritSec FROM .System AS $atomic_OFF

FEATURE $binary_to_hex FROM .OEBase

ALL FEATURES FROM .OEArray

Figure 3.5: Specification of the REQUIRES statement and its followers.

implementation shown in the next section bases on the linker-loader supported mecha-
nism to resolve external references in executable modules at load time.

A more complete first implementation can be introduced for TERMINATE. It is a simple
statement that receives a single parameter which is a numeric code returned to the process
that started PROGRAM. TERMINATE calls the DosExit system service and thus takes care
of a proper “return”to the operating system8. The specification of TERMINATE is depicted
by Figure 3.6.

Besides the REQUIRES, SERVICE .. FROM, and TERMINATE statements introduced so far,
we will add further system-level statements which are specific to OS/2, one important of
which is THREAD .. ENDOFTHREAD. We will discuss these extensions in the course of the
development projects as we get in touch with the corresponding system features.

8 DosExit is not truly a return since the operating system was not called on entry and control remained
in the program. Instead, the system call resembles something like a one-way trip into the system
kernel with a complete self-destruction of the process as its final destination.

3.2 Programming with µODE on OS/2 51

TERMINATE WITH <termination code>

Must be contained in: EXIT

Must be followed by : ENDOFPROGRAM

Notes : If TERMINATE is not issued explicitly within EXIT,

this is done by ENDOFPROGRAM which returns a zero

termination code.

TERMINATE can only be used explicitly within the

EXIT section since it ends the entire process

unconditionally. In order to stop the program at

once from somewhere else within function, a proper

control transfer to an exit STATE should be made

specifying EXIT as next state.

More than one TERMINATE statement can appear in EXIT.

If not explicitly specified, the termination code

following WITH is encoded in the default radix of

the transcriptor/ assembler.

Termination codes are WORD sized in muODE.

Example of use : The following example terminates the program and

specifies a termination code of 3AFFh to be passed

to the program’s parent:

TERMINATE WITH 3AFFh

Figure 3.6: Specification of the TERMINATE statement.

3.2.3 An OS/2 Application Structure Package

We can now start to implement the first elementary language statements. We will add
each new statement to the same basic language extension file which we call OS2APP.ODE.
This file need be included into any other module source text file since it will contain all
basic system level statements. It will later be accompanied by two other such files, namely
OS2LIB.ODE and OS2DRV.ODE each of which will either purge, or overwrite respectively,
existing statements and introducing new. All extension files should be placed in an
own subdirectory such as \µODE which must be added to the INCLUDE variable of the
environment for the session in which the assembler runs. Refer to the article Preparing a
Minimalistic Software Development Environment for OS/2 in this issue how to prepare
the environment for use.

Listing 3.1 shows a complete working implementation of the statements we have drafted
in the last section. Parameter, attribute range, and transcription context checking were
left out for reasons of clarity. The final implementation of OS2APP.ODE includes these
checks to ensure a robust transcription.

52 3. A Simple Skeleton Program for Test Purposes

1 ;;===
2 ;; os2app.ode
3 ;; muODE definitions for OS/2 application programs
4 ;;---
5 PAGE 64 ,128
6 .xall
7
8
9 ;;---

10 ;; PROGRAM
11 ;;---
12 PROGRAM MACRO op1
13 if1
14 @mode_progname EQU op1
15 %out ;===
16 %out ; Module definition
17 %out ;---
18 endif
19 ENDM
20
21
22 ;;---
23 ;; IS
24 ;;---
25 $mode_IS_output macro op1 ,op2
26 %out NAME op1 op2
27 endm
28
29 IS MACRO op1
30 if1
31 ifidn <PMAPPLICATION >,<op1 >
32 $mode_IS_output %@mode_progname , WINDOWAPI
33 exitm
34 endif
35
36 ifidn <WINDOWABLE >,<op1 >
37 $mode_IS_output %@mode_progname , WINDOWCOMPAT
38 exitm
39 endif
40
41 ifidn <FULLSCREENAPPLICATION >,<op1 >
42 $mode_IS_output %@mode_progname , NOTWINDOWCOMPAT
43 exitm
44 endif
45
46 ;; Neither or unknow program type specified.
47 ;; Output error message only once and end transcription prematurely.
48 if1
49 %out
50 %out >>> TARGET: No or invalid program type specified!
51 %out >>> Transcription is aborted.
52 %out
53 endif
54 .err ;; force error unconditionally
55 END ;; mark end of input to stop assembler at once. This is a workaround
56 ;; since MASM 5.10 does not abort assembling on .err as expected.
57 ENDM
58
59
60 ;;---
61 ;; DESCRIPTION
62 ;;---
63 DESCRIPTION MACRO desrc
64 TITLE desrc ;; control listing file output
65 ;; output description and default values to DEF file
66 if1
67 %out DESCRIPTION desrc
68 %out PROTMODE
69 endif
70 ENDM

3.2 Programming with µODE on OS/2 53

71 ;;---
72 ;; STACKSIZE
73 ;;---
74 STACKSIZE MACRO size
75 ;; output size of default stack to DEF file
76 if1
77 %out STACKSIZE size
78 endif
79 ENDM
80
81
82 ;;---
83 ;; TARGET
84 ;;---
85 TARGET MACRO op1
86 purge DESCRIPTION ;; get rid of statement macros
87 purge STACKSIZE ;; we no longer need
88 @mode_target = 0 ;; preset internal variable
89
90 ;; check for 80286
91 ifidn <op1 >,<80286>
92 .286
93 .287
94 @mode_target =286
95 exitm
96 endif
97
98 ;; check for 80386
99 ifidn <op1 >,<80386>

100 .386
101 .387
102 @mode_target =386
103 exitm
104 endif
105
106 ;; Neither or unknow target proccessor specified.
107 ;; Output error message only once and end transcription prematurely.
108 if1
109 %out
110 %out >>> TARGET: No or invalid target processor specified!
111 %out >>> Transcription is aborted.
112 %out
113 endif
114 .err ;; force error unconditionally
115 END ;; mark end of input to stop assembler at once. This is a workaround
116 ;; since MASM 5.10 does not abort assembling on .err as expected.
117 ENDM
118
119
120 ;;---
121 ;; REQUIRES
122 ;;---
123 REQUIRES MACRO
124 ;;
125 ;; currently , output to DEF file only
126 ;;
127 if2
128 %out ;---
129 %out IMPORTS
130 endif
131 ENDM
132
133 ;;---
134 ;; SERVICE
135 ;;---
136 ;; internal procedures
137 $mode_service_output_export macro lib , name , ordinal
138 ;; output imports statement to DEF file
139 %out name = lib.&ordinal
140 endm

54 3. A Simple Skeleton Program for Test Purposes

141 $mode_service_system_resolve macro name
142 ifidn <name >,<DosExit > ;; check for DosExit
143 @mode_service_ord = 5
144 exitm ;; resolved , so exit
145 endif
146 ifidn <name >,<DosExitList > ;; check for DosExitList
147 @mode_service_ord = 7
148 exitm ;; resolved , so exit
149 endif
150 endm
151
152 ; implementation
153 SERVICE MACRO feature , p_op1 , class
154 @mode_service_called = 1
155 EXTRN feature:FAR ;; define external label
156
157 ;; Define the import directive depending on known class name
158 if2 ;; only during second pass
159 irp cls ,<.System ,.SYSTEM ,.system > ;; check for class , all spellings
160 ifidn <cls >,<class >
161 $mode_service_system_resolve feature
162 $mode_service_output_export DOSCALL1 , feature , %@mode_service_ord
163 exitm ;; test successful , exit prematurely
164 endif ;; from irp cls ,<.System ,.SYSTEM ,.system >
165 endm ;; endm of irp
166 endif
167 ENDM
168
169
170 ;;---
171 ;; INSTANCEDATA
172 ;;---
173 INSTANCEDATA MACRO
174 ;; final output to DEF file
175 if2
176 %out ;===
177 endif
178 purge TARGET ;; get rid of macros no longer needed
179 purge REQUIRES
180 purge SERVICE
181
182 ;; open automatic data segment and set type depending on target
183 ;; processor selected.
184 @mode_instancedataopen = 1
185 DGROUP GROUP Data
186 if @mode_target eq 286
187 Data SEGMENT PARA PUBLIC ’auto’
188 else
189 Data SEGMENT USE32 PUBLIC ’auto’
190 endif
191 ENDM
192
193
194 ;;---
195 ;; SHAREDDATA
196 ;;---
197 SHAREDDATA MACRO
198 ;; close automatic data segment
199 if @mode_instancedataopen
200 Data ENDS
201 @mode_instancedataopen = 0
202 purge INSTANCEDATA
203 endif
204
205 ;; open default shared segment and set type depending on target
206 ;; processor selected.
207 @mode_shareddataopen = 1
208 if @mode_target eq 286
209 Const SEGMENT PARA PUBLIC ’shared ’
210 else

3.2 Programming with µODE on OS/2 55

211 Const SEGMENT USE32 PUBLIC ’shared ’
212 endif
213 ENDM
214
215 ;;---
216 ;; FUNCTION
217 ;;---
218 FUNCTION MACRO
219 ;; if automatic data segment is still open close it since there is no
220 ;; default shared segment that would normally have done
221 if @mode_instancedataopen
222 Data ENDS
223 @mode_instancedataopen = 0
224 purge INSTANCEDATA
225 endif
226
227 ;; if default shared data segment is still open close it. Do not care
228 ;; about the automatic data segment since it has been closed by the
229 ;; SHAREDDATA
230 if @mode_shareddataopen
231 Const ENDS
232 @mode_shareddataopen = 0
233 purge SHAREDDATA
234 endif
235
236 ;; open default (static) code segment and set type depending on target CPU
237 if @mode_target eq 286
238 Code SEGMENT PARA PUBLIC ’code’
239 else
240 Code SEGMENT USE32 PUBLIC ’code’
241 endif
242 ASSUME CS:Code , DS:DGROUP , ES:Const
243 ENDM
244
245
246 ;;---
247 ;; SANITY
248 ;;---
249 SANITY MACRO
250 ;; get rid of macros no longer needed
251 purge FUNCTION
252 ;; define initial program entry point
253 @mode_Sanity:
254 NOP
255 ENDM
256
257
258 ;;---
259 ;; ENTRY
260 ;;---
261 ENTRY MACRO
262 ;; get rid of macros no longer needed
263 purge SANITY
264 ;; define actual begin of program
265 @mode_Entry:
266 NOP
267 ENDM
268
269
270 ;;---
271 ;; EXIT
272 ;;---
273 EXIT MACRO
274 ;; get rid of macros no longer needed
275 purge ENTRY
276 ;; open EXIT section and define exit point
277 @mode_EXITopen = 1
278 @mode_Exit:
279 NOP
280 ENDM

56 3. A Simple Skeleton Program for Test Purposes

281 ;;---
282 ;; TERMINATE
283 ;;---
284 TERMINATE MACRO p_op1 , op1
285 @mode_EXITopen = 0 ;; close EXIT section and terminate process
286 PUSH 1 ; End process (all threads)
287 PUSH op1 ; Set return code to op1 and exit
288 CALL DosExit ; Through OS/2
289 ENDM
290
291
292 ;;---
293 ;; ENDOFPROGRAM
294 ;;---
295 ENDOFPROGRAM MACRO
296 if @mode_EXITopen ;; if TERMINATE has not been issued , do it now
297 TERMINATE WITH 0
298 endif
299
300 ;; close the default code segment
301 Code ENDS
302 END @mode_Sanity
303 ENDM
304 ;;===

Listing 3.1: Complete listing of first working edition of the OS2APP.ODE package.

The listing contains several interesting techniques applicable to macro programming
with masm that merit a closer look. Although transcription context checking was omitted
for clarity, there are two places where its simple application is demonstrated, namely in
lines 22-57 and 82-117 as part of the implementations of the statements IS and TARGET

respectively. The assembler’s %out feature is used to output a message on the screen in
case of errors and an immediate abortion of the assembly process is enforced by issuing
an END statement thus marking the end of input. This error handling section is executed
only if control has not prematurely left the macro through one of the exitm statements.
The %out feature also is used to output linker control statements to the module definition
file during program text transcription so that both object code and DEF file are created
in one cycle. The assembler thus creates the complete input for the linker. Because masm

is a two-phase assembler, any %out is part of an if1 or if2 conditional block in order
to avoid that messages and DEF data are output twice, during both of the assembler’s
passes over the source text file.

Some words are in order regarding the simplified implementation of REQUIRES and its
companion statement SERVICE. In this early version of the language package, REQUIRES
does nothing else but to output an IMPORTS control statement to the DEF file so to have
the linker prepare the module dependency table during linking, filling it with the entries
following IMPORTS created by the SERVICE statements during transcription. This is the
easiest way to use dynamic linking and thus connecting to the system, also. SERVICE

in turn depends on some knowledge about the modules containing the features to be
imported and the features as well, namely the name of the exporting module, the name
of the feature, and the ordinal number assigned to it. This approach works for the very
first programs we write but it is inflexible in that any new feature requires a revision
of the SERVICE statement which would grow larger and larger. In respect to the size
of the OS/2 kernel API, the statement would turn out to be real a bloat. Since we
need to access the APIs of all the many subsystems of OS/2, like Vio, Kbd, and Mou

calls and the wealth of Presentation Manager’s Win and Gpi features, just to name a

3.3 A Simple OS/2 Skeleton Program 57

few, the current approach of SERVICE would soon turn out impractical if followed too
far. Although we can completely replace this scheme in the implementation of FEATURE
which uses a variation of the aforementioned CDT mechanism for the dynlink libraries
and class modules we will create, creating an interface to the system is much more
complex. It is of advantage that OS/2 can considered stable so, its APIs will not change
which will ease our work. Unfortunately, while the CDT mechanism bases on static
feature names which are resolved to dynamic indices, some OS/2 modules only export
their features by ordinal numbers, not names, so we need to hardcode the ordinals in the
statement implementations, anyway. Fortunately, we can move much of the work out of
the statement sphere and can use some compact routines which rely on tables created
by the SERVICE statements to resolve all references to system modules at runtime in a
similar way as our implementation of FEATURE will do. Also, we can instruct the later
tool pk to pick up these tables during packing, remove them from the binary module and
instead use them to fill the module’s dependency table appropriately in very much the
same way the then obsolete linkers do to let the loader resolve the function references,
eventually. So far, however, we will use the simplistic approach of the current SERVICE

implementation.
Another point of interest in this context is the explicit import of a system function

which only is used implicitly inside a statement, as in the case of DosExit which is
encapsulated by TERMINATE. Besides DosExit, there are a few further system features
we will always use or sometimes even must use. Most of them also are used only inside
other statements and do not appear elsewhere in the program. These features still need
be imported, of course. Anyway, we need not do this on our own as we have done now
for illustrative purposes. Instead, when REQUIRES prepares its tables, these obligatory
default imports are handled automatically and added to the head of the tables either for
the runtime functions or pk to pick up. Besides, invocations of system services as done by
TERMINATE should never appear explicitly in program texts. Instead, new statements will
be added which use these features, encapsulate the idiosyncrasies of the underlying API,
and which can be used in more general contexts. In addition, these statements are seldom
used frequently throughout the program text. This would result in scattering numerous
system function invocations about both the high-level program text and, to even greater
extent, the transcribed assembly listings. Not only does this make the program sources
less readable; all the many CALLs into the system start to obfuscate the actual function
of the program. It is here where to investigate into alternative methods of accessing the
system’s features such as special system service states or system proxy objects both of
which are means to funnel requests to the operating system to one common location in
the program. All these advanced features require a study of the OS/2 system calling
conventions. The article in [2] provides a starting point.

3.3 A Simple OS/2 Skeleton Program

Finally, we can put all pieces together to create a self-documenting minimal OS/2 pro-
gram. It follows the minimalistic program introduced in the article Principal Structure
of OS/2 Programs at the Assembly Language Level. The program is self-explanatory and
shown in Listing 3.2.

58 3. A Simple Skeleton Program for Test Purposes

1 ;===
2 ; TEST01
3 ; Input : None
4 ; Output: 1 - Normal termination
5 ;
6 ; Language definitions:
7 INCLUDE OS2APP.ODE
8 ;---
9 PROGRAM "TEST01"

10 IS WINDOWABLE
11 DESCRIPTION "OS/2 1.x minimal program #01"
12 STACKSIZE 4096 BYTES
13 TARGET 80286
14
15 REQUIRES
16 SERVICE DosExit FROM .SYSTEM
17
18 INSTANCEDATA
19 @Buffer DB 256 DUP (0)
20
21 SHAREDDATA
22 @Info DW 128 DUP(0)
23
24 FUNCTION
25 SANITY
26 NOP
27
28 ENTRY
29 NOP
30
31 EXIT
32 TERMINATE WITH 1
33 ENDOFPROGRAM "TEST01"
34 ;===

Listing 3.2: Minimal OS/2 1.x program for test purposes in µODE using OS2APP.ODE
package.

This program is the very basis we will use and refine throughout the OS/2 development
projects. Both, an OS/2 1.x and 2.x module can be made of the same program text,
only the parameter passed to TARGET need be changed as shown in the next section.

3.3.1 Changing to OS/2 2.x Programs

The TARGET statement simplifies making a “32-bit version” out of the “16-bit program”.
TARGET instructs the assembler to use a proper align type, process 32-bit offsets to perform
address calculus correctly, and encode 80386 instructions in order to produce 32-bit code
segments. The linker, link386 in this case, does the rest and creates a linear OS/2
executable. To demonstrate, we change the line:

SHAREDDATA

@Info DW 128 DUP(0)

into:

SHAREDDATA

@Info DW 65535 DUP(0)

3.3 A Simple OS/2 Skeleton Program 59

Clearly, a 128 Kbyte buffer exceeds a 64K segment and the assembler complains ap-
propriately:

test1c.ASM(25): error A2050: Value out of range

test1c.ASM(27): error A2102: Segment near (or at) 64K limit

To remedy the situation, we simply change the TARGET line to:

TARGET 80386

and re-assemble, then link with link386 to yield an OS/2 2.x linear executable as exehdr
reveals in Figure 3.7.

Operating System/2 Executable File Header Utility

Version 2.10.000 Feb 02 1993

Copyright (C) IBM Corporation 1988-1992.

Copyright (C) Microsoft Corp. 1988-1992.

All rights reserved.

Module: TEST01

Module type: Program

Number of memory pages: 00000001 (1)

Initial CS:EIP: object 3 offset 00000000

Initial SS:ESP: object 1 offset 00001103

Automatic data object: 1

Stack allocation: 00001000 (4096) bytes

no. virtual virtual map map flags

address size index size

0001 00010000 00001103 00000001 00000000 READABLE, WRITEABLE, 32-bit

0002 00020000 0001fffe 00000001 00000000 READABLE, WRITEABLE, 32-bit

0003 00040000 0000000e 00000001 00000001 EXECUTABLE, READABLE, 32-bit

Figure 3.7: Output of exehdr for the 2.x version of TEST01. The structure of the program
can clearly be seen. However, the output does not reflect the physical picture of the program
in memory. The segments are virtual and mapped into a single linear address space through
paging.

The general statement TARGET is obligatory and applicable to executable modules and
dynlink libraries so the path to create 1.x and 2.x modules of either type is the same.
In order to test the program using the simple test driver introduced in the next section,
both the 1.x and 2.x version of the program should be created.

3.3.2 A Simple Test Driver

Any program should be tested before it is used together with other programs. Such tests
can take on various forms, depending on the type of the program and its function so, we
need a flexible way to create test drivers which pass data into our programs and get back
both, results and termination codes which are then output in a human readable form and
displayed on the screen, send to a printer, or stored in a log file. Test drivers should be
made simple, straight, and easy to use. They should test only one module at a time or,

60 3. A Simple Skeleton Program for Test Purposes

sometimes, several modules of one type. As an example for the latter case, two revisions
of the same module can be tested by the driver in sequence so to compare their results at
a glance. Anyway, as we stick with the approach of developing small, intercommunicative
modules each with a dedicated function, we should do so when it comes to the creation
of their test drivers. For simplicity, we use batch files as test drivers as demonstrated in
this section.

�� �
START

?

Set Environment

?
Clear Term Flag

Set Process Text
to 1.x type

?

Output Status - Invoke
test1x.exe

�
�
�
�

�
�
�
�

?

�
�
�
�

@
@
@
@

�
�
�
�

@
@
@
@

Process
successful?

No

Yes

?

Output OK

?

�
�
�
�

@
@
@
@

�
�
�
�

@
@
@
@

Term Flag

Clear (Done)?

No

Yes

?

Reset Environment

?�� �
STOP

6

Set Term Flag

Set Process Text
to 2.x type

6

Output Status

6

Invoke
test2x.exe

�
�
�
�

�
�
�
�

-

- Output Error

�

Term Flag and Process Text

are variables local to the driver.
The termination status of the
test programs is returned to

the driver by the system.

Figure 3.8: Flow chart of the simple test driver for the 1.x and 2.x version of TEST01.

3.3 A Simple OS/2 Skeleton Program 61

Although test drivers should be simple, they need be designed with some grade of
thoroughness, anyway. Therefore, we should always make a sketch of the driver to make
and document it appropriately. Figure 3.8 depicts a flow chart of the driver. Since we
have two versions of the same program to test, it is sufficient to write a single driver
program as the one depicted. The implementation of the driver in form of a batch file
shows Listing 3.3. It is assumed here that the file name of the 1.x variant of the program
is test1x.exe and that of the 2.x variant test2x.exe.

1 @ECHO OFF
2
3 SET COMPLETE =0
4 SET PROC=TEST01 1.x
5 ECHO Now invoking 1.x TEST01...
6 test1x
7 GOTO CHECK_RC
8
9 :INVOKE_NEXT

10 SET PROC=TEST01 2.x
11 SET COMPLETE =1
12 ECHO.
13 ECHO Now invoking 2.x TEST01...
14 test2x
15
16 :CHECK_RC
17 IF ERRORLEVEL == 1 GOTO RC_1
18
19 SET RC=0
20 SET RC_TEXT=Abnormal termination
21 ECHO %PROC% encountered an error , rc = %RC%
22 GOTO EXIT
23
24 :RC_1
25 SET RC=1
26 SET RC_TEXT=Normal operation
27 ECHO %PROC% completed successfully , rc = %RC% (% RC_TEXT %).
28
29 :EXIT
30 IF %COMPLETE% == 0 GOTO INVOKE_NEXT
31 SET RC=
32 SET RT_TEXT=
33 SET PROC=
34 SET COMPLETE=

Listing 3.3: A simple test driver in form of a batch file.

The implementation of the test driver shows some methods used frequently in batch
file programming like conditional statements, labels, and the use of the environment to
define variables used throughout the program. Also, the use of the narrow but robust
communication channel between the test driver and the program it tests, namely the
ERRORLEVEL feature, is shown. In this program, the termination code is passed to the
driver from the test program upon completion (through OS/2’s DosExit function). Later
we will develop a protocol that lets us pass a selector to a segment containing more verbose
information and even big amounts of data to the test program and from there back to
the driver. All this is possible without resorting to more complex tools or advanced
programming techniques. In fact, we will see that the test drivers remain pretty simple,
however elaborate program intercommunication may become.

The test driver gives us a good opportunity to take a look at one of the most basic
building blocks of OS/2 programming, namely processes, as well as their principle in-

62 3. A Simple Skeleton Program for Test Purposes

terrelationships and the way of elementary interacting supplied by the system. Figure
3.9 demonstrates what happens when we run the test driver on the command line and
that much insight into OS/2’s process management mechanisms can be derived from this
simple runtime scenario, using the primitive programs we have created.

As can be seen in the figure the most basic element of program systems under OS/2 is
the process as encapsulated runtime entity and the parent-child relationships into which
it enters once it starts other processes, even a replicate of itself. Every process under
OS/2 thus has a parent and this way process trees evolve. As separate articles need
show, these process trees are more or less structured and organized by default but their
level of organization also can be raised thus that tiers of processes evolve which adhere
to certain rules and communication schemes and resemble self-maintaining subtrees also
called cells. Here, we only have two processes, the command line session in which we
invoke the test driver (by means of interpretation so no extra processes are involved yet)
and the programs it starts, one after the other. Two elementary system services are used,
namely DosExecPgm and DosCWait as explained in the figure. We do not need to worry
about these two functions yet since the command line interpreter issues them for us.

For those who insist in writing “Hello world!” programs, Listing 3.4 does the job. It is
a simplified variant of the test driver and has the benefit of demonstrating the baseline
of conditional processing in batch files as well as the necessity to process any possible
output another process returns. Whether or not the informational value of the output
this very “Hello world!” program produces makes sense remains questionable, though9.

1 @ECHO OFF
2
3 test1x
4
5 IF ERRORLEVEL == 1 GOTO SUCCESS
6 ECHO An error occured , cannot say hello. ;)
7 GOTO EXIT
8
9 :SUCCESS

10 ECHO Hello world!
11 GOTO EXIT
12
13 :EXIT

Listing 3.4: A simplified “Hello world!” program with error checking.

9 All humour aside, the interpretation of output from one process which is the input to another in the
realm of weighing its sense or finding the probability of its correctness is of importance in object-
based processing where objects rate the quality of the data they are input both for internal use
and distribution of this information to other objects in the system. This makes a software system
autonomous in rating any of its parts regarding their output quality, correctness, ability of processing,
and so forth. How this works in practice is not difficult to imagine. In the sample, the driver only had
to substitute the ECHO directives for some instructions to store its interpretation of the data returned
by test1x, for example it could increment a counter for any good answer and decrement it for any bad
one. Given the driver calls different versions of programs for the same purpose it can, over time, then
report on the output quality of any such program. This is like a “feeling” which can be communicated
to other drivers which are likely to use the same programs to evaluate the robustness or trustworthiness
of these external processes. This gives birth to auto-adjusting systems and autonomous error-handling.
An interesting concept that has proved valuable a tool in practice already and can be explored with the
simulation of object systems on OS/2 very well. Refer to [8] for more information about distributed
computing and error weighing.

3.3 A Simple OS/2 Skeleton Program 63

Command Line Interpreter

(Module CMD)

[cmd.exe]

Runs test.cmd
batch file

?
DosExecPgm

Start TEST01
[test01.exe]

?
DosCWait

Synchronise with

child (TEST01)

-
Test Program 01

Child of CMD
[test01.exe]

?
DosExit

Return to parent

with return code

�

?

Process return code
from child process

in test.cmd
Display prompt

Parent process (CMD)

Child process (TEST01)

Command line session (Root process: CMD)

Processes run in sessions, logical environments

providing their members with a logical console.

Any session must at least contain one process,

here CMD, which can start as many further

processes as required that stand with it in a

parent-child relationship. All processes in a

session are independent runtime entities and

physically isolated, they run concurrently and

have their own protected resources that is.

A process, here CMD, start subordinate processes

such as TEST01 via the DosExecPgm system

service which returns immediately once the new

process is started. The parent then can either

wait for the child to terminate via issuing the

DosCWait service (DosWaitChild in OS/2 2.x)

which returns once the child process terminates

(synchronous execution) or continue with its own

processing and check for its child’s execution

status later (asynchronous execution).

Figure 3.9: Runtime trail of the TEST01 program execution. This simple example depicts the
bottom line of the OS/2 application programming paradigm which centres on processes, the
parent-child relationships between them, and their logical grouping to sessions or screen groups
respectively. Threads belong to a process’ internals only, come next in line, and are not even
necessary to include in a module’s design. Applied correctly, they are indeed useful tools but
should be used judiciously.

64 3. A Simple Skeleton Program for Test Purposes

Again, one should note how this simple program demonstrates the very nature of true
OS/2 applications, namely:

1. The dissolving of monolithic programs by conceptually dividing tasks into func-
tional blocks.

2. The implementation of these conceptual blocks in form of several isolated runtime
entities called processes.

3. The establishment of communication schemes to let these processes cooperate in
order to fill the required function.

Outputting a human-readable message is not part of the innermost function of the
application which shall demonstrate the structure of a most simple OS/2 program and
the runtime trail the proper execution and termination of this program creates. Thus,
test1x implements this function and leaves it to another entity to interpret the outcome
of its operation. This is done by the driver program hello which calls test1x. We leave
it to hello how to interpret the data returned by the worker process. This also makes
this process independent from such highly system and application dependent issues like
human interfaces, consoles, user environments, etc. Although clearly overkill for this sort
of sample program, it is good to learn this kind of programming right from the start. It
leads to modularity, reusablitity, and robustness of programs which are invaluable design
goals to attain in any kind of software engineering project.

We will stay in using batch files for test drivers. They are easy to write, are interpreted
so they can be changed quickly when necessary, and, most importantly, the system sup-
plied communication channels between the processes we start from the drivers are already
existent and reliable. Here we used environment variables and the ERRORLEVEL feature
for this purpose. Later we can employ redirection techniques for more sophisticated data
transfers. Once a module has been tested using a batch driver, it can be integrated
into more complex systems. Keeping with the system’s conventions, this integration is a
seamless, hassle-free process. Besides, we will draw from the experiences made with the
batch drivers in creating our EDC (Error Detection and Correction) and DFM (Data
Flow Monitoring) tools.

It has proved good practice to put the test driver—or drivers respectively, each special
test case should be treated separately—in the same directory as the module under devel-
opment, assign them names in the form test_<purpose>.cmd, keep them all even after
finishing the project and create a new driver for any later refined edition of the module.

3.4 Release Notes

This article introduced into the utilization of a simple yet comfortable high-level language
to create a minimalistic skeleton program for use in further studies. A first working
implementation of a language extension package was shown with which self-documenting
executable program modules can be written. The development of simple test drivers
also was demonstrated which pointed to elementary concepts of OS/2 as sophisticated
multiprocess runtime environment.

3.4 Release Notes 65

An easy way to produce either type of OS/2 modules, 1.x or 2.x, with minimal effort
in a simple but working development environment, as well as to test their function, thus
is now available.

References

[1] A Simple Skeleton Dynlink Library for Test Porposes in: OS/2 Lab Notes, Issue 2.
cefischer. ISBN-13 978-3-944037-51-6.

[2] OS/2 API Calling Conventions in: OS/2 Lab Notes, Issue 2. cefischer. ISBN-13
978-3-944037-51-6.

[3] A Simple Skeleton Device Driver for Test Porposes in: OS/2 Lab Notes, Issue 3.
cefischer. ISBN-13 978-3-944037-52-3.

[4] Use of Natural Language Elements in Programming with µODE in: Lab Notes,
Issue 1. cefischer. ISBN-13 978-3-944037-40-0.

[5] Realizing Control Structures in Two-phase Program Source Text Transcriptions (1):
Implementing a High-level Language Iterative Statement in: Lab Notes, Issue 1.
cefischer. ISBN-13 978-3-944037-40-0.

[6] Realizing Control Structures in Two-phase Program Source Text Transcriptions (2):
Implementing a High-level Language Iterative Statement in: Lab Notes, Issue 2.
cefischer. ISBN-13 978-3-944037-41-7.

[7] Fischer, Carla. The µODE Language Specification and Programming Guide.
cefischer. ISBN-13 978-3-944037-38-7.

[8] Fischer, Carla. The µPMOS Primer. cefischer. ISBN-13 978-3-944037-83-7.

[9] Fernandez, Judi N. and Ashley, Ruth. Assembly Language Programming for the
80386. McGraw-Hill. ISBN-10 0-07-020575-2. 1990.

