
�������	
� �������� ������

����� �����

An introductory guide to the
System Object Model and
its accompanying frameworks

Version 2.1
October 1994

ii SOMobjects Developer Toolkit Users Guide

Note: Before using this information and the product it supports, be sure to read the trademark information under
“Trademarks” on page xiii.

Version 2.1 (October 1994)

The following paragraph does not apply to the United Kingdom or any country where such provisions
are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THE PUB-

LICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT

LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Some states do not allow disclaimer of express or implied warranties in certain transactions; therefore, this state-
ment may not apply to you.

This publication could include technical inaccuracies or typographical errors. Changes are periodically made to
the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time.

It is possible that this publication may contain reference to, or information about, IBM products (machines and
programs), programming, or services that are not announced in your country. Such references or information
must not be construed to mean that IBM intends to announce such IBM products, programming, or services in
your country.

Requests for technical information about IBM products should be made to your IBM Authorized Dealer or your
IBM Marketing Representative.

IBM may have patents or pending patent applications covering subject matter in this document. The furnishing of
this document does not give you any license to these patents. You can send license inquiries, in writing, to the
IBM Director of Commercial Relations, IBM Corporation, Purchase, NY 10577.

COPYRIGHT LICENSE: This publication contains printed sample application programs in source language, which
illustrate AIX, OS/2, or Windows programming techniques. You may copy and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the AIX, OS/2, or Windows application programming interface.

Each copy of any portion of these sample programs or any derivative work, which is distributed to others, must
include a copyright notice as follows: “�(your company name) (year) All Rights Reserved.”

However, the following copyright notice protects this documentation under the Copyright laws of the United
States and other countries which prohibit such actions as, but not limited to, copying, distributing, modifying, and
making derivative works.

� Copyright International Business Machines Corporation, 1991 — 1994. All rights reserved.

The term “IBM” is a registered trademark and “SOMobjects” and “System Object Model” are trademarks of
International Business Machines Corporation.

Notice to US Government Users – Documentation related to restricted rights – Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

iiiSOMobjects Developer Toolkit Users Guide

SOMobjects Developer Toolkit Users Guide

Contents

About This Book xi.

Trademarks xiii.

Chapter 1. Introduction to the SOMobjects Developer Toolkit
1.1 Background 1 – 1.
1.2 Introducing SOM and the SOMobjects Toolkit 1 – 3.
The SOM Compiler 1 – 4.
The SOM run-time library 1 – 5.
Frameworks provided in the SOMobjects Toolkit 1 – 5.
1.3 What’s New in SOMobjects Version 2.1 1 – 7.
1.4 Overview of this book 1 – 10.

Chapter 2. Tutorial for Implementing SOM Classes
2.1 Basic Concepts of the System Object Model (SOM) 2 – 1.
Development of the Tutorial examples 2 – 5.
2.2 Basic Steps for Implementing SOM Classes 2 – 6.
Example 1 — Implementing a Simple Class with One Method 2 – 7.
Example 2 — Adding an Attribute to the Hello class 2 – 13.
Attributes vs instance variables 2 – 15.
Example 3 — Overriding an Inherited Method 2 – 17.
Example 4 — Initializing a SOM Object 2 – 20.
Example 5 — Using Multiple Inheritance 2 – 22.

Chapter 3. Using SOM Classes in Client Programs 3 – 1.
3.1 An Example Client Program 3 – 3.
3.2 Using SOM Classes — the Basics 3 – 4.
Declaring object variables 3 – 4.
Creating instances of a class 3 – 5.
Invoking methods on objects 3 – 8.
Using class objects 3 – 20.
Compiling and linking 3 – 23.
3.3 Language-neutral Methods and Functions 3 – 25.
Generating output 3 – 25.
Getting information about a class 3 – 25.
Getting information about an object 3 – 27.
Debugging 3 – 28.
Checking the validity of method calls 3 – 29.
Exceptions and error handling 3 – 29.
Memory management 3 – 35.
SOM manipulations using somId’s 3 – 36.

Chapter 4. SOM IDL and the SOM Compiler
4.1 Interface vs Implementation 4 – 1.
4.2 SOM Interface Definition Language 4 – 3.
Include directives 4 – 4.
Type and constant declarations 4 – 4.
Exception declarations 4 – 10.

iv SOMobjects Developer Toolkit Users Guide

Interface declarations 4 – 12.
Constant, type, and exception declarations 4 – 13.
Attribute declarations 4 – 14.
Method (operation) declarations 4 – 14.
Implementation statements 4 – 17.
Comments within a SOM IDL file 4 – 28.
Designating ‘private’ methods and attributes 4 – 29.
Defining multiple interfaces in a .idl file 4 – 29.
Scoping and name resolution 4 – 30.
Extensions to CORBA IDL permitted by SOM IDL 4 – 31.
4.3 The SOM Compiler 4 – 33.
Generating binding files 4 – 33.
Environment variables affecting the SOM Compiler 4 – 36.
Running the SOM Compiler 4 – 38.
4.4 The ‘pdl’ Facility 4 – 43.

Chapter 5. Implementing Classes in SOM
5.1 The SOM Run-time Environment 5 – 1.
Run-time environment initialization 5 – 1.
Parent class vs. metaclass 5 – 4.
SOM-derived metaclasses 5 – 7.
5.2 Inheritance 5 – 10.
5.3 Method Resolution 5 – 13.
Offset resolution 5 – 13.
Name-lookup resolution 5 – 13.
Dispatch-function resolution 5 – 14.
Customizing method resolution 5 – 14.
The four kinds of SOM methods 5 – 15.
5.4 Implementing SOM Classes 5 – 16.
The implementation template 5 – 17.
Extending the implementation template 5 – 19.
Compiling and linking 5 – 23.
5.5 Initializing and Uninitializing Objects 5 – 25.
Initializer methods 5 – 25.
Uninitialization 5 – 32.
A complete example 5 – 33.
Customizing the initialization of class objects 5 – 39.
5.6 Creating a SOM Class Library 5 – 40.
General guidelines for class library designers 5 – 40.
Types of class libraries 5 – 41.
Building export files 5 – 41.
Specifying the initialization function 5 – 43.
Creating the import library 5 – 44.
5.7 Customizing Memory Management 5 – 48.
5.8 Customizing Class Loading and Unloading 5 – 49.
Customizing class initialization 5 – 49.
Customizing DLL loading 5 – 49.
Customizing DLL unloading 5 – 50.
5.9 Customizing Character Output 5 – 51.
5.10 Customizing Error Handling 5 – 52.
5.11 Customizing Mutual Exclusion Services (Thread Safety) 5 – 53.
5.12 Customizing Multi-threading Services 5 – 55.

vSOMobjects Developer Toolkit Users Guide

Chapter 6. Distributed SOM (DSOM)
6.1 Introduction 6 – 1.
What is Distributed SOM? 6 – 1.
Chapter outline 6 – 2.

6.2 A Simple DSOM Example 6 – 4.
The “Stack” interface 6 – 4.
The “Stack” class implementation 6 – 5.
Client program using a local stack 6 – 6.
Client program using a remote stack 6 – 8.
A note on finding existing objects 6 – 11.
“Stack” server implementation 6 – 12.
Compiling the application 6 – 12.
Installing the implementation 6 – 12.
Running the application 6 – 14.
“Stack” example run-time scenario 6 – 14.
Summary 6 – 16.

6.3 Basic Client Programming 6 – 17.
DSOM Object Manager 6 – 17.
Initializing a client program 6 – 18.
Exiting a client program 6 – 18.
Creating remote objects 6 – 19.
Destroying remote objects 6 – 22.
Creating remote objects using user-defined metaclasses 6 – 23.
Saving and restoring references to objects 6 – 24.
Finding existing objects 6 – 25.
Invoking methods on remote objects 6 – 26.
Passing object references in method calls 6 – 27.
Memory management 6 – 27.
Writing clients that are also servers 6 – 30.
Compiling and linking clients 6 – 30.

6.4 Basic Server Programming 6 – 31.
Server run-time objects 6 – 31.
Server activation 6 – 32.
Initializing a server program 6 – 33.
Processing requests 6 – 34.
Exiting a server program 6 – 35.
Managing objects in the server 6 – 35.
Example: Writing a persistent object server 6 – 39.
Identifying the source of a request 6 – 42.
Compiling and linking servers 6 – 43.

6.5 Implementing Classes 6 – 44.
Using SOM class libraries 6 – 44.
Using other object implementations 6 – 46.
Parameter memory management 6 – 48.
Building and registering class libraries 6 – 49.

6.6 Configuring DSOM Applications 6 – 50.
Preparing the environment 6 – 50.
Registering class interfaces 6 – 51.
Registering servers and classes 6 – 51.
Verifying the DSOM environment with ‘somdchk’ 6 – 60.
Freeing interprocess communication resources on AIX 6 – 62.

vi SOMobjects Developer Toolkit Users Guide

6.7 Running DSOM Applications 6 – 63.

6.8 DSOM as a CORBA-compliant Object Request Broker 6 – 64.
Mapping OMG CORBA terminology onto DSOM 6 – 64.

6.9 Advanced Topics 6 – 72.
Peer vs. client-server processes 6 – 72.
Dynamic Invocation Interface 6 – 75.
Building client-only “stub” DLLs 6 – 81.
Creating user-supplied proxies 6 – 81.
Customizing the default base proxy class 6 – 83.
Sockets class 6 – 84.

6.10 Error Reporting and Troubleshooting 6 – 85.
Troubleshooting hints 6 – 86.

6.11 Limitations 6 – 90.

Chapter 7. The Interface Repository Framework
7.1 Introduction 7 – 1.

7.2 Using the SOM Compiler to Build an Interface Repository 7 – 2.

7.3 Managing Interface Repository files 7 – 3.
The SOM IR file “som.ir” 7 – 3.
Managing IRs via the SOMIR environment variable 7 – 3.
Placing ‘private’ information in the Interface Repository 7 – 5.

7.4 Programming with the Interface Repository Objects 7 – 6.
Methods introduced by Interface Repository classes 7 – 7.
Accessing objects in the Interface Repository 7 – 8.
A word about memory management 7 – 10.
Using TypeCode pseudo-objects 7 – 11.

Chapter 8. The Persistence Framework
8.1 Introduction 8 – 1.

8.2 The Telephone-Directory Application 8 – 1.
Example 1: Nonpersistent telephone-directory example 8 – 2.

8.3 Persistent Objects 8 – 7.
Example 2: Single inheritance definition of persistent “phoneDir” 8 – 8.
Implementation of the persistent telephone directory 8 – 9.
Example 3: Definition of persistent “dirEntry” 8 – 12.
Example 4: Multiple inheritance definition of persistent “pphoneDir” 8 – 12.
Embedded objects 8 – 14.
Persistent object IDs 8 – 15.
I/O groups 8 – 16.

8.4 Saving and Restoring Persistent Objects 8 – 18.
Saving a persistent object 8 – 18.
Restoring a persistent object 8 – 18.
Example 5: Storing and restoring a persistent “phoneDir” 8 – 19.
Persistent Object ID initialization 8 – 23.
Example 6: Storing objects in multiple files using system-assigned IDs 8 – 26.
Read/Write without children 8 – 27.
Choosing I/O Group Manager SOMPAscii or SOMPBinary 8 – 30.
SOMPAscii and SOMPBinary characteristics 8 – 30.
Activation and passivation 8 – 35.

viiSOMobjects Developer Toolkit Users Guide

8.5 Managing Persistent Objects 8 – 36.
Checking persistent object existence 8 – 36.
Deleting persistent objects 8 – 36.
Persistent object states 8 – 36.
Garbage collection 8 – 37.
8.6 Storing Objects in Specialized Formats. 8 – 39.
Persistent object format 8 – 39.
Encoder/Decoders 8 – 40.
The default Encoder/Decoder 8 – 41.
Writing an Encoder/Decoder 8 – 42.
Methods supporting encoder/decoders 8 – 42.
Example 7: Encoder/Decoder example implementation 8 – 45.
8.7 Multi-thread Considerations 8 – 51.
8.8 Error Handling 8 – 51.

Chapter 9. The Replication Framework
9.1 Introduction 9 – 1.
9.2 Principles of the Replication Framework 9 – 2.
Steps in using Replication 9 – 3.
9.3 Components of the Framework 9 – 4.
9.4 Making a “replicated” Class that provides Operation Logging 9 – 5.
9.5 Making a “replicated” Class that provides Value Logging 9 – 8.
9.6 Handling Directives 9 – 10.
9.7 Repdraw: A Complete Example 9 – 12.
Main program for “repdraw” (first part) 9 – 13.
IDL specification of the “tablet” class 9 – 15.
Implementation of the “tablet” class (first part) 9 – 16.
9.8 Miscellaneous Considerations 9 – 18.
9.9 Limitations 9 – 25.

Chapter 10. The Metaclass Framework 10 – 1.
10.1 Framework Metaclasses for “Before/After” Behavior 10 – 3.
The ‘SOMMBeforeAfter’ metaclass 10 – 3.
Composition of before/after metaclasses 10 – 5.
10.2 The ‘SOMMSingleInstance’ Metaclass 10 – 8.
10.3 The ‘SOMMTraced’ Metaclass 10 – 9.
10.4 The ‘SOMRReplicable’ Metaclass 10 – 11.
10.5 Error Codes 10 – 14.

Chapter 11. Collection Classes
11.1 Categories of Collection Classes 11 – 1.
IsSame vs. IsEqual comparisons 11 – 1.
Class inheritance vs. element inheritance 11 – 2.
Object-initializer methods 11 – 2.
Naming conventions 11 – 2.
11.2 Abstract Classes 11 – 3.
11.3 Main Collection Classes 11 – 4.
Hash table class — somf_THashTable 11 – 4.
Dictionary class — somf_TDictionary 11 – 5.
Set class — somf_TSet 11 – 5.
Deque, queue, and stack class — somf_TDeque 11 – 6.
Linked list class — somf_TPrimitiveLinkedList 11 – 6.
Sorted sequence class — somf_TSortedSequence 11 – 6.
Priority queue class — somf_TPriorityQueue 11 – 7.
Choosing the best class 11 – 7.

viii SOMobjects Developer Toolkit Users Guide

11.4 Iterator Classes 11 – 9.

11.5 Mixin Classes 11 – 10.

11.6 Supporting Classes 11 – 11.

11.7 Inheritance Hierarchy of the Collection Classes 11 – 12.

11.8 Utility Collection Classes by Category 11 – 13.

Chapter 12. The Event Management Framework
12.1 Event Management Basics 12 – 1.
Model of EMan usage 12 – 1.
Event types 12 – 1.
Registration 12 – 2.
Unregistering for events 12 – 4.
An example callback procedure 12 – 4.
Generating client events 12 – 4.
Examples of using other events 12 – 5.
Processing events 12 – 5.
Interactive applications 12 – 6.

12.2 Event Manager Advanced Topics 12 – 7.
Threads and thread safety 12 – 7.
Writing an X or MOTIF application 12 – 7.
Extending EMan 12 – 7.
Using EMan from C++ 12 – 8.
Using EMan from other languages 12 – 8.
Tips on using EMan 12 – 8.

12.3 Limitations 12 – 9.
Use of EMan DLL 12 – 9.

Appendix A. Customer Support and Error Codes A–1.

Appendix B. Converting OIDL Files to IDL B–1.

Appendix C. SOM IDL Language Grammar C–1.

Appendix D. Subclassing the Persistence Framework
Persistence Framework Class Interaction D – 1.

Choosing Which Classes to Subclass D – 2.

Implementing New Persistence Framework Classes D – 4.
Implementing a new Encoder/Decoder D – 4.
Implementing a new or enhanced Media Interface D – 6.
Implementing a new I/O Group Manager D – 12.
Persistent Storage Manager interaction D – 16.
Template for an I/O Group Manager D – 18.

An Example I/O Group Manager and Media Interface Implementation D – 25.
The Media Interface D – 25.
The I/O Group Manager D – 34.

Appendix E. Implementing Sockets Subclasses
Sockets IDL interface E – 1.
IDL for a Sockets subclass E – 5.
Implementation considerations E – 7.
Example code E – 7.

ixSOMobjects Developer Toolkit Users Guide

Appendix F. emitcom: An Emitter of COM Interfaces
‘emitcom’ Syntax F – 1.
Execution of ‘emitcom’ F – 1.
Interface Identifiers F – 2.
User Procedure F – 2.
The Generated Interface F – 4.
Customizing the <comstem>.mak F – 4.
Example F – 4.
Limitations F – 7.

Glossary Glos – 1.

Index Index – 1.

x SOMobjects Developer Toolkit Users Guide

xiSOMobjects Developer Toolkit Users Guide

About This Book

This book describes the System Object Model (SOM) of the SOMobjects Developer Toolkit
and explains how programmers using C, C++, and other languages can:

� Implement class libraries that exploit the SOM library-packaging technology,

� Develop client programs that use class libraries that were built using SOM, and

� Develop applications that use the frameworks supplied with the SOMobjects Toolkit, class
libraries that facilitate development of object-oriented applications.

In addition to this book, refer to the SOMobjects Developer Toolkit Programmers Reference
Manual during application development for specific information about the classes, methods,
functions, and macros supplied with the SOMobjects Toolkit. Also, refer to the SOMobjects
Developer Toolkit: Emitter Framework Guide and Reference for documentation of the Emitter
Framework of the SOMobjects Toolkit. In addition, the SOMobjects Developer Toolkit: Collec-
tion Classes Reference Manual describes the collection classes and methods provided with the
SOMobjects Toolkit.

How This Book Is Organized
This book contains twelve chapters, five appendices, a glossary, and an index.

• The first part (chapters 1 and 2) introduces the reader to the SOMobjects Toolkit, gives an
overview of the major elements of SOM, and provides a Tutorial containing several evolution-
ary examples.

• The second part (chapter 3) describes how to develop client programs in C, C++, or other
languages to use classes that were implemented using SOM, including how to create
instances of a class and call methods on them.

• The third part (chapters 4 and 5) gives the syntax of the SOM Interface Definition Language,
provides directions for running the SOM Compiler, describes the SOM run-time environment,
and presents advanced information about SOM’s object model and how to customize SOM
for particular applications.

• The fourth part (chapters 6 through 12) contains information about the frameworks compos-
ing the SOMobjects Toolkit: Distributed SOM (DSOM), the Interface Repository Framework,
the Persistence Framework, the Replication Framework, the Metaclass Framework, and the
Event Management Framework. (The Emitter framework is documented separately, in the
Emitter Framework Guide and Reference.) This part also describes the utility metaclasses
provided with the SOMobjects Toolkit, as well as a large set of Collection Classes provided as
a convenience to programmers.

• The appendices describe customer support-procedures and error codes, give directions for
converting existing files from the SOM Version 1 OIDL syntax to the current IDL syntax, and
provide the grammar for SOM IDL. Also included is a thorough discussion of subclassing the
Persistence Framework, complete with extensive examples. Another appendix describes
how to subclass a “Sockets” class that facilitates inter-process communications required by
some of the frameworks. Lastly is a description of the ‘emitcom’ program, which creates
bindings that allow SOM classes to be used with COM (Microsoft’s component interface
model).

• The Glossary provides brief definitions of terminology related to SOM and the SOMobjects
Toolkit. Finally, an extensive Index enables the reader to locate specific information quickly.

xii SOMobjects Developer Toolkit Users Guide

Who Should Read This Book
This book is for the professional programmer using C, C++, or another language who wishes to:

� Use SOM to build object–oriented class libraries, or

� Write application programs using class libraries that others have implemented using SOM,

even if the programming language does not directly support object–oriented programming.

The discussions in this book are expressed in the commonly used terminology of object-
oriented programming. A number of important terms are everyday English words that take on
specialized meanings. These terms appear in the Glossary at the back of this book. You may
find it worth consulting the Glossary if the unusual significance attached to an otherwise
ordinary word puzzles you.

This book assumes that you are an experienced programmer and that you have a general
familiarity with the basic notions of object-oriented programming. Practical experience using an
object-oriented programming language is helpful, but not essential.

If you would like a good introduction to object-oriented programming or a general survey of the
many aspects of the topic, you might enjoy reading one of the following books:

• Booch, G, Object-Oriented Design with Applications, Benjamin/Cummings 1991, ISBN
0-8053-0091-0.

• Budd, T, An Introduction to Object-Oriented Programming, Addison-Wesley 1991, ISBN
0-201-54709-0.

• Cox, B, and Novobilski, A, Object-Oriented Programming, An Evolutionary Approach 2nd
Edition, Addison-Wesley 1991, ISBN 0-201-54834-8.

xiiiSOMobjects Developer Toolkit Users Guide

Trademarks

The following terms are trademarks of the International Business Machines Corporation in the
United States and/or other countries:

AIX
IBM
Operating System/2
OS/2
OS/2 Workplace Shell
RISC System 6000
SOMobjects
System Object Model

For convenience, the acronym “SOM” is used in this publication to reference the technology of
the System Object Model, and the term “SOM Compiler” is used to reference the compiler of the
System Object Model.

Each of the following terms used in this publication is a trademark of another company:

Intel Intel Corporation
IPX Novell Corporation
Lotus 1-2-3 Lotus Development Corporation
Microsoft EXCEL Microsoft Corporation
Microsoft Windows Microsoft Corporation
NetWare Novell Corporation
Objective-C The Stepstone Corporation
Smalltalk Digitalk Inc.

The term “ANSI C” used throughout this publication refers to American National Standard
X3.159–1989.

The term “CORBA” used throughout this publication refers to the Common Object Request
Broker Architecture standards promulgated by the Object Management Group, Inc.

xiv SOMobjects Developer Toolkit Users Guide

Chapter 1. Introduction to the SOMobjects Toolkit

Contents

1.1 Background 1 – 1.

1.2 Introducing SOM and the SOMobjects Toolkit 1 – 3.
The SOM Compiler 1 – 4.
The SOM run-time library 1 – 5.
Frameworks provided in the SOMobjects Toolkit 1 – 5.

Distributed SOM 1 – 5.
Interface Repository Framework 1 – 5.
Persistence Framework 1 – 6.
Replication Framework 1 – 6.
Emitter Framework 1 – 6.
Metaclass Framework 1 – 6.

1.3 What’s New in SOMobjects Version 2.1 1 – 7.

1.4 Overview of this book 1 – 10.

ii SOMobjects Developer Toolkit Users Guide

Chapter 1. Introduction to the SOMobjects Toolkit

1.1 Background
Object-oriented programming (or OOP) is an important new programming technology that
offers expanded opportunities for software reuse and extensibility. Object-oriented program-
ming shifts the emphasis of software development away from functional decomposition and
toward the recognition of units (called objects) that encapsulate both code and data. As a result,
programs become easier to maintain and enhance. Object-oriented programs are typically
more impervious to the “ripple effects” of subsequent design changes than their non-object-
oriented counterparts. This, in turn, leads to improvements in programmer productivity.

Despite its promise, penetration of object-oriented technology to major commercial software
products has progressed slowly because of certain obstacles. This is particularly true of prod-
ucts that offer only a binary programming interface to their internal object classes (i.e., products
that do not allow access to source code).

The first obstacle that developers must confront is the choice of an object-oriented program-
ming language.

So-called “pure” object-oriented languages (such as Smalltalk) presume a complete run-time
environment (sometimes known as a virtual machine), because their semantics represent a
major departure from traditional, procedure-oriented system architectures. So long as the
developer works within the supplied environment, everything works smoothly and consistently.
When the need arises to interact with foreign environments, however (for example, to make an
external procedure call), the pure-object paradigm ends, and objects must be reduced to data
structures for external manipulation. Unfortunately, data structures do not retain the advan-
tages that objects offer with regard to encapsulation and code reuse.

“Hybrid” languages such as C++, on the other hand, require less run-time support, but some-
times result in tight bindings between programs that implement objects (called “class libraries”)
and their clients (the programs that use them). That is, implementation detail is often unavoid-
ably compiled into the client programs. Tight binding between class libraries and their clients
means that client programs often must be recompiled whenever simple changes are made in
the library. Furthermore, no binary standard exists for C++ objects, so the C++ class libraries
produced by one C++ compiler cannot (in general) be used from C++ programs built with a
different C++ compiler.

The second obstacle developers of object-oriented software must confront is that, because
different object-oriented languages and toolkits embrace incompatible models of what objects
are and how they work, software developed using a particular language or toolkit is naturally
limited in scope. Classes implemented in one language cannot be readily used from another. A
C++ programmer, for example, cannot easily use classes developed in Smalltalk, nor can a
Smalltalk programmer make effective use of C++ classes. Object-oriented language and toolkit
boundaries become, in effect, barriers to interoperability.

Ironically, no such barrier exists for ordinary procedure libraries. Software developers routinely
construct procedure libraries that can be shared across a variety of languages, by adhering to
standard linkage conventions. Object-oriented class libraries are inherently different in that
no binary standards or conventions exist to derive a new class from an existing one, or even to
invoke a method in a standard way. Procedure libraries also enjoy the benefit that their imple-
mentations can be freely changed without requiring client programs to be recompiled, unlike the
situation for C++ class libraries.

1 – 2 SOMobjects Developer Toolkit Users Guide

For developers who need to provide binary class libraries, these are serious obstacles. In an era
of open systems and heterogeneous networking, a single-language solution is frequently not
broad enough. Certainly, mandating a specific compiler from a specific vendor in order to use a
class library might be grounds not to include the class library with an operating system or other
general-purpose product.

The System Object Model (SOM) is IBM’s solution to these problems.

1 – 31. Introduction to the SOMobjects Toolkit

1.2 Introducing SOM and the SOMobjects Toolkit
The System Object Model (SOM) is a new object-oriented programming technology for build-
ing, packaging, and manipulating binary class libraries.

� With SOM, class implementors describe the interface for a class of objects (names of the
methods it supports, the return types, parameter types, and so forth) in a standard
language called the Interface Definition Language, or IDL.

� They then implement methods in their preferred programming language (which may be
either an object-oriented programming language or a procedural language such as C).

This means that programmers can begin using SOM quickly, and also extends the advantages
of OOP to programmers who use non-object-oriented programming languages.

A principal benefit of using SOM is that SOM accommodates changes in implementation details
and even in certain facets of a class’s interface, without breaking the binary interface to a class
library and without requiring recompilation of client programs. As a rule of thumb, if changes to a
SOM class do not require source-code changes in client programs, then those client programs
will not need to be recompiled. This is not true of many object-oriented languages, and it is one of
the chief benefits of using SOM. For instance, SOM classes can undergo structural changes
such as the following, yet retain full backward, binary compatibility:

� Adding new methods,

� Changing the size of an object by adding or deleting instance variables,

� Inserting new parent (base) classes above a class in the inheritance hierarchy, and

� Relocating methods upward in the class hierarchy.

In short, implementors can make the typical kinds of changes to an implementation and its
interfaces that evolving software systems experience over time.

Unlike the object models found in formal object-oriented programming languages, SOM is
language-neutral. It preserves the key OOP characteristics of encapsulation, inheritance, and
polymorphism, without requiring that the user of a SOM class and the implementor of a SOM
class use the same programming language. SOM is said to be language-neutral for four
reasons:

1. All SOM interactions consist of standard procedure calls. On systems that have a stan-
dard linkage convention for system calls, SOM interactions conform to those conven-
tions. Thus, most programming languages that can make external procedure calls can
use SOM.

2. The form of the SOM Application Programming Interface, or API (the way that program-
mers invoke methods, create objects, and so on) can vary widely from language to
language, as a benefit of the SOM bindings. Bindings are a set of macros and procedure
calls that make implementing and using SOM classes more convenient by tailoring the
interface to a particular programming language.

3. SOM supports several mechanisms for method resolution that can be readily mapped
into the semantics of a wide range of object-oriented programming languages. Thus,
SOM class libraries can be shared across object-oriented languages that have differing
object models. A SOM object can potentially be accessed with three different forms of
method resolution:

� Offset resolution: roughly equivalent to the C++ “virtual function” concept. Offset
resolution implies a static scheme for typing objects, with polymorphism based strictly
on class derivation. It offers the best performance characteristics for SOM method
resolution. Methods accessible through offset resolution are called static methods,
because they are considered a fixed aspect of an object’s interface.

1 – 4 SOMobjects Developer Toolkit Users Guide

� Name-lookup resolution: similar to that employed by Objective-C and Smalltalk. Name
resolution supports untyped (sometimes called “dynamically” typed) access to objects,
with polymorphism based on the actual protocols that objects honor. Name resolution
offers the opportunity to write code to manipulate objects with little or no awareness of
the type or shape of the object when the code is compiled.

� Dispatch-function resolution: a unique feature of SOM that permits method resolution
based on arbitrary rules known only in the domain of the receiving object. Languages
that require special entry or exit sequences or local objects that represent distributed
object domains are good candidates for using dispatch-function resolution. This tech-
nique offers the highest degree of encapsulation for the implementation of an object,
with some cost in performance.

4. SOM conforms fully with the Object Management Group’s (OMG) Common Object
Request Broker Architecture (CORBA) standards.� In particular,

� Interfaces to SOM classes are described in CORBA’s Interface Definition Language,
IDL, and the entire SOMobjects Toolkit supports all CORBA-defined data types.

� The SOM bindings for the C language are compatible with the C bindings prescribed by
CORBA.

� All information about the interface to a SOM class is available at run time through a
CORBA-defined “Interface Repository.”

SOM is not intended to replace existing object-oriented languages. Rather, it is intended to
complement them so that application programs written in different programming languages can
share common SOM class libraries. For example, SOM can be used with C++ to

� Provide upwardly compatible class libraries, so that when a new version of a SOM class is
released, client code needn’t be recompiled, so long as no changes to the client’s source
code are required.

� Allow other language users (and other C++ compiler users) to use SOM classes imple-
mented in C++.

� Allow C++ programs to use SOM classes implemented using other languages.

� Allow other language users to implement SOM classes derived from SOM classes imple-
mented in C++.

� Allow C++ programmers to implement SOM classes derived from SOM classes imple-
mented using other languages.

� Allow encapsulation (implementation hiding) so that SOM class libraries can be shared
without exposing private instance variables and methods.

� Allow dynamic (run-time) method resolution in addition to static (compile-time) method
resolution (on SOM objects).

� Allow information about classes to be obtained and updated at run time. (C++ classes are
compile-time structures that have no properties at run time.)

The SOM Compiler
The SOMobjects Toolkit contains a tool, called the SOM Compiler, that helps implementors
build classes in which interface and implementation are decoupled. The SOM Compiler reads
the IDL definition of a class interface and generates:

� an implementation skeleton for the class,

� bindings for implementors, and

� bindings for client programs.

�OMG is an industry consortium founded to advance the use of object technology in distributed, heterogeneous environments.

1 – 51. Introduction to the SOMobjects Toolkit

Bindings are language-specific macros and procedures that make implementing and using
SOM classes more convenient. These bindings offer a convenient interface to SOM that is
tailored to a particular programming language. For instance, C programmers can invoke meth-
ods in the same way they make ordinary procedure calls. The C++ bindings “wrap” SOM objects
as C++ objects, so that C++ programmers can invoke methods on SOM objects in the same way
they invoke methods on C++ objects. In addition, SOM objects receive full C++ typechecking,
just as C++ objects do. Currently, the SOM Compiler can generate both C and C++ language
bindings for a class. The C and C++ bindings will work with a variety of commercial products
available from IBM and others. Vendors of other programming languages may also offer SOM
bindings. Check with your language vendor about possible SOM support.

The SOM run-time library
In addition to the SOM Compiler, SOM includes a run-time library. This library provides,
among other things, a set of classes, methods, and procedures used to create objects and
invoke methods on them. The library allows any programming language to use SOM classes
(classes developed using SOM) if that language can:

� Call external procedures,

� Store a pointer to a procedure and subsequently invoke that procedure, and

� Map IDL types onto the programming language’s native types.

Thus, the user of a SOM class and the implementor of a SOM class needn’t use the same
programming language, and neither is required to use an object-oriented language. The inde-
pendence of client language and implementation language also extends to subclassing: a SOM
class can be derived from other SOM classes, and the subclass may or may not be implement-
ed in the same language as the parent class(es). Moreover, SOM’s run-time environment allows
applications to access information about classes dynamically (at run time).

Frameworks provided in the SOMobjects Toolkit
In addition to SOM itself (the SOM Compiler and the SOM run-time library), the SOMobjects
Developer Toolkit also provides a set of frameworks (class libraries) that can be used in
developing object-oriented applications. These include Distributed SOM, the Interface Reposi-
tory Framework, the Persistence Framework, the Replication Framework, the Emitter Frame-
work, and the Metaclass Framework described below.

Distributed SOM
Distributed SOM (or DSOM) allows application programs to access SOM objects across
address spaces. That is, application programs can access objects in other processes, even on
different machines. DSOM provides this transparent access to remote objects through its
Object Request Broker (ORB): the location and implementation of the object are hidden from
the client, and the client accesses the object as if were local. The current release of DSOM sup-
ports distribution of objects among processes within a workstation, and across a local area
network consisting of AIX systems, OS/2 systems, Windows systems, or some mix of these
systems. Future releases may support larger enterprise-wide networks.

Interface Repository Framework
The Interface Repository is a database, optionally created and maintained by the SOM Com-
piler, that holds all the information contained in the IDL description of a class of objects. The
Interface Repository Framework consists of the 11 classes defined in the CORBA standard
for accessing the Interface Repository. Thus, the Interface Repository Framework provides
run-time access to all information contained in the IDL description of a class of objects. Type
information is available as TypeCodes — a CORBA-defined way of encoding the complete
description of any data type that can be constructed in IDL.

1 – 6 SOMobjects Developer Toolkit Users Guide

Persistence Framework
The Persistence Framework is a collection of SOM classes that provide methods for saving
objects (either in a file or in a more specialized repository) and later restoring them. This means
that the state of an object can be preserved beyond the termination of the process that creates it.
This facility is useful for constructing object-oriented databases, spreadsheets, and so forth.
The Persistence Framework includes the following features:

� Objects can be stored singly or in groups.

� Objects can be stored in default formats or in specially designed formats.

� Objects of arbitrary complexity can be saved and restored.

Replication Framework
The Replication Framework is a collection of SOM classes that allows a replica (copy) of an
object to exist in multiple address spaces, while maintaining a single-copy image. In other
words, an object can be replicated in several different processes, while logically it behaves as a
single copy. Updates to any copy are propagated immediately to all other copies. The Replica-
tion Framework handles locking, synchronization, and update propagation, and guarantees
mutual consistency among the replicas. The Replication Framework includes these important
features:

� Good response times for both readers and writers,

� Fault-tolerance against node failures and message loss,

� Simple coding rules (that can be automated) for building replicated objects,

� Graceful degradation under wide-area networks, and

� Minimal overhead when replication is not activated.

Emitter Framework
The Emitter Framework is a collection of SOM classes that allows programmers to write their
own emitters. Emitter is a general term used to describe a back-end output component of the
SOM Compiler. Each emitter takes as input information about an interface, generated by the
SOM Compiler as it processes an IDL specification, and produces output organized in a
different format. SOM provides a set of emitters that generate the binding files for C and C++

programming (header files and implementation templates). In addition, users may wish to write
their own special-purpose emitters. For example, an implementor could write an emitter to
produce documentation files or binding files for programming languages other than C/C++. The
Emitter Framework is separately documented in the SOMobjects Developer Toolkit: Emitter
Framework Guide and Reference.

Metaclass Framework
Finally, the Metaclass Framework is a collection of SOM metaclasses that provide functional-
ity that may be useful to SOM class designers for modifying the default semantics of method
invocation and object creation. These metaclasses are described in Chapter 10, “The Meta-
class Framework,” of the SOMobjects Developer Toolkit Users Guide.

1 – 71. Introduction to the SOMobjects Toolkit

1.3 What’s New in SOMobjects Version 2.1
Version 2.1 of the SOMobjects Developer Toolkit provides enhanced capabilities and improved
performance for both SOM and DSOM. In addition, the Toolkit now includes support for
DirectToSOM (DTS) C++ compilers. New metaclasses in the Metaclass Framework allow class
implementors to define classes that automatically possess certain convenience facilities. Also,
TCP/IP support is available for Windows users, and OS/2 users can choose 32–bit TCP/IP.

In particular, SOMobjects Version 2.1 offers the following additions over Version 2.0:

General enhancements
• C++ programmers can use DirectToSOM (DTS) C++ compilers (available from independent

software vendors) as an alternative to the SOMobjects Toolkit’s C++ bindings. (A DTS C++

compiler uses SOM classes to implement C++ objects.) The support provided by SOMob-
jects for DTS C++ consists of various enhancements to the SOM API (useful to SOM
programmers in general), and a new emitter that produces DTS C++ header files corre-
sponding to SOM IDL. DTS C++ programs #include these “.hh” header files, which are
emitted as described under “Generating binding files” in Chapter 4, “SOM IDL and the SOM
Compiler.”

• With this release, TCP/IP support is now available for SOMobjects For Windows. Also, for
OS/2 users only, SOMobjects now supports the 32–bit TCP/IP version 2.0, which offers
greater performance over the 16–bit TCP/IP version 1.2.1. These are described in your
SOMobjects Installation/Configuration Guide.

SOMobjects enhancements
• A new default process whereby SOMobjects initializes and destroys objects more efficiently

(using the somDefaultInit and somDestruct methods). See “Initializing and Uninitializing
Objects” in Chapter 5, “Implementing Classes in SOM.”

• New support for C++-style copy constructors and assignment operators. As with C++, SOM
provides reasonable defaults for these, but a class implementor may want to provide special-
ized implementations. See the somDefaultConstCopyInit and somDefaultConstAssign
methods in the SOMobjects Developer Toolkit Programmers Reference Manual.

• A new kind of method, nonstatic, that is similar to a C++ nonstatic member function. It is
normally invoked using offset resolution but can use any form of SOMobjects method
resolution. See “The four kinds of SOM methods” in Chapter 5, “Implementing Classes in
SOM” and the nonstatic modifier under “Modifier statements” in Chapter 4, “SOM IDL and
the SOM Compiler.”

• A new kind of data, staticdata, that is similar to C++ static data members. A staticdata
variable is not stored in an object; rather, the ClassData structure of the implementing class
contains a pointer to the variable. See the staticdata modifier under “Modifier statements” in
Chapter 4, “SOM IDL and the SOM Compiler.”

• Two new modifiers, somallocate and somdeallocate, used to indicate that a user-written
procedure should be executed to allocate/deallocate memory for class instances when the
somAllocate or somDeallocate method is invoked. See these modifiers under “Modifier
statements” in Chapter 4, “SOM IDL and the SOM Compiler.”

• The ability to “cast” objects. See the methods somCastObj and somResetObj.

• New support for loading/unloading class libraries. (This was introduced in SOMobjects For
Windows and is now applicable on OS/2 as well.) See the SOM_ClassLibrary macro in the
SOMobjects Developer Toolkit Programmers Reference Manual.

1 – 8 SOMobjects Developer Toolkit Users Guide

DSOM enhancements
• A new command-line tool, dsom, for managing DSOM servers (starting, restarting, stop-

ping, querying, and so forth). See “The dsom server manager utility” in Chapter 6, “Distrib-
uted SOM.” In addition, a corresponding programmatic interface is provided by methods of
the new SOMDServerMgr class. See that class and its methods in the SOMobjects Devel-
oper Toolkit Programmers Reference Manual.

• A new command-line tool, somdchk, that performs environment validation. See “Verifying
the DSOM environment with somdchk” in Chapter 6, “Distributed SOM.”

• New SOM IDL modifiers for memory management of parameters: memory_management =
corba, caller_owns_parameters, caller_owns_result, object_owns_parameters, and
object_owns_result. The individual modifiers are described under “Modifier statements” in
Chapter 4, “SOM IDL and the SOM Compiler.” See “Memory management” in Chapter 6,
“Distributed SOM,” for a complete discussion of the subject. This memory-management
support also includes the new method somdReleaseResources and the functions
somdExceptionFree and SOMD_NoORBfree, described in the SOMobjects Developer
Toolkit Programmers Reference Manual.

• A graphical user interface to the DSOM ‘regimpl’ utility on OS/2, called pregimpl. See
“Registration steps using ‘pregimpl’ or ‘wregimpl’,” in Chapter 6, “Distributed SOM.”

• Support for the CORBA constant OBJECT_NIL. In addition, the is_nil method of SOMDObject
can now be used for local objects as well as NULL pointers.

• Support for passing self-referential structs and unions (those valid in IDL) in remote method
calls.

• Support for local/remote transparency in DSOM’s object-destruction methods. See
“Destroying remote objects.”

• Ability for users to define customized base proxy classes. See “Customizing the default base
proxy class.”

• Ability for users to specify an upper limit on the number of threads that a server can spawn,
via the SOMDNUMTHREADS environment variable. See this variable under “Preparing the
environment.”

• Improved error handling and performance improvements.

• More sample programs distributed with the SOMobjects Toolkit.

Metaclass Framework
• SOMMBeforeAfter — a metaclass that enables the programming of “before/after” meta-

classes, whose instances execute a particular method before and after each method invoca-
tion. See Chapter 10, “The Metaclass Framework,” for information about the new Metaclass
Framework. Individual metaclasses, along with related classes and methods, are docu-
mented in the SOMobjects Developer Toolkit Programmers Reference Manual.

• SOMMTraced — a utility metaclass to do tracing.

• SOMRReplicable — a utility metaclass to ease the use of the Replication Framework.

New restrictions and deprecated methods
While implementing the Metaclass Framework, IBM learned that metaclasses must be pro-
grammed so that the capabilities they implement will be preserved when various metaclasses
are combined (using multiple inheritance) into a SOM-derived metaclass. To assure this result,
the Metaclass Framework metaclasses have been programmed using a “Cooperation Frame-
work.” However, IBM is not yet ready to include the Cooperation Framework among the officially
supported features of SOMobjects.

1 – 91. Introduction to the SOMobjects Toolkit

To prevent user-defined metaclasses from interfering with the operation of the Cooperation
Framework and consequently with the Metaclass Framework, SOMobjects programmers are
strongly urged to observe the following restriction when programming new metaclasses:

• User-defined metaclasses can introduce new class methods and class variables, but
should not override any of the methods introduced by the SOMClass class.

SOMobjects users whose metaclass programming requirements cannot be met within the
above restrictions will be given access to the Cooperation Framework and its documentation.
Note, however, that metaclasses developed using the Cooperation Framework may require
reprogramming when an officially supported Cooperation Framework is later introduced.

In addition, use of a number of (public) methods introduced by SOMClass is now deprecated
because they are useful only from overridden SOMClass methods. These methods are listed
under the heading “Deprecated methods” in the documentation for SOMClass within the
SOMobjects Developer Toolkit Programmers Reference Manual, until such time as
SOMobjects is ready to officially provide a framework within which their use will not interfere
with the internal operation of SOMobjects itself.

1 – 10 SOMobjects Developer Toolkit Users Guide

1.4 Overview of this book
Chapter 2 contains a Tutorial with five examples that illustrate techniques for implementing
classes in SOM. All readers should cover this tutorial.

Chapter 3 describes how an application program creates instances of a SOM class, how it
invokes methods, and so on. For readers interested only in using SOM classes, rather than
building them, chapters 2 and 3 may provide all of the information they need to begin using SOM
classes.

Chapter 4 contains explanations and examples for all valid SOM IDL syntax components. It then
presents the SOM Compiler, including all compiler options and related environment variables.
All class implementors will need to reference this chapter.

Chapter 5 provides more comprehensive information about the SOM system itself, including
operation of the SOM run-time environment, inheritance, and method resolution. This chapter
also describes how to create language-neutral class libraries using SOM. In addition, it contains
some advanced topics for customizing SOM to better suit the needs of a particular application.
All class implementors will need to reference this chapter.

Chapter 6 describes Distributed SOM and how to use it to access objects across address
spaces, even on different machines. Chapter 6 also describes how to customize DSOM.

Chapter 7 describes the Interface Repository Framework of classes supplied with the
SOMobjects Toolkit.

Chapter 8 describes the Persistence Framework of classes supplied with the SOMobjects
Toolkit and how to use it to save objects (either in a file or in a more specialized repository) and
later restore them.

Chapter 9 describes the Replication Framework of classes supplied with the SOMobjects
Toolkit and how to use it to create replicas (copies) of an object in multiple address spaces while
maintaining a single-copy image.

Chapter 10 describes the Metaclass Framework and some utility metaclasses that SOM
provides to assist users in deriving new classes with special abilities to execute “before” and
“after” operations when a method call occurs, as well as other capabilities for modifying the
default semantics of method invocation and object creation.

Chapter 11 discusses a large group of “collection classes” that are provided with the SOM
system. These collection classes and related methods implement most of the common data
structures that programmers need.

Chapter 12 describes the Event Management Framework, which allows grouping of all
application events and waiting on multiple events in one place. The Event Manager is used by
both DSOM and the Replication Framework.

Appendix A describes service and technical support policies for the SOMobjects Toolkit, and
contains lists of the error codes and messages that can be issued by the SOM kernel or by the
various frameworks.

Appendix B gives instructions for automatically converting class definition files from OIDL
syntax (the interface definition language used by the previous release of SOM) to IDL syntax
(the language prescribed by the CORBA standard).

Appendix C contains the SOM IDL language grammar.

Appendix D provides extensive information and examples for subclassing the Persistence
Framework.

Appendix E describes how to subclass a “Sockets” class that facilitates inter-process commu-
nications required by the DSOM, Replication, and Event Management Frameworks.

Appendix F presents the ‘emitcom’ program, which creates bindings that allow SOM classes to
be used with COM (Microsoft’s component interface model).

Chapter 2. Tutorial for Implementing SOM Classes

Contents

2.1 Basic Concepts of the System Object Model (SOM) 2 – 1.
Development of the Tutorial examples 2 – 5.

2.2 Basic Steps for Implementing SOM Classes 2 – 6.

Example 1 — Implementing a Simple Class with One Method 2 – 7.

Example 2 — Adding an Attribute to the Hello class 2 – 13.
Attributes vs instance variables 2 – 15.

Example 3 — Overriding an Inherited Method 2 – 17.

Example 4 — Initializing a SOM Object 2 – 20.

Example 5 — Using Multiple Inheritance 2 – 22.

ii SOMobjects Developer Toolkit Users Guide

Chapter 2. Tutorial for Implementing SOM Classes
This tutorial contains five examples showing how SOM classes can be implemented to achieve
various functionality. Obviously, for any person who wishes to become a class implementor, this
tutorial is essential. However, even for those programmers who expect only to use SOM classes
that were implemented by others, the tutorial is also necessary, as it presents several concepts
that will help clarify the process of using SOM classes.

2.1 Basic Concepts of the System Object Model (SOM)
The System Object Model (SOM), provided by the SOMobjects Developer Toolkit, is a set of
libraries, utilities, and conventions used to create binary class libraries that can be used by
application programs written in various object-oriented programming languages, such as C++

and Smalltalk, or in traditional procedural languages, such as C and Cobol. The following
paragraphs introduce some of the basic terminology used when creating classes in SOM:

� An object is an OOP entity that has behavior (its methods or operations) and state (its
data values). In SOM, an object is a run-time entity with a specific set of methods and
instance variables. The methods are used by a client programmer to make the object
exhibit behavior (that is, to do something), and the instance variables are used by the
object to store its state. (The state of an object can change over time, which allows the
object’s behavior to change.) When a method is invoked on an object, the object is said to
be the receiver or target of the method call.

� An object’s implementation is determined by the procedures that execute its methods,
and by the type and layout of its instance variables. The procedures and instance variables
that implement an object are normally encapsulated (hidden from the caller), so a program
can use the object’s methods without knowing anything about how those methods are
implemented. Instead, a user is given access to the object’s methods through its interface
 (a description of the methods in terms of the data elements required as input and the type
of value each method returns).

� An interface through which an object may be manipulated is represented by an object type.
That is, by declaring a type for an object variable, a programmer specifies an interface that
can be used to access that object. SOM IDL (the SOM Interface Definition Language) is
used to define object interfaces. The interface names used in these IDL definitions are
also the type names used by programmers when typing SOM object variables.

� In SOM, as in most approaches to object-oriented programming, a class defines the
implementation of objects. That is, the implementation of any SOM object (as well as its
interface) is defined by some specific SOM class. A class definition begins with an IDL
specification of the interface to its objects, and the name of this interface is used as the
class name as well. Each object of a given class may also be called an instance of the
class, or an instantiation of the class.

� Inheritance, or class derivation, is a technique for developing new classes from existing
classes. The original class is called the base class, or the parent class, or sometimes the
direct ancestor class. The derived class is called a child class or a subclass. The primary
advantage of inheritance is that a derived class inherits all of its parent’s methods and
instance variables. Also through inheritance, a new class can override (or redefine)
methods of its parent, in order to provide enhanced functionality as needed. In addition, a
derived class can introduce new methods of its own. If a class results from several
generations of successive class derivation, that class “knows” all of its ancestors’s meth-
ods (whether overridden or not), and an object (or instance) of that class can execute any
of those methods.

2 – 2 SOMobjects Developer Toolkit Users Guide

� SOM classes can also take advantage of multiple inheritance, which means that a new
class is jointly derived from two or more parent classes. In this case, the derived class
inherits methods from all of its parents (and all of its ancestors), giving it greatly expanded
capabilities. In the event that different parents have methods of the same name that
execute differently, SOM provides ways for avoiding conflicts.

� In the SOM run time, classes are themselves objects. That is, classes have their own
methods and interfaces, and are themselves defined by other classes. For this reason, a
class is often called a class object. Likewise, the terms class methods and class variables
are used to distinguish between the methods/variables of a class object vs. those of its
instances. (Note that the type of an object is not the same as the type of its class, which
as a “class object” has its own type.)

� A class that defines the implementation of class objects is called a metaclass. Just as an
instance of a class is an object, so an instance of a metaclass is a class object. Moreover,
just as an ordinary class defines methods that its objects respond to, so a metaclass
defines methods that a class object responds to. For example, such methods might
involve operations that execute when a class (that is, a class object) is creating an instance
of itself (an object). Just as classes are derived from parent classes, so metaclasses can
be derived from parent metaclasses, in order to define new functionality for class objects.

� The SOM system contains three primitive classes that are the basis for all subsequent
classes:

SOMObject — the root ancestor class for all SOM classes,
SOMClass — the root ancestor class for all SOM metaclasses, and
SOMClassMgr — the class of the SOMClassMgrObject, an object created automatically

during SOM initialization, to maintain a registry of existing classes and
to assist in dynamic class loading/unloading.

SOMClass is defined as a subclass (or child) of SOMObject and inherits all generic object
methods; this is why instances of a metaclass are class objects (rather than simply
classes) in the SOM run time. The adjacent figure illustrates typical relationships of
classes, metaclasses, and objects in the SOM run time. (This illustration does not include
the SOMClassMgrObject.)

2 – 32. Tutorial for Implementing SOM Classes

Parent
 class
 “P”

Class
 “C”

O2

On
 Object
 “O1”

...

Typical class, metaclass, and object relationships

Metaclass
 “M”

Legend:
subclass–ofinstance–of

metaclass class simple object

SOMObject

�2

�n
 Object
 “�1”

...

SOMClass

SOM classes are designed to be language neutral. That is, SOM classes can be implemented in
one programming language and used in programs of another language. To achieve language
neutrality, the interface for a class of objects must be defined separately from its implemen-
tation. That is, defining interface and implementation requires two completely separate steps
(plus an intervening compile), as follows:

� An interface is the information that a program must know in order to use an object of a
particular class. This interface is described in an interface definition (which is also the class
definition), using a formal language whose syntax is independent of the programming
language used to implement the class’s methods. For SOM classes, this is the SOM
Interface Definition Language (SOM IDL). The interface is defined in a file known as the
IDL source file (or, using its extension, this is often called the .idl file).

An interface definition is specified within the interface declaration (or interface statement)
of the .idl file, which includes:

(a) the interface name (or class name) and the name(s) of the class’s parent(s), and
(b) the names of the class’s attributes and the signatures of its new methods.

(Recall that the complete set of available methods also includes all inherited
methods.)

Each method signature includes the method name, and the type and order of its argu-
ments, as well as the type of its return value (if any). Attributes are instance variables for

2 – 4 SOMobjects Developer Toolkit Users Guide

which “set” and “get” methods will automatically be defined, for use by the application
program. (By contrast, instance variables that are not attributes are hidden from the user.)

� Once the IDL source file is complete, the SOM Compiler is used to analyze the .idl file and
create the implementation template file, within which the class implementation will be
defined. Before issuing the SOM Compiler command, sc (or somc on Windows), the class
implementor can set an environment variable that determines which emitters (output-gen-
erating programs) the SOM Compiler will call and, consequently, which programming
language and operating system the resulting binding files will relate to. (Alternatively, this
emitter information can be placed on the command line for sc or somc.)

In addition to the implementation template file itself, the binding files include two language-
specific header files that will be #included in the implementation template file and in
application program files. The header files define many useful SOM macros, functions,
and procedures that can be invoked from the files that include the header files.

� The implementation of a class is done by the class implementor in the implementation
template file (often called just the implementation file or the template file). As produced by
the SOM Compiler, the template file contains stub procedures for each method of the
class. These are incomplete method procedures that the class implementor uses as a
basis for implementing the class by writing the corresponding code in the programming
language of choice.

In summary, the process of implementing a SOM class includes using the SOM IDL syntax to
create an IDL source file that specifies the interface to a class of objects — that is, the methods
and attributes that a program can use to manipulate an object of that class. The SOM Compiler
is then run to produce an implementation template file and two binding (header) files that are
specific to the designated programming language and operating system. Finally, the class
implementor writes language-specific code in the template file to implement the method proce-
dures.

At this point, the next step is to write the application (or client) program(s) that use the objects
and methods of the newly implemented class. (Observe, here, that a programmer could write an
application program using a class implemented entirely by someone else.) If not done previous-
ly, the SOM compiler is run to generate usage bindings for the new class, as appropriate for the
language used by the client program (which may be different from the language in which the
class was implemented). After the client program is finished, the programmer compiles and
links it using a language-specific compiler, and then executes the program. (Notice again, the
client program can invoke methods on objects of the SOM class without knowing how those
methods are implemented.)

2 – 52. Tutorial for Implementing SOM Classes

Development of the Tutorial examples

� Example 1 — Implementing a simple class with one method
Prints a default message when the “sayHello” method is invoked
on an object of the “Hello” class.

� Example 2 — Adding an attribute to the Hello class
Defines a “msg” attribute for the “sayHello” method to use. The
client program “sets” a message; then the “sayHello” method
“gets” the message and prints it. (There is no defined message
when an object of the “Hello” class is first created.)

� Example 3 — Overriding an inherited method
Overrides the SOMobjects method somPrintSelf so that invok-
ing this method on an object of the “Hello” class will not only
display the class name and the object’s location, but will also
include the object’s message attribute.

� Example 4 — Initializing a SOM object
Overrides the default initialization method, somDefaultInit, to
illustrate how an object’s instance variables can be initialized
when the object is created.

� Example 5 — Using multiple inheritance
Extends the “Hello” class to provide it with multiple inheritance
(from the “Disk” and “Printer” classes). The “Hello” interface
defines an enum and an “output” attribute that takes its value
from the enum (either “screen”, “printer”, or “disk”). The client
program “sets” the form of “output” before invoking the
“sayHello” method to send a “msg” (defined as in Example 4).

2 – 6 SOMobjects Developer Toolkit Users Guide

2.2 Basic Steps for Implementing SOM Classes
Implementing and using SOM classes in C or C++ involves the following steps, which are
explicitly illustrated in the examples of this tutorial:

1. Define the interface to objects of the new class (that is, the interface declaration),
by creating a .idl file.

2. Run the SOM Compiler on the .idl file (by issuing the sc command on AIX or OS/2, or
by issuing the somc command on Windows) to produce the following binding files:

� Template implementation file
a .c file for C programmers, or
a .C file (on AIX) or a .cpp file (on OS/2 or Windows) for C++ programmers;

� Header file to be included in the implementation file
a .ih file for C programmers, or
a .xih file for C++ programmers; and

� Header file to be included in client programs that use the class
a .h file for C clients, or
a .xh file for C++ clients.

To specify whether the SOM Compiler should produce C or C++ bindings, set the
value of the SMEMIT environment variable or use the “–s” option of the sc or somc
command, as described in Section 4.3, “The SOM Compiler.” By default, the SOM
Compiler produces C bindings.

3. Customize the implementation, by adding code to the template implementation file.

4. Create a client program that uses the class.

5. Compile and link the client code with the class implementation, using a C or C++

compiler.

6. Execute the client program.

The following examples illustrate appropriate syntax for defining interface declarations in a .idl
file, including designating the methods that the class’s instances will perform. In addition, the
example template implementation files contain typical code that the SOM Compiler produces.
Explanations accompanying each example discuss topics that are significant to the particular
example; full explanations of the SOM IDL syntax are contained in Chapter 4, “SOM IDL and the
SOM Compiler.” Customization of each implementation file (step 3) is illustrated in both C and
C++.

Notes: (1) The Tutorial assumes you will work through the examples in order. If you do not do so,
the code that the SOM Compiler generates from your revised .idl file may vary slightly from what
you see in the Tutorial.
(2) When the SOMobjects Toolkit is installed, a choice is made between “somcorba” and
“somstars” for the style of C bindings the SOM Compiler will generate. The Tutorial examples
use the “somcorba” style, where an interface name used as a type indicates a pointer to an
object, as required by strict CORBA bindings. Consequently, as the examples show, a “*” does
not explicitly appear for types that are pointers to objects. If your system was installed for
“somstars” C bindings, you can set the environment variable SMADDSTAR=1 or use the SOM
Compiler option “–maddstar” to request bindings that use explicit pointer stars. For more
information, see “Declaring object variables” in Chapter 3,“Using SOM Classes in Client Pro-
grams” and “Object types” in Chapter 4, “SOM IDL and the SOM Compiler.”

2 – 72. Tutorial for Implementing SOM Classes

Example 1 — Implementing a Simple Class with One Method
Example 1 defines a class “Hello” which introduces one new method, “sayHello”. When invoked
from a client program, the “sayHello” method will print the fixed string “Hello, World!” The
example follows the six steps described in the preceding topic, “Basic Steps for Implementing
SOM Classes.”

1) Define the interface to class “Hello”, which inherits methods from the root class SOMObject and
introduces one new method, “sayHello”. Define these IDL specifications in the file “hello.idl”.

The “interface” statement introduces the name of a new class and any parents (base classes) it
may have (here, the root class SOMObject). The body of the interface declaration introduces
the method “sayHello.” Observe that method declarations in IDL have syntax similar to C and
C++ function prototypes:

#include <somobj.idl> //# Get the parent class definition.

interface Hello : SOMObject
/* This is a simple class that demonstrates how to define the
 * interface to a new class of objects in SOM IDL.
 */
{
 void sayHello();
 // This method outputs the string ”Hello, World!”.
 /* On Windows, use: string sayHello();
 * This method returns the string ”Hello, World!”. */
};

Note that the method “sayHello” has no (explicit) arguments and returns no value (except on
Windows, which returns a string). The characters “//” start a line comment, which finishes at the
end of the line. The characters “/*” start a block comment that finishes with “*/”. Block comments
do not nest. The two comment styles can be used interchangeably. Throw-away comments are
also permitted in a .idl file; they are ignored by the SOM Compiler. Throw-away comments start
with the characters “//#” and terminate at the end of the line.

Note: For simplicity, this IDL fragment does not include a releaseorder modifier; consequently,
the SOM Compiler will issue a warning for the method “sayHello”. For directions on using the
releaseorder modifier to remove this warning, see the topic “Modifier statements” in Chapter 4,
“SOM IDL and the SOM Compiler.” (The warning does not prohibit continued use of the .idl file.)

2) Run the SOM Compiler to produce binding files and an implementation template. That is, issue
the sc command on AIX or OS/2, as follows:

> sc –s”c;h;ih” hello.idl (for C bindings on AIX or OS/2)

> sc –s”xc;xh;xih” hello.idl (for C++ bindings on AIX or OS/2)

On Windows, issue the somc command (started from the Run option on the File menu):

> somc –sc;h;ih hello.idl (for C bindings on Windows)

> somc –sxc;xh;xih hello.idl (for C++ bindings on Windows)

When set to generate C binding files, the SOM Compiler generates the following template
implementation file, named “hello.c”. The template implementation file contains stub proce-
dures for each new method; these are procedures whose bodies are largely vacuous, to be
filled in by the implementor. (Unimportant details have been removed for this tutorial.)

2 – 8 SOMobjects Developer Toolkit Users Guide

Under AIX or OS/2:

#include <hello.ih>

/*
 * This method outputs the string ”Hello, World!”.
 */

SOM_Scope void SOMLINK sayHello(Hello somSelf, Environment *ev)
{
 /* HelloData *somThis = HelloGetData(somSelf); */
 HelloMethodDebug(”Hello”, ”sayHello”);
}

Under Windows:

#include <hello.ih>

/*
 * This method returns the string ”Hello, World!”.
 */

SOM_Scope string SOMLINK sayHello(Hello somSelf, Environment *ev)
{
 /* HelloData *somThis = HelloGetData(somSelf); */
 HelloMethodDebug(”Hello”, ”sayHello”);
}

The terms “SOM_Scope” and “SOMLINK” appear in the prototype for all stub procedures, but
they are defined by SOM and are not of interest to the developer. In the method procedure for
the “sayHello” method, “somSelf” is a pointer to the target object (here, an instance of the class
“Hello”) that will respond to the method. A “somSelf” parameter appears in the procedure
prototype for every method, since SOM requires every method to act on some object.

The target object is always the first parameter of a method’s procedure, although it should not
be included in the method’s IDL specification. The second parameter (which also is not included
in the method’s IDL specification) is the parameter (Environment *ev). This parameter can be
used by the method to return exception information if the method encounters an error. (Contrast
the prototype for the “sayHello” method in steps 1 and 2 above.)

The remaining lines of the template above are not pertinent at this point. (For those interested,
they are discussed in section 5.4 of Chapter 5, “Implementing Classes in SOM.”) The file is now
ready for customization with the C code needed to implement method “sayHello”.

When set to generate C++ binding files, the SOM Compiler generates an implementation
template file, “hello.C” (on AIX) or “hello.cpp (on OS/2 or Windows), similar to the one above.
(Chapter 5 discusses the implementation template in more detail.)

Recall that, in addition to generating a template implementation file as shown above, the SOM
Compiler also generates implementation bindings (in a header file to be included in the imple-
mentation file) and usage bindings (in a header file to be included in client programs). These files
are named “hello.ih” and “hello.h” for C bindings, and are “hello.xih” and “hello.xh” for C++

bindings. Notice that the “hello.c” file shown above includes the “hello.ih” implementation
binding file.

2 – 92. Tutorial for Implementing SOM Classes

3) Customize the implementation, by adding code to the template implementation file.

Modify the body of the “sayHello” method procedure in the “hello.c” (or, for C++,“hello.C” on AIX,
“hello.cpp” on OS/2) implementation file so that the “sayHello” method prints “Hello, World!”:

SOM_Scope void SOMLINK sayHello(Hello somSelf, Environment *ev)
{
 /* HelloData *somThis = HelloGetData(somSelf); */
 HelloMethodDebug(”Hello”,”sayHello”);

 printf(”Hello, World!\n”);
 /* On Windows, use: return (”Hello, World!”); */
}

4) Create a client program that uses the class.

Write a program “main” that creates an instance (object) of the “Hello” class and invokes the
method “sayHello” on that object.

Under AIX or OS/2:
A C programmer would write the following program in “main.c”, which uses the bindings defined
in the “hello.h” header file:

#include <hello.h>

int main(int argc, char *argv[])
{
 /* Declare a variable to point to an instance of Hello */
 Hello obj;

 /* Create an instance of the Hello class */
 obj = HelloNew();

 /* Execute the ”sayHello” method */
 _sayHello(obj, somGetGlobalEnvironment());

 /* Free the instance: */
 _somFree(obj);
 return (0);
}

Notice the statement obj = HelloNew(); The “hello.h” header file automatically contains
the SOM-defined macro <className>New(), which is used to create an instance of the
<className> class (here, the “Hello” class).

Also notice that, in C, a method is invoked on an object by using the form:

 _<methodName>(<objectName>, <environment_arg>, <other_method_args>)

as used above in the statement _sayHello(obj, somGetGlobalEnvironment()). As
shown in this example, the SOM-provided somGetGlobalEnvironment function can be used
to supply the (Environment *) argument of the method.

Finally, the code uses the method somFree, which SOM also provides, to free the object
created by HelloNew(). Notice that somFree does not require an (Environment *) argu-
ment. This is because the method procedures for some of the classes in the SOMobjects Toolkit
(including SOMObject, SOMClass, and SOMClassMgr) do not have an Environment parame-
ter, to ensure compatibility with the first release of SOM. The documentation for each SOM-
kernel method in the SOMobjects Developer Toolkit Programmers Reference Manual indicates
whether an Environment parameter is used.

2 – 10 SOMobjects Developer Toolkit Users Guide

A C++ programmer would write the following program in “main.C” (on AIX) or “main.cpp” (on
OS/2), using the bindings defined in the “hello.xh” header file:

#include <hello.xh>

int main(int argc, char *argv[])
{
 /* Declare a variable to point to an instance of Hello */
 Hello *obj;

 /* Create an instance of the Hello class */
 obj = new Hello;

 /* Execute the ”sayHello” method */
 obj–>sayHello(somGetGlobalEnvironment());

 obj–>somFree();
 return (0);
}

Notice that the only argument passed to the “sayHello” method by a C++ client program is the
Environment pointer. (Contrast this with the invocation of “sayHello” in the C client program,
above.)

Under Windows:
The subsequent “main.c” file fragment uses bindings defined in the “hello.h” and “windows.h”
header files, and contains C code illustrating the WinMain and WndProc procedures that are
pertinent to Step 4. The macro SOM_MainProgram is recommended as the first line of
executed code in each executable Windows program, such as WinMain (note: it does not work
from a DLL). SOM_MainProgram combines execution of the somMainProgram function with
scheduling of the somEnvironmentEnd function, which frees classes introduced by your
application when they are no longer needed.

#include <windows.h>
#include <hello.h>

int PASCAL WinMain (HANDLE hInstance, HANDLE hPrevInstance,
 LPSTR lpszCmdLine, int nCmdShow)
 {
 < variable declarations here >

 SOM_MainProgram();
 /* Registers an exit procedure to ensure cleanup upon
 * normal program termination. */

 < rest of WinMain here >
 }

Notice that the following WndProc code handles three messages: WM_CREATE, WM_PAINT,
and WM_DESTROY. It lets the Windows default procedure handle the rest. The “Hello” object is
created in response to the Window creation message (WM_CREATE) and is freed in response to
the Window destroy message (WM_DESTROY). The “sayHello” method’s greeting is displayed
each time the window receives a WM_PAINT message. Notice that “obj” is declared static so that
it persists between calls.

2 – 112. Tutorial for Implementing SOM Classes

long FAR PASCAL _export WndProc (HWND hwnd, UINT message,
 UINT wParam, LONG lParam)

 {
 HDC hdc ;
 PAINTSTRUCT ps ;
 RECT rect ;
 char sBuf [80];
 static Hello obj;

 switch (message)
 {
 case WM_CREATE:

obj = HelloNew();
return 0;

 case WM_PAINT:
 hdc = BeginPaint (hwnd, &ps) ;

 GetClientRect (hwnd, &rect) ;

 strcpy(sBuf, _sayHello(obj,
 somGetGlobalEnvironment()));

 DrawText (hdc, sBuf, –1, &rect,
 DT_SINGLELINE | DT_CENTER | DT_VCENTER);

 EndPaint (hwnd, &ps) ;
 return 0 ;

 case WM_DESTROY:
 _somFree(obj);
 PostQuitMessage (0) ;
 return 0 ;
 }

 return DefWindowProc (hwnd, message, wParam, lParam) ;
 }

A C++ programmer on Windows would write a “main.cpp” file that uses the bindings defined in
the “hello.xh” and “windows.xh” header files, with corresponding WinMain and WndProc code.

5) Compile and link the client code with the class implementation.

Note: On AIX or OS/2, the environment variable SOMBASE represents the directory in which
SOM has been installed.

Under AIX, for C programmers:

> xlc –I. –I$SOMBASE/include –o hello main.c hello.c \
 –L$SOMBASE/lib –lsomtk

Under AIX, for C++ programmers:

> xlC –I. –I$SOMBASE/include –o hello main.C hello.C \
 –L$SOMBASE/lib –lsomtk

Under OS/2, for C programmers:

> set LIB=%SOMBASE%\lib;%LIB%
> icc –I. –I%SOMBASE%\include –Fe hello main.c hello.c \
 somtk.lib

Under OS/2, for C++ programmers:

> set LIB=%SOMBASE%\lib;%LIB%
> icc –I. –I\%SOMBASE%\include –Fe hello main.cpp hello.cpp \
 somtk.lib

2 – 12 SOMobjects Developer Toolkit Users Guide

Under Windows, for C programmers:

> cl –AL –Zp –D_WIN16 –F 5 –I. –I%SOMBASE%\include \
 –Fehello main.c hello.c llibcew.lib libw.lib somtk.lib

where %SOMBASE% is replaced by the directory in which SOM was installed (the default
is c:\som). In makefiles, the expression $(SOMBASE) can be used. Note that the –F option
to set the stack size is unnecessary if STACKSIZE is specified in a .def file.

Important: In this manual, compile and link commands are demonstrated for Windows using
the Visual C++ compiler. Sample Makefiles shipped with SOMobjects For Windows also show
how to build with other compilers.

Under Windows, for C++ programmers:

> cl –ALu –Zp –D_WIN16 –F 5 –I. –I%SOMBASE%\include \
 –Fehello main.cpp hello.cpp llibcew.lib libw.lib somtk.lib

where %SOMBASE% is replaced by the directory in which SOM was installed (the default
is c:\som). In makefiles, the expression $(SOMBASE) can be used. Note that the –F option
to set the stack size is unnecessary if STACKSIZE is specified in a .def file.

6) Execute the client program.

> hello
Hello, World!

Example 2 will extend the “Hello” class to introduce an “attribute”.

File extensions for SOM files

� IDL source file:
.idl for all users

� Implementation template file:
.c for C, all systems
.C for C++, on AIX
.cpp for C++, on OS/2

 or Windows

� Header file for implementation file:
.ih for C
.xih for C++

� Header file for program file:
.h for C
.xh for C++

2 – 132. Tutorial for Implementing SOM Classes

Example 2 — Adding an Attribute to the Hello class
Example 1 introduced a class “Hello” which has a method “sayHello” that prints the fixed string
“Hello, World!” Example 2 extends the “Hello” class so that clients can customize the output
from the method “sayHello”.

1) Modify the interface declaration for the class definition in “hello.idl.”

Class “Hello” is extended by adding an attribute that we call “msg”. Declaring an attribute is
equivalent to defining “get” and “set” methods. For example, specifying:

attribute string msg;

is equivalent to defining the two methods:

string _get_msg();
void _set_msg(in string msg);

Thus, for convenience, an attribute can be used (rather than an instance variable) in order to use
the automatically defined “get” and “set” methods without having to write their method proce-
dures. The new interface specification for “Hello” that results from adding attribute “msg” to the
“Hello” class is as follows (with some comment lines omitted):

#include <somobj.idl>

interface Hello : SOMObject
{
 void sayHello();

 attribute string msg;
 //# This is equivalent to defining the methods:
 //# string _get_msg();
 //# void _set_msg(string msg);
};

2) Re-run the SOM Compiler on the updated .idl file, as in example 1. This produces new header
files and updates the existing implementation file, if needed, to reflect changes made to the .idl
file. In this example, the implementation file is not modified by the SOM Compiler.

3) Customize the implementation.

Customize the implementation file by modifying the print statement in the “sayHello” method
procedure. This example prints the contents of the “msg” attribute (which must be initialized in
the client program) by invoking the “_get_msg” method. Notice that, because the “_get_msg”
method name begins with an underscore, the method is invoked with two leading underscores
(for C only).

SOM_Scope void SOMLINK sayHello(Hello somSelf, Environment *ev)
{
 /* HelloData *somThis = HelloGetData(somSelf); */
 HelloMethodDebug(”Hello”, ”sayHello”);

 printf(”%s\n”, __get_msg(somSelf, ev));

 /* for C++, use somSelf–>_get_msg(ev); */
}

This implementation assumes that “_set_msg” has been invoked to initialize the “msg” attribute
before the “_get_msg” method is invoked by the “sayHello” method. This initialization can be
done within the client program.

2 – 14 SOMobjects Developer Toolkit Users Guide

4) Update the client program.

Modify the client program so that the “_set_msg” method is invoked to initialize the “msg”
attribute before the “sayHello” method is invoked. Notice that, because the “_set_msg” method
name begins with an underscore, the C client program invokes the method with two leading
underscores.

For C programmers:

#include <hello.h>

int main(int argc, char *argv[])
{
 Hello obj;

 obj = HelloNew();

 /* Set the msg text */
 __set_msg(obj, somGetGlobalEnvironment(), ”Hello World Again”);

 /* Execute the ”sayHello” method */
 _sayHello(obj, somGetGlobalEnvironment());

 _somFree(obj);
 return (0);
}

For C++ programmers:

#include <hello.xh>

int main(int argc, char *argv[])
{
 Hello *obj;
 obj = new Hello;

 /* Set the msg text */
 obj–>_set_msg(somGetGlobalEnvironment(), ”Hello World Again”);

 /* Execute the ”sayHello” method */
 obj–>sayHello(somGetGlobalEnvironment());

 obj–>somFree();
 return (0);
}

5) Compile and link the client program, as before.

6) Execute the client program:

> hello
Hello World Again

The next example extends the “Hello” class to override (redefine) one of the methods it inherits
from its parent class, SOMObject.

2 – 152. Tutorial for Implementing SOM Classes

Attributes vs instance variables
As an alternative to defining “msg” as an attribute, an instance variable “message” could be
introduced, with “set_msg” and “get_msg” methods defined for setting and retrieving its value.
Instance variables are declared in an implementation statement, as shown below:

interface Hello
{
 string get_msg() ;
 void set_msg(in string msg);

#ifdef __SOMIDL__
implementation
{
 string message;
};
#endif
};

As demonstrated in this example, one disadvantage to using an instance variable is that the
“get_msg” and “set_msg” methods must be defined in the implementation file by the class
implementor. For attributes, by contrast, default implementations of the “get” and “set” methods
are generated automatically by the SOM Compiler in the .ih and .xih header files.

Note: For some attributes (particularly those involving structures, strings, and pointers) the
default implementation generated by the SOM Compiler for the “set” method may not be
suitable. This happens because the SOM Compiler only performs a “shallow copy,” which
typically is not useful for distributed objects with these types of attributes. In such cases, it is
possible to write your own implementations, as you do for any other method, by specifying the
“noset/noget” modifiers for the attribute. (See the subtopic “Modifier statements” in Chapter 4,
“SOM IDL and the SOM Compiler.”)

Regardless of whether you let the SOM Compiler generate your implementations or not, if
access to instance data is required, either from a subclass or a client program, then this access
should be facilitated by using an attribute. Otherwise, instance data can be defined in the
“implementation” statement as above (using the same syntax as used to declare variables in C
or C++), with appropriate methods defined to access it. For more information about “implemen-
tation” statements, see the topic “Implementation statements” in Chapter 4.

As an example where instance variables would be used (rather than attributes), consider a class
“Date” that provides a method for returning the current date. Suppose the date is represented by
three instance variables — “mm”, “dd”, and “yy”. Rather than making “mm”, “dd”, and “yy”
attributes (and allowing clients to access them directly), “Date” defines “mm”, “dd”, and “yy” as
instance variables in the “implementation” statement, and defines a method “get_date” that
converts “mm”, “dd”, and “yy” into a string of the form “mm/dd/yy”:

interface Date
{
 string get_date() ;

#ifdef __SOMIDL__
implementation
{
 long mm,dd,yy;
};
#endif
};

2 – 16 SOMobjects Developer Toolkit Users Guide

To access instance variables that a class introduces from within the class implementation file,
two forms of notation are available:

somThis–>variableName

or

_variableName

For example, the implementation for “get_date” would likely

access the “mm” instance variable as somThis–>mm or _mm,
access “dd” as somThis–>dd or _dd, and
access “yy” as somThis–>yy or _yy.

In C++ programs, the _variableName form is available only if the programmer first defines the
macro VARIABLE_MACROS (that is, enter #define VARIABLE_MACROS) in the implementa-
tion file prior to including the .xih file for the class.

2 – 172. Tutorial for Implementing SOM Classes

Example 3 — Overriding an Inherited Method
An important aspect of OOP programming is the ability of a subclass to replace an inherited
method implementation with a new implementation especially appropriate to its instances. This
is called overriding a method. Sometimes, a class may introduce methods that every descen-
dant class is expected to override. For example, SOMObject introduces the somPrintSelf
method, and a good SOM programmer will generally override this method when implementing a
new class.

The purpose of somPrintSelf is to print a brief description of an object. The method can be
useful when debugging an application that deals with a number of objects of the same class ––
assuming the class designer has overridden somPrintSelf with a message that is useful in
distinguishing different objects of the class. For example, the implementation of somPrintSelf
provided by SOMObject simply prints the class of the object and its address in memory.
SOMClass overrides this method so that, when somPrintSelf is invoked on a class object, the
name of the class will print.

This example illustrates how somPrintSelf might be overridden for the “Hello” class. An
important identifying characteristic of “Hello” objects is the message they hold; thus, the follow-
ing steps illustrate how somPrintSelf could be overridden in “Hello” to provide this information.

1) Modify the interface declaration in “hello.idl.”

To override the somPrintSelf method in “Hello”, additional information must be provided in
“hello.idl” in the form of an implementation statement, which gives extra information about the
class, its methods and attributes, and any instance variables. (The previous examples omitted
the optional “implementation” statement, because it was not needed.)

In the current example, the “implementation” statement introduces the modifiers for the “Hello”
class, as follows.

#include <somobj.idl>

interface Hello : SOMObject
{
 void sayHello();

 attribute string msg;

#ifdef __SOMIDL__
implementation
{
 //# Method Modifiers:
 somPrintSelf: override;
 // Override the inherited implementation of somPrintSelf.
};
#endif

};

Here, “somPrintSelf:” introduces a list of modifiers for the (inherited) somPrintSelf method in
the class “Hello”. Modifiers are like C/C++ #pragma commands and give specific implementation
details to the compiler. This example uses only one modifier, “override”. Because of the “over-
ride” modifier, when somPrintSelf is invoked on an instance of class “Hello”, Hello’s implemen-
tation of somPrintSelf (defined in the implementation file) will be called, instead of the imple-
mentation inherited from the parent class, SOMObject.

2 – 18 SOMobjects Developer Toolkit Users Guide

The “#ifdef _ _SOMIDL_ _” and “#endif” are standard C and C++ preprocessor commands that
cause the “implementation” statement to be read only when using the SOM IDL compiler (and
not some other IDL compiler).

2) Re-run the SOM Compiler on the updated .idl file, as before. The SOM Compiler extends the
existing implementation file from Example 2 to include new stub procedures as needed (in this
case, for somPrintSelf). Below is a shortened version of the C language implementation file as
updated by the SOM Compiler; C++ implementation files are similarly revised. Notice that the
code previously added to the “sayHello” method is not disturbed when the SOM Compiler
updates the implementation file.

#include <hello.ih>

SOM_Scope void SOMLINK sayHello(Hello somSelf, Environment *ev)
{
 /* HelloData *somThis = HelloGetData(somSelf); */
 HelloMethodDebug(”Hello”,”sayHello”);

 printf(”%s\n”, __get_msg(somSelf, ev));
}

SOM_Scope void SOMLINK somPrintSelf(Hello somSelf)
{
 HelloData *somThis = HelloGetData(somSelf);
 HelloMethodDebug(”hello”,“somPrintSelf”);

 Hello_parent_SOMObject_somPrintSelf(somSelf);
}

Note that the SOM Compiler added code allowing the “Hello” class to redefine somPrintSelf.
The SOM Compiler provides a default implementation for overriding the somPrintSelf method.
This default implementation simply calls the “parent method” [the procedure that the parent
class of “Hello” (SOMObject) uses to implement the somPrintSelf method]. This parent
method call is accomplished by the macro Hello_parent_SOMObject_somPrintSelf,
defined in “hello.ih.”

Notice that the stub procedure for overriding the somPrintSelf method does not include an
Environment parameter. This is because somPrintSelf is introduced by SOMObject, which
does not include the Environment parameter in any of its methods (to ensure backward compat-
ibility). The signature for a method cannot change after it has been introduced.

3) Customize the implementation.

Within the new somPrintSelf method procedure, display a brief description of the object,
appropriate to “Hello” objects. Note that the parent method call is not needed, so it has been
deleted. Also, direct access to instance data introduced by the “Hello” class is not required, so
the assignment to “somThis” has been commented out (see the first line of the procedure).

SOM_Scope void SOMLINK somPrintSelf(Hello somSelf)
{
 /* HelloData *somThis = HelloGetData(somSelf); */
 HelloMethodDebug(”Hello”,”somPrintSelf”);

 somPrintf(”–– a %s object at location %X with msg: %s\n”,
 _somGetClassName(somSelf),
 somSelf,
 __get_msg(somSelf,0));
}

2 – 192. Tutorial for Implementing SOM Classes

4) Update the client program to illustrate the change (also notice the new message text):

For C programmers:

#include <hello.h>

int main(int argc, char *argv[])
{
 Hello obj;
 Environment *ev = somGetGlobalEnvironment();

 obj = HelloNew();

 /* Set the msg text */
 __set_msg(obj, ev, ”Hi There”);

 /* Execute the ”somPrintSelf” method */
 _somPrintSelf(obj);

 _somFree(obj);
 return (0);
}

For C++ programmers:

#include <hello.xh>

int main(int argc, char *argv[])
{
 Hello *obj;
 Environment *ev = somGetGlobalEnvironment();

 obj = new Hello;

 /* Set the msg text */
 __set_msg(obj, ev, ”Hi There”);

 /* Execute the ”somPrintSelf” method */
 obj–>somPrintSelf();

 obj–>somFree();
 return (0);
}

5) Compile and link the client program, as before.

6) Execute the client program, which now outputs the message:

> hello
 –– a Hello object at location 20062838 with msg: Hi There

2 – 20 SOMobjects Developer Toolkit Users Guide

Example 4 — Initializing a SOM Object
The previous example showed how to override the method somPrintSelf, introduced by
SOMObject. As mentioned in that example, somPrintSelf should generally be overridden
when implementing a new class. Another method introduced by SOMObject that should
generally be overridden is somDefaultInit. The purpose of somDefaultInit is to provide a
“default” initializer for the instance variables introduced by a class.

This example shows how to override somDefaultInit to give each “Hello” object’s message an
initial value when the object is first created. To learn more about initializers than shown in this
example (including how to introduce new initializers that take arbitrary arguments, and how to
explicitly invoke initializers) read Section 5.5, “Initializing and Uninitializing Objects,” in Chapter
5, “Implementing Classes in SOM.”

The overall process of overriding somDefaultInit is similar to that of the previous example.
First, the IDL for “Hello” is modified. In addition to an override modifier, an init modifier is used
to indicate that a stub procedure for an initialization method is desired (the stub procedures for
initializers are different from those of normal methods).

1) Modify the interface declaration in “hello.idl.”

#include <somobj.idl>

interface Hello : SOMObject
{
 void sayHello();

 attribute string msg;

#ifdef __SOMIDL__
implementation
{
 //# Method Modifiers:
 somPrintSelf: override;
 somDefaultInit: override, init;
};
#endif

};

2) Re-run the SOM Compiler on the updated hello.idl file, as before. The SOM Compiler extends
the existing implementation file. Below is the initializer stub procedure that the SOM Compiler
adds to the C language implementation file; C++ implementation files would be similarly revised:

SOM_Scope void SOMLINK
 somDefaultInit(Hello somSelf, somInitCtrl *ctrl)
{
 HelloData *somThis; /* set by BeginInitializer */
 somInitCtrl globalCtrl;
 somBooleanVector myMask;
 HelloMethodDebug(”Hello”, ”somDefaultInit”);
 Hello_BeginInitializer_somDefaultInit;

 Hello_Init_SOMObject_somDefaultInit(somSelf, ctrl);
 /*
 * local Hello initialization code added by programmer
 */
}

2 – 212. Tutorial for Implementing SOM Classes

3) Customize the implementation.

Here, the “msg” instance variable is set in the implementation template (rather than in the client
program, as before). Thus, the “msg” is defined as part of the “Hello” object’s initialization.

SOM_Scope void SOMLINK
 somDefaultInit(Hello somSelf, somInitCtrl *ctrl)
{
 HelloData *somThis; /* set by BeginInitializer */
 somInitCtrl globalCtrl;
 somBooleanVector myMask;
 HelloMethodDebug(”Hello”, ”somDefaultInit”);
 Hello_BeginInitializer_somDefaultInit;

 Hello_Init_SOMObject_somDefaultInit(somSelf, ctrl);
 /*
 * local Hello initialization code added by programmer
 */
 __set_msg(somSelf, ”Initial Message”);
}

4) Update the client program to illustrate default initialization.

#include <hello.h>
main()
{
 Hello h = HelloNew();

 /* Execute the ”somPrintSelf” method */
 _somPrintSelf(h);
}

5) Compile and link the client program, as before.

6) Execute the client program:

> hello
–– a Hello object at 200633A8 with msg: Initial Message

2 – 22 SOMobjects Developer Toolkit Users Guide

Example 5 — Using Multiple Inheritance
The “Hello” class is useful for writing messages to the screen. So that clients can also write
messages to printers and disk files, this example references two additional classes: “Printer”
and “Disk”. The “Printer” class will manage messages to a printer, and the “Disk” class will
manage messages sent to files. These classes can be defined as follows:

#include <somobj.idl>

interface Printer : SOMObject
{
 void stringToPrinter(in string s) ;
 // This method writes a string to a printer.
};

#include <somobj.idl>

interface Disk : SOMObject
{
 void stringToDisk(in string s) ;
 // This method writes a string to disk.

};

This example assumes the “Printer” and “Disk” classes are defined separately (in “print.idl” and
“disk.idl”, for example), are implemented in separate files, and are linked with the other example
code. Given the implementations of the “Printer” and “Disk” interfaces, the “Hello” class can use
them by inheriting from them, as illustrated next.

1) Modify the interface declaration in “hello.idl”.

#include <disk.idl>
#include <printer.idl>

interface Hello : Disk, Printer
{
 void sayHello();

 attribute string msg;

 enum outputTypes {screen, printer, disk};
 // Declare an enumeration for the different forms of output

 attribute outputTypes output;
 // The current form of output

#ifdef __SOMIDL__

 implementation {
 somDefaultInit: override, init;
 };
#endif //# __SOMIDL__
};

Notice that SOMObject is not listed as a parent of “Hello” above, because SOMObject is a
parent of “Disk” (and of “Printer”).

The IDL specification above declares an enumeration “outputTypes” for the different forms of
output, and an attribute “output” whose value will depend on where the client wants the output of
the “sayHello” method to go.

2 – 232. Tutorial for Implementing SOM Classes

Note: SOM IDL allows the use of structures, unions (though with a syntax different from C or
C++), enumerations, constants, and typedefs, both inside and outside the body of an interface
statement. Declarations that appear inside an interface body will be emitted in the header file
(that is, in “hello.h” or “hello.xh”). Declarations that appear outside of an interface body do not
appear in the header file (unless required by a special #pragma directive; see the SOM Compiler
options in Chapter 4).

SOM IDL also supports all of the C and C++ preprocessor directives, including conditional
compilation, macro processing, and file inclusion.

2) Re-run the SOM Compiler on the updated .idl file.

Unfortunately, when this is done, the implementation for somDefaultInit is not correctly up-
dated to reflect the addition of two new parents to “Hello.” This is because the implementation-
file emitter never changes the bodies of existing method procedures. As a result, method
procedures for initializer methods are not given new parent calls when the parents of a class are
changed. One way to deal with this (when the parents of a class are changed) is to temporarily
rename the method procedures for initializer methods, and then run the implementation emitter.
Once this is done, the code in the renamed methods can be merged into the new templates,
which will include all the appropriate parent method calls. When this is done here, the new
implementation for somDefaultInit would appear as:

SOM_Scope void SOMLINK
 somDefaultInit(Hello somSelf, somInitCtrl *ctrl)
{
 HelloData *somThis; /* set by BeginInitializer */
 somInitCtrl globalCtrl;
 somBooleanVector myMask;
 HelloMethodDebug(”Hello”, ”somDefaultInit”);
 Hello_BeginInitializer_somDefaultInit;

 Hello_Init_Disk_somDefaultInit(somSelf, ctrl);
 Hello_Init_Printer_somDefaultInit(somSelf, ctrl);
 /*
 * local Hello initialization code added by programmer
 */
 __set_msg(somSelf, ”Initial Message”);
}

2 – 24 SOMobjects Developer Toolkit Users Guide

3) Continue to customize the implementation file, hello.c, as follows. Notice that the “sayHello”
method (last discussed in Example 2) is now modified to allow alternate ways of outputting a
“msg”.

SOM_Scope void SOMLINK sayHello(Hello somSelf, Environment *ev)
{
 /* HelloData *somThis = HelloGetData(somSelf) ; */
 HelloMethodDebug(”Hello”,”sayHello”) ;

 switch (__get_output(somSelf, ev)) {
 /* for C++, use: somSelf–>_get_output(ev) */
 case Hello_screen:
 printf(”%s\n”, __get_msg(somSelf, ev));

 /* for C++, use: somSelf–>_get_msg(ev) */
 break;
 case Hello_printer:
 _stringToPrinter(somSelf, ev, __get_msg(somSelf, ev));

 /* for C++, use:
 * somSelf–>stringToPrinter(ev, somSelf–>_get_msg(ev));
 */

 break;
 case Hello_disk:
 _stringToDisk(somSelf, ev, __get_msg(somSelf, ev));

 /* for C++, use:
 * somSelf–>stringToDisk(ev, somSelf–>_get_msg(ev));
 */
break;

 }
}

The “switch” statement invokes the appropriate method depending on the value of the “output”
attribute. Notice how the “case” statements utilize the enumeration values of “outputTypes”
declared in “hello.idl” by prefacing the enumeration names with the class name (Hello_screen,
Hello_printer, and Hello_disk).

4) Update the client program, as illustrated next.

#include <hello.h>
 /* for C++, use ”hello.xh” and <stdio.h> */

int main(int argc, char *argv[])
{
 Hello a = HelloNew();
 Environment *ev = somGetGlobalEnvironment();

 /* Invoke ”sayHello” on an object and use each output */
 _sayHello(a, ev) ; /* for C++, use: a–>sayHello(ev); */
 __set_output(a, ev, Hello_printer) ;
 /* C++: a–>_set_output(ev, Hello_printer); */
 _sayHello(a, ev) ;
 __set_output(a, ev, Hello_disk) ;
 /* C++: a–>_set_output(ev, Hello_disk); */
 _sayHello(a, ev) ;

 _somFree(a) ; /* for C++, use: a–>somFree(); */
 return (0);
}

2 – 252. Tutorial for Implementing SOM Classes

5) Compile and link the client program as before, except also include the implementation files for
the “Printer” and “Disk” classes in the compilation.

6) Execute the client program. Observe that the message that prints is the “msg” defined in
Example 4 as part of the somDefaultInit initialization of the “Hello” object.

Initial Message
Initial Message — goes to a Printer
Initial Message — goes to Disk

This tutorial has described features of SOM IDL that will be useful to C and C++ programmers.
SOM IDL also provides features such as full type checking, constructs for declaring private
methods, and constructs for defining methods that receive and return pointers to structures.
Chapter 4, “SOM IDL and the SOM Compiler,” gives a complete description of the SOM IDL
syntax and also describes how to use the SOM Compiler. In addition, Chapter 5, “Implementing
Classes in SOM,” provides helpful information for completing the implementation template, for
using initializers (somDefaultInit or user-defined initialization methods), for defining SOM
class libraries, and for customizing various aspects of SOMobjects execution.

2 – 26 SOMobjects Developer Toolkit Users Guide

Chapter 3. Using SOM Classes in Client Programs

Contents

Chapter 3. Using SOM Classes in Client Programs 3 – 1.

3.1 An Example Client Program 3 – 3.

3.2 Using SOM Classes — the Basics 3 – 4.
Declaring object variables 3 – 4.
Creating instances of a class 3 – 5.
Invoking methods on objects 3 – 8.

Making typical method calls 3 – 8.
Accessing attributes 3 – 12.
Using ‘va_list’ methods 3 – 12.
Using name-lookup method resolution 3 – 14.
A name-lookup example 3 – 15.
Obtaining a method’s procedure pointer 3 – 18.
Method name or signature not known at compile time 3 – 19.

Using class objects 3 – 20.
Getting the class of an object 3 – 20.
Creating a class object 3 – 20.
Referring to class objects 3 – 22.

Compiling and linking 3 – 23.

3.3 Language-neutral Methods and Functions 3 – 25.
Generating output 3 – 25.
Getting information about a class 3 – 25.
Getting information about an object 3 – 27.

Methods 3 – 27.
Functions 3 – 28.

Debugging 3 – 28.
Checking the validity of method calls 3 – 29.
Exceptions and error handling 3 – 29.

Exception declarations 3 – 30.
Standard exceptions 3 – 31.
The Environment 3 – 31.
Setting an exception value 3 – 32.
Getting an exception value 3 – 32.
Example 3 – 33.

Memory management 3 – 35.
Using SOM equivalents to ANSI C functions 3 – 35.
Clearing memory for objects 3 – 35.
Clearing memory for the Environment 3 – 36.

SOM manipulations using somId’s 3 – 36.

ii SOMobjects Developer Toolkit Users Guide

Chapter 3. Using SOM Classes in Client Programs

This chapter discusses how to use SOM classes that have already been fully implemented.
That is, these topics describe the steps that a programmer uses to instantiate an object and
invoke some method(s) on it from within an application program.

Who should read this chapter?

� Programmers who wish to use SOM classes that were originally developed by someone
else will need to know the information in this chapter. These programmers often may not
need the information from any subsequent chapters.

� By contrast, class implementors who are creating their own SOM classes should continue
with Chapter 4, “SOM IDL and the SOM Compiler,” and Chapter 5, “Implementing Classes
in SOM,” for complete information on the SOM Interface Definition Language (SOM IDL)
syntax and other details of class implementation.

Programs that use a class are referred to as client programs. A client program can be written in
C, in C++, or in another language. As noted, this chapter describes how client programs can use
SOM classes (classes defined using SOM, as described in Chapter 2, “Tutorial for Implement-
ing SOM Classes,” in Chapter 4, “SOM IDL and the SOM Compiler,” and in Chapter 5, “Imple-
menting Classes in SOM”). Using a SOM class involves creating instances of a class, invoking
methods on objects, and so forth. All of the methods, functions, and macros described here can
also be used by class implementors within the implementation file for a class.

Note: “Using a SOM class,” as described in this chapter, does not include subclassing the class
in a client program. In particular, the C++ compatible SOM classes made available in the .xh
binding file cannot be subclassed in C++ to create new C++ or SOM classes.

Some of the macros and functions described here are supplied as part of SOM’s C and C++

usage bindings. These bindings are functions and macros defined in header files to be included
in client programs. The usage bindings make it more convenient for C and C++ programmers to
create and use instances of SOM classes. SOM classes can be also used without the C or C++

bindings, however. For example, users of other programming languages can use SOM classes,
and C and C++ programmers can use a SOM class without using its language bindings. The
language bindings simply offer a more convenient programmer’s interface to SOM. Vendors of
other languages may also offer SOM bindings; check with your language vendor for possible
SOM support.

To use the C or C++ bindings for a class, a client program must include a header file for the class
(using the #include preprocessor directive). For a C language client program, the file
<classFileStem>.h must be included. For a C++ language client program, the file
<classFileStem>.xh must be included. The SOM Compiler generates these header files from
an IDL interface definition. The header files contain definitions of the macros and functions that
make up the C or C++ bindings for the class. Whether the header files include bindings for the
class’s private methods and attributes (in addition to the public methods and attributes) de-
pends on the IDL interface definition available to the user, and on how the SOM Compiler was
invoked when generating bindings.

Usage binding headers automatically include any other bindings upon which they may rely.
Client programs not using the C or C++ bindings for any particular class of SOM object (for
example, a client program that does not know at compile time what classes it will be using)

3 – 2 SOMobjects Developer Toolkit Users Guide

should simply include the SOM-supplied bindings for SOMObject, provided in the header file
“somobj.h” (for C programs) or “somobj.xh” (for C++ programs).

For each task that a user of a SOM class might want to perform, this chapter shows how the task
would be accomplished by:

� a C programmer using the C bindings,
� a C++ programmer using the C++ bindings, or
� a programmer not using SOM’s C or C++ language bindings.

If neither of the first two approaches is applicable, the third approach can always be used.

3 – 33. Using SOM Classes in Client Programs

3.1 An Example Client Program
Following is a C program that uses the class “Hello” (as defined in the Tutorial in Chapter 2). The
“Hello” class provides one attribute, “msg”, of type string, and one method, “sayHello”. The
“sayHello” method simply displays the value of the “msg” attribute of the object on which the
method is invoked.

#include <hello.h> /* include the header file for Hello */

int main(int argc, char *argv[])
{
 /* declare a variable (obj) that is a
 * pointer to an instance of the Hello class: */
 Hello obj;

 /* create an instance of the Hello class
 * and store a pointer to it in obj: */
 obj = HelloNew();

 /* invoke method _set_msg on obj with the argument
 * ”Hello World Again”. This method sets the value of
 * obj’s ’msg’ attribute to the specified string.
 */
 __set_msg(obj, somGetGlobalEnvironment(), ”Hello World Again”);

 /* invoke method sayHello on obj. This method prints
 * the value of obj’s ’msg’ attribute. */
 _sayHello(obj, somGetGlobalEnvironment());

 _somFree(obj);
 return(0);
}

The C++ version of the foregoing client program is shown below:

#include <hello.xh> /* include the header file for Hello */

int main(int argc, char *argv[])
{
 /* declare a variable (obj) that is a
 * pointer to an instance of the Hello class: */
 Hello *obj;

 /* create an instance of the Hello class
 * and store a pointer to it in obj: */
 obj = new Hello;

 /* invoke method _set_msg on obj with the argument
 * ”Hello World Again”. This method sets the value of
 * obj’s ’msg’ attribute to the specified string. */
 obj–>_set_msg(somGetGlobalEnvironment(), ”Hello World Again”);

 /* invoke method sayHello on obj. This method prints
 * the value of obj’s ’msg’ attribute. */
 obj–>sayHello(somGetGlobalEnvironment());

 obj–>somFree();
 return(0);
}

These client programs both produce the output:

Hello World Again

3 – 4 SOMobjects Developer Toolkit Users Guide

3.2 Using SOM Classes — the Basics
This section describes the basic information needed to use SOM classes in a client program.

Declaring object variables
To declare an object variable, the name of an object interface defined in IDL is used as the type
of the variable. The exact syntax is slightly different for C vs. C++ programmers. Specifically,

<interfaceName> obj ; in C programs or
<interfaceName> *obj ; in C++ programs

declares “obj” to be a pointer to an object that has type <interfaceName>. In SOM, objects of
this type are instances of the SOM class named <interfaceName>, or of any SOM class derived
from this class. Thus, for example,

Animal obj; in C programs or
Animal *obj; in C++ programs

declares “obj” as pointer to an object of type “Animal” that can be used to reference an instance
of the SOM class “Animal” or any SOM class derived from “Animal”. Note that the type of an
object need not be the same as its class; an object of type “Animal” might not be an instance of
the “Animal” class (rather, it might be an instance of some subclass of “Animal” — the “Cat”
class, perhaps).

All SOM objects are of type SOMObject, even though they may not be instances of the
SOMObject class. Thus, if it is not known at compile time what type of object the variable will
point to, the following declaration can be used:

SOMObject obj; in C programs or
SOMObject *obj; in C++ programs.

Because the sizes of SOM objects are not known at compile time, instances of SOM classes
must always be dynamically allocated. Thus, a variable declaration must always define a
pointer to an object.

Note: in the C usage bindings, as within an IDL specification, an interface name used as a type
implicitly indicates a pointer to an object that has that interface (this is required by the CORBA
specification). The C usage bindings for SOM classes therefore hide the pointer with a C
typedef for <interfaceName>. But this is not appropriate in the C++ usage bindings, which
define a C++ class for <interfaceName>. Thus, it is not correct in C++ to use a declaration of the
form:

<interfaceName> obj ; not valid in C++ programs

Note: If a C programmer also prefers to use explicit pointers to <interfaceName> types, then the
SOM Compiler option –maddstar can be used when the C binding files are generated, and the
explicit “*” will then be required in declarations of object variables. (This option is required for
compatibility with existing SOM OIDL code. For information on using the –maddstar option, see
“Running the SOM Compiler” in Chapter 4, “SOM IDL and the SOM Compiler.”)

Users of other programming languages must also define object variables to be pointers to the
data structure used to represent SOM objects. The way this is done is programming-language
dependent. The header file “somtypes.h” defines the structure of SOM objects for the C
language.

3 – 53. Using SOM Classes in Client Programs

Creating instances of a class
For C programmers with usage bindings, SOM provides the <className>New and the
<className>Renew macros for creating instances of a class.

These macros are illustrated with the following two examples, each of which creates a single
instance of class “Hello”:

obj = HelloNew();
obj = HelloRenew(buffer);

Using <className>New
After verifying that the <className> class object exists, the <className>New macro invokes
the somNew method on the class object. This allocates enough space for a new instance of
<className>, creates a new instance of the class, initializes this new object by invoking
somDefaultInit on it, and then returns a pointer to it. The <className>New macro automati-
cally creates the class object for <className>, as well as its ancestor classes and metaclass, if
these objects have not already been created.

After a client program has finished using an object created using the <className>New macro,
the object should be freed by invoking the method somFree on it :

_somFree(obj);

After uninitializing the object by invoking somDestruct on it, somFree calls the class object for
storage deallocation. This is important because storage for an object created using the
<className>New macro is allocated by the class of the object. Thus, only the class of the
object can know how to reclaim the object’s storage.

Using <className>Renew
After verifying that the <className> class object exists, the <className>Renew macro
invokes the somRenew method on the class object. <className>Renew is only used when
the space for the object has been allocated previously. (Perhaps the space holds an old,
uninitialized object that is not needed anymore.) This macro converts the given space into a
new, initialized instance of <className> and returns a pointer to it. The programmer is respon-
sible for ensuring that the argument of <className>Renew points to a block of storage large
enough to hold an instance of class <className>. The SOM method somGetInstanceSize
can be invoked on the class to determine the amount of memory required. Like
<className>New, the <className>Renew macro automatically creates any required class
objects that have not already been created.

Hint: When creating a large number of class instances, it may be more efficient to allocate at
once enough memory to hold all the instances, and then invoke <className>Renew once for
each object to be created, rather than performing separate memory allocations.

Using <className>NewClass
The C and C++ usage bindings for a SOM class also provide static linkage to a
<className>NewClass function that can be used to create the class object. This can be useful
if the class object is needed before its instances are created.

For example, the following C code uses the function HelloNewClass to create the “Hello” class
object. The arguments to this function are defined by the usage bindings, and indicate the
version of the class implementation that is assumed by the bindings. (For more detail on
creation of classes, see the later topic, “Creating a class object.”) Once the class object has
been created, the example invokes the method somGetInstanceSize on this class to deter-
mine the size of a “Hello” object, uses SOMMalloc to allocate storage, and then uses the
HelloRenew macro to create ten instances of the “Hello” class:

3 – 6 SOMobjects Developer Toolkit Users Guide

#include <hello.h>
main()
{
SOMClass helloCls; /* A pointer for the Hello class object */
Hello objA[10]; /* an array of Hello instances */
unsigned char *buffer;
int i;
int size;

/* create the Hello class object: */
helloCls = HelloNewClass(Hello_MajorVersion, Hello_MinorVersion);

/* get the amount of space needed for a Hello instance:
 * (somGetInstanceSize is a method provided by SOM.) */
size = _somGetInstanceSize(helloCls);
size = ((size+3)/4)*4; /* round up to doubleword multiple */

/* allocate the total space needed for ten instances: */
buffer = SOMMalloc(10*size);

/* convert the space into ten separate Hello instances: */
for (i=0; i<10; i++)
 objA[i] = HelloRenew(buffer+i*size);
...
...
/* Uninitialize the objects and free them */
for (i=0; i<10; i++)
 _somDestruct(objA[i],0,0);
SOMFree(buffer);
}

When an object created with the <className>Renew macro is no longer needed, its storage
must be freed using the dual to whatever method was originally used to allocate the storage.
Two method pairs are typical:

� For example, if an object was originally initialized using the <className>New macro,
then, as discussed previously, the client should use the somFree method on it.

� On the other hand, if the program uses the SOMMalloc function to allocate memory, as
illustrated in the example above, then the SOMFree function must be called to free the
objects’ storage (because SOMFree is the dual to SOMMalloc). Before this is done,
however, the objects in the region to be freed should be deinitialized by invoking the
somDestruct method on them. This allows each object to free any memory that may have
been allocated without the programmer’s knowledge. (The somFree method also calls
the somDestruct method.)

Note: In the somDestruct method call above, the first zero indicates that memory should
not be freed by the class of the object (that is, the programmer will do it explicitly). The
second zero indicates that the class of the object is responsible for overall control of object
uninitialization. For further discussion, see Section 5.5, “Initializing and Uninitializing
Objects,” in Chapter 5, “Implementing Classes in SOM.”

For C++ programmers with usage bindings, instances of a class <className> can be
created with a new operator provided by the usage bindings of each SOM class. The new
operator automatically creates the class object for <className>, as well as its ancestor
classes and metaclass, if they do not yet exist. After verifying the existence of the desired class
object, the new operator then invokes the somNewNoInit method on the class. This allocates
memory and creates a new instance of the class, but it does not initialize the new object.

3 – 73. Using SOM Classes in Client Programs

Initialization of the new object is then performed using one of the C++ constructors defined by the
usage bindings. (For further discussion, see Section 5.5, “Initializing and Uninitializing Objects,”
in Chapter 5, “Implementing Classes in SOM.”) Two variations of the new operator require no
arguments. When either is used, the C++ usage bindings provide a default constructor that
invokes the somDefaultInit method on the new object. Thus, a new object initialized by
somDefaultInit would be created using either of the forms:

new <className>

new <className>()

For example:

obj = new Hello;

obj1 = new Hello();

For convenience, pointers to SOM objects created using the new operator can be freed using
the delete operator, just as for normal C++ objects (or, the somFree method could be used):

delete obj;

obj1–>somFree;

When previously allocated space will be used to hold a new object, C++ programmers should
use the somRenew method, described below. C++ bindings do not provide a macro for this
purpose.

somNew and somRenew: C and C++ programmers, as well as programmers using other
languages, can create instances of a class using the SOM methods somNew and somRenew,
invoked on the class object. As discussed and illustrated above for the C bindings, the class
object must first be created using the <className>NewClass procedure (or, perhaps, using
the somFindClass method — see the section “Using class objects” later in this chapter).

The somNew method invoked on the class object creates a new instance of the class, initializes
the object using somDefaultInit, and then returns a pointer to the new object. For instance, the
following C example creates a new object of the “Hello” class.

#include <hello.h>
main()
{
 SOMClass helloCls; /* a pointer to the Hello class */
 Hello obj; /* a pointer to a Hello instance */

 /* create the Hello class */
 helloCls = HelloNewClass(Hello_MajorVersion, Hello_MinorVersion);
 obj = _somNew(helloCls); /* create the Hello instance */
}

An object created using the somNew method should be freed by invoking the somFree method
on it after the client program is finished using the object.

The somRenew method invoked on the class object creates a new instance of a class using the
given space, rather than allocating new space for the object. The method converts the given
space into an instance of the class, initializes the new object using somDefaultInit, and then
returns a pointer to the new object. The argument to somRenew must point to a block of storage
large enough to hold the new instance. The method somGetInstanceSize can be used to
determine the amount of memory required. For example, the following C++ code creates ten
instances of the “Hello” class:

3 – 8 SOMobjects Developer Toolkit Users Guide

#include <hello.xh>
#include <somcls.xh>
main()
{
 SOMClass *helloCls; // a pointer to the Hello class
 Hello *objA[10]; // an array of Hello instance pointers
 unsigned char *buffer;
 int i;
 int size;

// create the Hello class object
helloCls = HelloNewClass(Hello_MajorVersion, Hello_MinorVersion);

// get the amount of space needed for a Hello instance:
size = helloCls–>somGetInstanceSize();
size = ((size+3)/4)*4; // round up to doubleword multiple

// allocate the total space needed for ten instances
buffer = SOMMalloc(10*size);

// convert the space into ten separate Hello objects
for (i=0; i<10; i++)
 objA[i] = helloCls–>somRenew(buffer+i*size);

 ...

// Uninitialize the objects and free them
 for (i=0; i<10; i++)
 objA[i]–>somDestruct(0,0);
 SOMFree(buffer);
}

The somNew and somRenew methods are useful for creating instances of a class when the
header file for the class is not included in the client program at compile time. (The name of the
class might be specified by user input, for example.) However, the <className>New macro
(for C) and the new operator (for C++) can only be used for classes whose header file is included
in the client program at compile time.

Objects created using the somRenew method should be freed by the client program that
allocated it, using the dual to whatever allocation approach was initially used. If the somFree
method is not appropriate (because the somNew method was not initially used), then, before
memory is freed, the object should be explicitly deinitialized by invoking the somDestruct
method on it. (The somFree method calls the somDestruct method. Refer to the previous C
example for Renew for an explanation of the arguments to somDestruct.)

Invoking methods on objects
This topic describes the general way to invoke methods in C/C++ and in other languages, and
then presents subtopics for more specialized situations.

Making typical method calls
For C programmers with usage bindings: To invoke a method in C, use the macro:

 _<methodName> (receiver, args)

(that is, an underscore followed by the method name). Arguments to the macro are the receiver
of the method followed by all of the arguments to the method. For example:

_foo(obj, somGetGlobalEnvironment(), x, y);

This invokes method “foo” on “obj” (the remaining arguments are arguments to the method
“foo”). This expression can be used anywhere that a standard function call can be used in C.

3 – 93. Using SOM Classes in Client Programs

Required arguments
In C, calls to methods defined using IDL require at least two arguments — a pointer to the
receiving object (the object responding to the method) and a value of type (Environment *).
The Environment data structure is specified by CORBA, and is used to pass environmental
information between a caller and a called method. For example, it is used to return exceptions.
(For more information on how to supply and use the Environment structure, see the section
entitled “Exceptions and error handling” later in this chapter.)

In the IDL definition of a method, by contrast, the receiver and the Environment pointer are not
listed as parameters to the method. (Unlike the receiver, the Environment pointer is consid-
ered a method parameter, even though it is never explicitly specified in IDL. For this reason, it is
called an implicit method parameter.) For example, if a method is defined in a .idl file with two
parameters, as in:

int foo (in char c, in float f);

then, with the C usage bindings, the method would be invoked with four arguments, as in:

intvar = _foo(obj, somGetGlobalEnvironment(), x, y);

where “obj” is the object responding to the method and “x” and “y” are the arguments corre-
sponding to “c” and “f”, above.

If the IDL specification of the method includes a context specification, then the method has an
additional (implicit) context parameter. Thus, when invoking the method, this argument must
follow immediately after the Environment pointer argument. (None of the SOM-supplied
methods require context arguments.) The Environment and context method parameters are
prescribed by the CORBA standard.

If the IDL specification of the class that introduces the method includes the callstyle=oidl
modifier, then the (Environment *) and context arguments should not be supplied when
invoking the method. That is, the receiver of the method call is followed immediately by the
arguments to the method (if any). Some of the classes supplied in the SOMobjects Toolkit
(including SOMObject, SOMClass, and SOMClassMgr) are defined in this way, to ensure
compatibility with the previous release of SOM. The SOMobjects Developer Toolkit Program-
mers Reference Manual specifies for each method whether these arguments are used.

If you use a C expression to compute the first argument to a method call (the receiver), you must
use an expression without side effects, because the first argument is evaluated twice by the
_<methodName> macro expansion. In particular, a somNew method call or a macro call of
<className>New can not be used as the first argument to a C method call, because doing so
would create two new class instances rather than one.

Following the initial, required arguments to a method (the receiving object, the Environment, if
any, and the context, if any), you enter any additional arguments required by that method, as
specified in IDL. For a discussion of how IDL in/out/inout argument types map to C/C++ data
types, see the topic “Parameter list” in Chapter 4, “SOM IDL and the SOM Compiler.”

Short form vs long form
If a client program uses the bindings for two different classes that introduce or inherit two
different methods of the same name, then the _<methodName> macro described above (called
the short form) will not be provided by the bindings, because the macro would be ambiguous in
that circumstance. The following long form macro, however, is always provided by the usage
bindings for each class that supports the method:

 <className>_<methodName> (receiver, args)

For example, method “foo” supported by class “Bar” can be invoked as:

Bar_foo(obj, somGetGlobalEnvironment(), x, y) (in C)

where “obj” has type “Bar” and “x” and “y” are the arguments to method “foo”.

3 – 10 SOMobjects Developer Toolkit Users Guide

In most cases (where there is no ambiguity, and where the method is not a va_list method, as
described in the subsequent subtopic “Using ‘va_list’ methods”), a C programmer may use
either the short or the long form of a method invocation macro interchangeably. However, only
the long form complies with the CORBA standard for C usage bindings. If you wish to write code
that can be easily ported to other vendor platforms that support the CORBA standard, use the
long form exclusively. The long form is always available for every method that a class supports.
The short form is provided both as a programming convenience and for source code compatibili-
ty with release 1 of SOM.

In order to use the long form, a programmer will usually know what type an object is expected to
have. If this is not known, but the different methods have the same signature, the method can be
invoked using name-lookup resolution, as described in a following subtopic of this section.

For C++ programmers with usage bindings: To invoke a method, use the standard C++ form
shown below:

obj–><methodName> (args)

where args are the arguments to the method. For instance, the following example invokes
method “foo” on “obj”:

obj–>foo(somGetGlobalEnvironment(), x, y)

Required arguments
All methods introduced by classes declared using IDL (except those having the SOM IDL
callstyle=oidl modifier) have at least one parameter — a value of type (Environment *). The
Environment data structure is used to pass environmental information between a caller and a
called method. For example, it is used to return exceptions. For more information on how to
supply and use the Environment structure, see the section entitled “Exceptions and error
handling” later in this chapter.

The Environment pointer is an implicit parameter. That is, in the IDL definition of a method, the
Environment pointer is not explicitly listed as a parameter to the method. For example, if a
method is defined in IDL with two explicit parameters, as in:

int foo (in char c, in float f);

then the method would be invoked from C++ bindings with three arguments, as in:

intvar = obj–>foo(somGetGlobalEnvironment(), x, y);

where “obj” is the object responding to the method and “x” and “y” are the arguments corre-
sponding to “c” and “f”, above.

If the IDL specification of the method includes a context specification, then the method has a
second implicit parameter, of type context, and the method must be invoked with an additional
context argument. This argument must follow immediately after the Environment pointer
argument. (No SOM-supplied methods require context arguments.) The Environment and
context method parameters are prescribed by the CORBA standard.

If the IDL specification of the class that introduces the method includes the callstyle=oidl
modifier, then the (Environment *) and context arguments should not be supplied when the
method is invoked. Some of the classes supplied in the SOMobjects Toolkit (including
SOMObject, SOMClass, and SOMClassMgr) are defined in this way, to ensure compatibility
with the previous release of SOM. The SOMobjects Developer Toolkit Programmers Reference
Manual specifies for each method whether these arguments are used.

Following the initial, required arguments to a method (the receiving object, the Environment, if
any, and the context, if any), you enter any additional arguments required by that method, as
specified in IDL. For a discussion of how IDL in/out/inout argument types map to C/C++ data
types, see the topic “Parameter list” in Chapter 4, “SOM IDL and the SOM Compiler.”

3 – 113. Using SOM Classes in Client Programs

For non-C/C++ programmers: To invoke a static method (that is, a method declared when
defining an OIDL or IDL object interface) without using the C or C++ usage bindings, a program-
mer can use the somResolve procedure. The somResolve procedure takes as arguments a
pointer to the object on which the method is to be invoked and a method token for the desired
method. It returns a pointer to the method’s procedure (or raises a fatal error if the object does
not support the method). Depending on the language and system, it may be necessary to cast
this procedure pointer to the appropriate type; the way this is done is language-specific.

The method is then invoked by calling the procedure returned by somResolve, passing the
method’s receiver, the Environment pointer (if necessary), the context argument (if neces-
sary) and the remainder of the method’s arguments, if any. Note that the means for calling a
procedure, given a pointer returned by somResolve, is language-specific. (See the section
above for C programmers. The arguments to a method procedure are the same as the argu-
ments passed using the long form of the C-language method-invocation macro for that method.)

Using somResolve requires the programmer to know where to find the method token for the
desired method. Method tokens are available from class objects that support the method (via
the method somGetMethodToken), or from a global data structure, called the ClassData
structure, corresponding to the class that introduces the method. In C and C++ programs with
access to the definitions for ClassData structures provided by usage bindings, the method
token for method methodName introduced by class className may be accessed by the
following expression:

<className>ClassData.<methodName>

For example, the method token for method “sayHello” introduced by class “Hello” is stored at
location HelloClassData.sayHello, for C and C++ programmers. The way method tokens
are accessed in other languages is language-specific.

As an example of using offset resolution to invoke methods from a programming language other
than C/C++, one would do the following to create an instance of a SOM Class X in Smalltalk:

1. Initialize the SOM run-time environment, if it has not previously been initialized, using
the somEnvironmentNew function.

2. If the class object for class X has not yet been created, use somResolve with
arguments SOMClassMgrObject (returned by somEnvironmentNew in step 1)
and the method token for the somFindClass method, to obtain a method procedure
pointer for the somFindClass method. Use the method procedure for
somFindClass to create the class object for class X: Call the procedure with
arguments SOMClassMgrObject, the result of calling the somIdFromString
function with argument “X”, and the major and minor version numbers for class X (or
zero). The procedure returns the class object for class X.

3. Use somResolve with arguments representing the class object for X (returned by
somFindClass in step 2) and the method token for the somNew method, to obtain a
method procedure pointer for method somNew. (The somNew method is used to
create instances of class X.)

4. Call the method procedure for somNew (using the method procedure pointer
obtained in step 3) with the class object for X (returned by somFindClass in step 3)
as the argument. The procedure returns a new instance of class X.

In addition to somResolve, SOM also supplies the somClassResolve procedure. Instead of
an object, the somClassResolve procedure takes a class as its first argument, and then
selects a method procedure from the instance method table of the passed class. (The
somResolve procedure, by contrast, selects a method procedure from the instance method
table of the class of which the passed object is an instance.) The somClassResolve procedure
therefore supports casted method resolution. See the SOMobjects Developer Toolkit Program-
mers Reference Manual for more information on somResolve and somClassResolve.

3 – 12 SOMobjects Developer Toolkit Users Guide

If the programmer does not know at compile time which class introduces the method to be
invoked, or if the programmer cannot directly access method tokens, then the procedure
somResolveByName can be used to obtain a method procedure using name-lookup resolu-
tion, as described in the next section.

If the signature of the method to be invoked is not known at compile time, but can be discovered
at run time, use somResolve or somResolveByName to get a pointer to the somDispatch
method procedure, then use it to invoke the specific method, as described below under “Method
name or signature not known at compile time.”

Accessing attributes
In addition to methods, SOM objects can also have attributes. An attribute is an IDL shorthand
for declaring methods, and does not necessarily indicate the presence of any particular instance
data in an object of that type. Attribute methods are called “get” and “set” methods. For
example, if a class “Hello” declares an attribute called “msg”, then object variables of type
“Hello” will support the methods _get_msg and _set_msg to access or set the value of the
“msg” attribute. (Attributes that are declared as “readonly” have no “set” method, however.)

The “get” and “set” methods are invoked in the same way as other methods. For example, given
class “Hello” with attribute “msg” of type string, the following code segments set and get the
value of the “msg” attribute:

For C:

#include <hello.h>
Hello obj;
Environment *ev = somGetGlobalEnvironment();

obj = HelloNew();
__set_msg(obj, ev, ”Good Morning”);/*note:two leading underscores */
printf(”%s\n”, __get_msg(obj, ev));

For C++:

#include <hello.xh>
#include <stdio.h>
Hello *obj;
Environment *ev = somGetGlobalEnvironment();

obj = new Hello;
obj–>_set_msg(ev, ”Good Morning”);
printf(”%s\n”, obj–>_get_msg(ev));

Attributes available with each class, if any, are described in the documentation of the class itself
in the SOMobjects Developer Toolkit Programmers Reference Manual.

Using ‘va_list’ methods
SOM supports methods whose final argument is a va_list. A va_list is a datatype whose
representation depends on the operating system platform. On AIX, OS/2 and Windows, a
va_list is simply a pointer to a block of memory that contains a number of arguments, sequen-
tially laid out in memory. In the future, SOMobjects may provide special facilities for creating a
va_list, but on the above systems the C/C++ va_arg macro can be used for this purpose. This is
illustrated below.

3 – 133. Using SOM Classes in Client Programs

As a convenience, methods whose final argument is a va_list, such as:

void setMany(in short start, in short numArgs, in va_list ap);

can be invoked from C and C++ by specifying a variable number of arguments, as follows:

For C:

_setMany(aVector, somGetGlobalEnvironment(), 2, 4, 20, 12, 32, 41);

For C++:

aVector–>setMany(somGetGlobalEnvironment(), 2, 4, 20, 12, 32, 41);

C programmers must be aware that the short form of the invocation macro used above to pass a
variable number of arguments to a va_list method is only available in the absence of ambiguity.
The long-form macro (which is always available) requires an explicit va_list argument, as
described next.

Note: As mentioned above, the short form may not be available due to ambiguity in the bindings.
If a variable-argument interface is desired in such cases, however, you can inspect the usage
bindings to find the short form expansion and make use of this directly.

As an alternative to the preceding example, both C and C++ programmers can use an explicit
va_list argument, as suggested by the method definition. That is, to use a va_list argument, a
method must be invoked as <className>_<methodName>, where <className> is the name
of a class that supports the method.

For example, assume that class “Vector” supports the “setMany” method above. The following
code first constructs a variable of type va_list, uses the va_arg macro to store the arguments to
“setMany” in the va_list, and then invokes the “setMany” method with this variable:

For C:

va_list start_ap, ap;
Vector aVector = VectorNew();
...
start_ap = ap = (va_list) SOMMalloc(4 * sizeof(long));
va_arg(ap, long) = 20;
va_arg(ap, long) = 12;
va_arg(ap, long) = 32;
va_arg(ap, long) = 41;
Vector_setMany(aVector, somGetGlobalEnvironment(), 2, 4, start_ap);

For C++:

va_list start_ap, ap;
Vector *aVector = new Vector;
...
start_ap = ap = (va_list) SOMMalloc(4 * sizeof(long));
va_arg(ap, long) = 20;
va_arg(ap, long) = 12;
va_arg(ap, long) = 32;
va_arg(ap, long) = 41;
aVector–>Vector_setMany(somGetGlobalEnvironment(), 2, 4, start_ap);

3 – 14 SOMobjects Developer Toolkit Users Guide

Using name-lookup method resolution
For C/C++ programmers: Offset resolution is the most efficient way to select the method
procedure appropriate to a given method call. Client programs can, however, invoke a method
using “name-lookup” resolution instead of offset resolution. The C and C++ bindings for method
invocation use offset resolution by default, but methods defined with the namelookup SOM IDL
modifier result in C bindings in which the short form invocation macro uses name-lookup
resolution instead. Also, for both C and C++ bindings, a special lookup_<methodName> macro
is defined.

Name-lookup resolution is appropriate in the case where a programmer knows at compile time
which arguments will be expected by a method (that is, its signature), but does not know the type
of the object on which the method will be invoked. For example, name-lookup resolution can be
used when two different classes introduce different methods of the same name and signature,
and it is not known which method should be invoked (because the type of the object is not known
at compile time).

Name-lookup resolution is also used to invoke dynamic methods (that is, methods that have
been added to a class’s interface at run time rather than being specified in the class’s IDL
specification). For more information on name-lookup method resolution, see the topic “Method
Resolution” in Chapter 5, “Implementing Classes in SOM.”

For C: To invoke a method using name-lookup resolution, when using the C bindings for a
method that has been implemented with the namelookup modifier, use either of the following
macros:

 _<methodName> (receiver, args)

 lookup_<methodName> (receiver, args)

Thus, the short-form method invocation macro results in name-lookup resolution (rather than
offset resolution), when the method has been defined as a namelookup method. (The long
form of the macro for offset resolution is still available in the C usage bindings.) If the method
takes a variable number of arguments, then the first form shown above is used when supplying a
variable number of arguments, and the second form is used when supplying a va_list argument
in place of the variable number of arguments.

For C++: To invoke a method using name-lookup resolution, when using the C++ bindings for a
method that has been defined with the namelookup modifier, use either of the following
macros:

 lookup_<methodName> (receiver, args)

 <className>_lookup_<methodName> (receiver, args)

If the method takes a variable number of arguments, then the first form shown above is used
when supplying a variable number of arguments, and the second form is used when supplying a
va_list argument in place of the variable number of arguments. Note that the offset-resolution
forms for invoking methods using the C++ bindings are also still available, even if the method has
been defined as a namelookup method.

For C/C++: To invoke a method using name-lookup resolution, when the method has not been
defined as a namelookup method:

� Use the somResolveByName procedure (described in the following section), or any of
the methods somLookupMethod, somFindMethod or somFindMethodOk to obtain a
pointer to the procedure that implements the desired method.

� Then, invoke the desired method by calling that procedure, passing the method’s intended
receiver, the Environment pointer (if needed), the context argument (if needed), and the
remainder of the method’s arguments, if any.

3 – 153. Using SOM Classes in Client Programs

The somLookupMethod, somFindMethod and somFindMethodOK methods are invoked
on a class object (the class of the method receiver should be used), and take as an argument
the somId for the desired method (which can be obtained from the method’s name using the
somIdFromString function). For more information on these methods, see the SOMobjects
Developer Toolkit Programmers Reference Manual.

Important Note: SOM provides many ways for a SOM user to acquire a pointer to a method
procedure. Once this is done, it becomes the user’s responsibility to make appropriate use of
this procedure.

� First, the procedure should only be used on objects for which this is appropriate. Other-
wise, run-time errors are likely to result.

� Second, when the procedure is used, it is essential that the compiler be given correct
information concerning the signature of the method and the linkage required by the
method. (On many systems, there are different ways to pass method arguments, and
linkage information tells a compiler how to pass the arguments indicated by a method’s
signature).

SOM method procedures on OS/2 must be called with “system” linkage. On Windows, method
procedures use the C linkage convention. On AIX, there is only one linkage convention for
procedure calls. While C and C++ provide standard ways to indicate a method signature, the
way to indicate linkage information depends on the specific compiler and system. For each
method declared using OIDL or IDL, the C and C++ usage bindings therefore use condition-
al macros and a typedef to name a type that has the correct linkage convention. This type
name can then be used by programmers with access to the usage bindings for the class
that introduces the method whose procedure pointer is used. The type is named
somTD_<className>_<methodName>. This is illustrated in the following example, and fur-
ther details are provided in the section below, entitled “Obtaining a method’s procedure pointer.”

A name-lookup example

The following example shows the use of name-lookup by a SOM client programmer. Name-
lookup resolution is appropriate when a programmer knows that an object will respond to a
method of some given name, but does not know enough about the type of the object to use offset
method resolution. How can this happen? It normally happens when a programmer wants to
write generic code, using methods of the same name and signature that are applicable to
different classes of objects, and yet these classes have no common ancestor that introduces
the method. This can easily occur in single-inheritance systems (such as Smalltalk and SOM
release 1) and can also happen in multiple-inheritance systems such as SOM release 2 —
when class hierarchies designed by different people are brought together for clients’ use.

If multiple inheritance is available, it is always possible to create a common class ancestor into
which methods of this kind can be migrated. A refactoring of this kind often implements a
semantically pleasing generalization that unifies common features of two previously unrelated
class hierarchies. This step is most practical, however, when it does not require the redefinition
or recompilation of current applications that use offset resolution. SOM is unique in that it allows
this.

However, such refactoring must redefine the classes that originally introduced the common
methods (so the methods can be inherited from the new “unifying” class instead). A client
programmer who simply wants to create an application may not control the implementations of
the classes. Thus, the use of name-lookup method resolution seems the best alternative for
programmers who do not want to define new classes, but simply to make use of available ones.

For example, assume the existence of two different SOM classes, “classX” and “classY”, whose
only common ancestor is SOMObject, and who both introduce a method named “reduce” that
accepts a string as an argument and returns a long. We assume that the classes were not

3 – 16 SOMobjects Developer Toolkit Users Guide

designed in conjunction with each other. As a result, it is unlikely that the “reduce” method was
defined with a namelookup modifier. The following figure illustrates the class hierarchy for this
example.

Denotes “is a subclass of”

 classX

SOMObject

classY

Following is a C++ generic procedure that uses name-lookup method resolution to invoke the
“reduce” method on its argument, which may be either of type “classX” or “classY”. Note that
there is no reason to include classY’s usage bindings, since the typedef provided for the
“reduce” method procedure in “classX” is sufficient for invoking the method procedure, indepen-
dently of whether the target object is of type “classX” or “classY”.

#include <classX.xh> // use classX’s method proc typedef

// this procedure can be invoked on a target of type
// classX or classY.

long generic_reduce1(SOMObject *target, string arg)
{
 somTD_classX_reduce reduceProc = (somTD_classX_reduce)
 somResolveByName(target, ”reduce”);
 return reduceProc(target, arg);
}

On the other hand, if the classes were designed in conjunction with each other, and the class
designer felt that programmers might want to write generic code appropriate to either class of
object, the namelookup modifier might have been used. This is a possibility, even with multiple
inheritance. However, it is much more likely that the class designer would use multiple inheri-
tance to introduce the “reduce” method in a separate class, and then use this other class as a
parent for both “classX” and “classY” (thereby allowing the use of offset resolution).

In any case, if the “reduce” method in “classX” were defined as a namelookup method, the
following code would be appropriate. Note that the name-lookup support provided by “classX”
usage bindings is still appropriate for use on targets that do not have type “classX”. As a result,

3 – 173. Using SOM Classes in Client Programs

the “reduce” method introduced by “classY” need not have been defined as a namelookup
method.

#include <classX.xh> // use classX’s name–lookup support

// this procedure can be invoked on a target of type
// classX or classY.

long generic_reduce2(SOMObject *target, string arg)
{
 return lookup_reduce(target, arg);
}

For non-C/C++ programmers: Name-lookup resolution is useful for non-C/C++ programmers
when the type of an object on which a method must be invoked is not known at compile time
or when method tokens cannot be directly accessed by the programmer. To invoke a method
using name-lookup resolution when not using the C or C++ usage bindings, use the
somResolveByName procedure to acquire a procedure pointer. How the programmer indi-
cates the method arguments and the linkage convention in this case is compiler specific.

The somResolveByName procedure takes as arguments a pointer to the object on which the
method is to be invoked and the name of the method, as a string. It returns a pointer to the
method’s procedure (or NULL if the method is not supported by the object). The method can then
be invoked by calling the method procedure, passing the method’s receiver, the Environment
pointer (if necessary), the context argument (if necessary), and the rest of the method’s
arguments, if any. (See the section above for C programmers; the arguments to a method
procedure are the same as the arguments passed to the long-form C-language method-invoca-
tion macro for that method.)

As an example of invoking methods using name-lookup resolution using the procedure
somResolveByName, the following steps are used to create an instance of a SOM Class X in
Smalltalk:

1. Initialize the SOM run-time environment (if it is not already initialized) using the
somEnvironmentNew function.

2. If the class object for class X has not yet been created, use somResolveByName
with the arguments SOMClassMgrObject (returned by somEnvironmentNew in
step 1) and the string “somFindClass”, to obtain a method procedure pointer for
the somFindClass method. Use the method procedure for somFindClass to create
the class object for class X: Call the method procedure with these four arguments:
SOMClassMgrObject; the variable holding class X’s somId (the result of calling the
somIdFromString function with argument “X”); and the major and minor version
numbers for class X (or zero). The result is the class object for class X.

3. Use somResolveByName with arguments the class object for X (returned by
somFindClass in step 2) and the string “somNew”, to obtain a method procedure
pointer for method somNew. (This somNew method is used to create instances of a
class.)

4. Call the method procedure for somNew (using the method procedure pointer
obtained in step 3) with the class object for X (returned by somFindClass in step 3)
as the argument. The result is a new instance of class X. How the programmer
indicates the method arguments and the linkage convention is compiler-specific.

3 – 18 SOMobjects Developer Toolkit Users Guide

Obtaining a method’s procedure pointer
Method resolution is the process of obtaining a pointer to the procedure that implements a
particular method for a particular object at run time. The method is then invoked subsequently
by calling that procedure, passing the method’s intended receiver, the Environment pointer (if
needed), the context argument (if needed), and the method’s other arguments, if any. C and
C++ programmers may wish to obtain a pointer to a method’s procedure for efficient repeated
invocations.

Obtaining a pointer to a method’s procedure is achieved in one of two ways, depending on
whether the method is to be resolved using offset resolution or name-lookup resolution.
Obtaining a method’s procedure pointer via offset resolution is faster, but it requires that the
name of the class that introduces the method and the name of the method be known at compile
time. It also requires that the method be defined as part of that class’s interface in the IDL
specification of the class. (See the topic “Method Resolution” in Chapter 5, “Implementing
Classes in SOM,” for more information on offset and name-lookup method resolution.)

Offset resolution
To obtain a pointer to a procedure using offset resolution, the C/C++ usage bindings provide the
SOM_Resolve and SOM_ResolveNoCheck macros. The usage bindings themselves use the
first of these, SOM_Resolve, for offset-resolution method calls. The difference in the two
macros is that the SOM_Resolve macro performs consistency checking on its arguments, but
the macro SOM_ResolveNoCheck, which is faster, does not. Both macros require the same
arguments:

SOM_Resolve(<receiver>, <className>, <methodName>)
SOM_ResolveNoCheck(<receiver>, <className>, <methodName>)

where the arguments are as follows:

receiver — The object to which the method will apply. It should be
specified as an expression without side effects.

className — The name of the class that introduces the method.

methodName — The name of the desired method.

These two names (className and methodName) must be given as tokens, rather than strings
or expressions. (For example, as Animal rather than “Animal”.) If the symbol SOM_TestOn is
defined and the symbol SOM_NoTest is not defined in the current compilation unit, then
SOM_Resolve verifies that receiver is an instance of className or some class derived from
className. If this test fails, an error message is output and execution is terminated.

The SOM_Resolve and SOM_ResolveNoCheck macros use the procedure somResolve to
obtain the entry-point address of the desired method procedure (or raise a fatal error if
methodName is not introduced by className). This result can be directly applied to the method
arguments, or stored in a variable of generic procedure type (for example, somMethodPtr) and
retained for later method use. This second possibility would result in a loss of information,
however, for the reasons now given.

The SOM_Resolve or SOM_ResolveNoCheck macros are especially useful because they
cast the method procedure they obtain to the right type to allow the C or C++ compiler to call this
procedure with system linkage and with the appropriate arguments. This is why the result of
SOM_Resolve is immediately useful for calling the method procedure, and why storing the
result of SOM_Resolve in a variable of some “generic” procedure type results in a loss of
information. The correct type information can be regained, however, because the type used by
SOM_Resolve for casting the result of somResolve is available from C/C++ usage bindings
using the typedef name somTD_<className>_<methodName>. This type name describes a

3 – 193. Using SOM Classes in Client Programs

pointer to a method procedure for methodName introduced by class className. If the final
argument of the method is a va_list, then the method procedure returned by SOM_Resolve or
SOM_ResolveNoCheck must be called with a va_list argument, and not a variable number of
arguments.

Below is a C example of using SOM_Resolve to obtain a method procedure pointer for method
“sayHello”, introduced by class “Hello”, and using it to invoke the method on “obj.” (Assume that
the only argument required by the “sayHello” method is the Environment pointer.)

somMethodProc *p;
SOMObject obj = HelloNew();
p = SOM_Resolve(obj, Hello, sayHello);
((somTD_Hello_sayHello)p) (obj, somGetGlobalEnvironment());

SOM_Resolve and SOM_ResolveNoCheck can only be used to obtain method procedures
for static methods (methods that have been declared in an IDL specification for a class) and not
methods that are added to a class at run time. See the SOMobjects Programmers Reference
Manual for more information and examples on SOM_Resolve and SOM_ResolveNoCheck.

Name-lookup method resolution
To obtain a pointer to a method’s procedure using name-lookup resolution, use the
somResolveByName procedure (described in the following section), or any of the
somLookupMethod, somFindMethod and somFindMethodOK methods. These methods
are invoked on a class object that supports the desired method, and they take an argument
specifying the a somId for the desired method (which can be obtained from the method’s name
using the somIdFromString function). For more information on these methods and for exam-
ples of their use, see the SOMobjects Developer Toolkit Programmers Reference Manual.

Method name or signature not known at compile time
If the programmer does not know a method’s name at compile time (for example, it might be
specified by user input), then the method can be invoked in one of two ways, depending upon
whether its signature is known:

� Suppose the signature of the method is known at compile time (even though the method
name is not). In that case, when the name of the method becomes available at run time,
the somLookupMethod, somFindMethod or somFindMethodOk methods or the
somResolveByName procedure can be used to obtain a pointer to the method’s proce-
dure using name-lookup method resolution, as described in the preceding topics. That
method procedure can then be invoked, passing the method’s intended receiver, the
Environment pointer (if needed), the context argument (if needed), and the remainder of
the method’s arguments.

� If the method’s signature is unknown until run time, then dispatch-function resolution is
indicated, as described in the next topic.

Dispatch-function method resolution
If the signature of the method is not known at compile time (and hence the method’s argument
list cannot be constructed until run time), then the method can be invoked at run time by (a)
placing the arguments in a variable of type va_list at run time and (b) either using the
somGetMethodData method followed by use of the somApply function, or by invoking the
somDispatch or somClassDispatch method. Using somApply is more efficient, since this is
what the somDispatch method does, but it requires two steps instead of one. In either case, the
result invokes a “stub” procedure called an apply stub, whose purpose is to remove the method
arguments from the va_list, and then pass them to the appropriate method procedure in the
way expected by that procedure. For more information on these methods and for examples of
their use, see the somApply function, and the somGetMethodData, somDispatch, and
somClassDispatch methods in the SOMobjects Programmers Reference Manual.

3 – 20 SOMobjects Developer Toolkit Users Guide

Using class objects
Using a class object encompasses three aspects: getting the class of an object, creating a new
class object, or simply referring to a class object through the use of a pointer.

Getting the class of an object
To get the class that an object is an instance of, SOM provides a method called somGetClass.
The somGetClass method takes an object as its only argument and returns a pointer to the
class object of which it is an instance. For example, the following statements store in “myClass”
the class object of which “obj” is an instance.

myClass = _somGetClass(obj); (for C)

myClass = obj–>somGetClass(); (for C++)

Getting the class of an object is useful for obtaining information about the object; in some cases,
such information cannot be obtained directly from the object, but only from its class. The section
below entitled “Getting information about a class” describes the methods that can be invoked on
a class object after it is obtained using somGetClass.

The somGetClass method can be overridden by a class to provide enhanced or alternative
semantics for its objects. Because it is usually important to respect the intended semantics of a
class of objects, the somGetClass method should normally be used to access the class of an
object.

In a few special cases, it is not possible to make a method call on an object in order to determine
its class. For such situations, SOM provides the SOM_GetClass macro. In general, the
somGetClass method and the SOM_GetClass macro may have different behavior (if
somGetClass has been overridden). This difference may be limited to side effects, but it is
possible for their results to differ as well. The SOM_GetClass macro should only be used when
absolutely necessary.

Creating a class object
A class object is created automatically the first time the <className>New macro (for C) or the
new operator (C++) is invoked to create an instance of that class. In other situations, however,
it may be necessary to create a class object explicitly, as this section describes.

Using <className>Renew or somRenew
It is sometimes necessary to create a class object before creating any instances of the class.
For example, creating instances using the <className>Renew macro or the somRenew
method requires knowing how large the created instance will be, so that memory can be
allocated for it. Getting this information requires creating the class object (see the example
under “Creating instances of a class” early in this chapter). As another example, a class object
must be explicitly created when a program does not use the SOM bindings for a class. Without
SOM bindings for a class, its instances must be created using somNew or somRenew, and
these methods require that the class object be created in advance.

Use the <className>NewClass procedure to create a class object :

� When using the C/C++ language bindings for the class, and

� When the name of the class is known at compile time.

3 – 213. Using SOM Classes in Client Programs

Using <className>NewClass
The <className>NewClass procedure initializes the SOM run-time environment, if neces-
sary, creates the class object (unless it already exists), creates class objects for the ancestor
classes and metaclass of the class, if necessary, and returns a pointer to the newly created
class object. After its creation, the class object can be referenced in client code using the macro

_<className> (for C and C++ programs)

or the expression

<className>ClassData.classObject (for C and C++ programs).

The <className>NewClass procedure takes two arguments, the major version number and
minor version number of the class. These numbers are checked against the version numbers
built into the class library to determine if the class is compatible with the client’s expectations.
The class is compatible if it has the same major version number and the same or a higher minor
version number. If the class is not compatible, an error is raised. Major version numbers usually
only change when a significant enhancement or incompatible change is made to a class. Minor
version numbers change when minor enhancements or fixes are made. Downward compatibili-
ty is usually maintained across changes in the minor version number. Zero can be used in place
of version numbers to bypass version number checking.

When using SOM bindings for a class, these bindings define constants representing the major
and minor version numbers of the class at the time the bindings were generated. These
constants are named <className>_MajorVersion and <className>_MinorVersion. For ex-
ample, the following procedure call:

AnimalNewClass(Animal_MajorVersion, Animal_MinorVersion);

creates the class object for class “Animal”. Thereafter, _Animal can be used to reference the
“Animal” class object.

The preceding technique for checking version numbers is not failsafe. For performance rea-
sons, the version numbers for a class are only checked when the class object is created, and not
when the class object or its instances are used. Thus, run-time errors may result when usage
bindings for a particular version of a class are used to invoke methods on objects created by an
earlier version of the class.

Using somFindClass or somFindClsInFile
To create a class object when not using the C/C++ language bindings for the class, or when the
class name is not known at compile time:

� First, initialize the SOM run-time environment by calling the somEnvironmentNew func-
tion (unless it is known that the SOM run-time environment has already been initialized).

� Then, use the somFindClass or somFindClsInFile method to create the class object.
(The class must already be defined in a dynamically linked library, or DLL.)

The somEnvironmentNew function initializes the SOM run-time environment. That is, it
creates the four primitive SOM objects (SOMClass, SOMObject, SOMClassMgr, and the
SOMClassMgrObject), and it initializes SOM global variables. The function takes no argu-
ments and returns a pointer to the SOMClassMgrObject.

Note: Although somEnvironmentNew must be called before using other SOM functions and
methods, explicitly calling somEnvironmentNew is usually not necessary when using the
C/C++ bindings, because the macros for <className>NewClass, <className>New, and
<className>Renew call it automatically, as does the new operator for C++. Calling
somEnvironmentNew repeatedly does no harm.

3 – 22 SOMobjects Developer Toolkit Users Guide

After the SOM run-time environment has been initialized, the methods somFindClass and
somFindClsInFile can be used to create a class object. These methods must be invoked on
the class manager, which is pointed to by the global variable SOMClassMgrObject. (It is also
returned as the result of somEnvironmentNew.)

The somFindClass method takes the following arguments:

classId — A somId identifying the name of the class to be created.
The somIdFromString function returns a classId given
the name of the class.

major version number — The expected major version number of the class.

minor version number — The expected minor version number of the class.

The version numbers are checked against the version numbers built into the class library to
determine if the class is compatible with the client’s expectations.

The somFindClass method dynamically loads the DLL containing the class’s implemen-
tation, if needed, creates the class object (unless it already exists) by invoking its
<className>NewClass procedure, and returns a pointer to it. If the class could not be created,
somFindClass returns NULL. For example, the following C code fragment creates the class
“Hello” and stores a pointer to it in “myClass”:

SOMClassMgr cm = somEnvironmentNew();
somId classId = somIdFromString(”Hello”);
SOMClass myClass = _somFindClass(SOMClassMgrObject, classId,
 Hello_MajorVersion, Hello_MinorVersion);
. . .
SOMFree(classId);

The somFindClass method uses somLocateClassFile to get the name of the library file
containing the class. If the class was defined with a “dllname” class modifier, then
somLocateClassFile returns that file name; otherwise, it assumes that the class name is the
name of the library file. The somFindClsInFile method is similar to somFindClass, except that
it takes an additional (final) argument — the name of the library file containing the class. The
somFindClsInFile method is useful when a class is packaged in a DLL along with other classes
and the “dllname” class modifier has not been given in the class’s IDL specification.

Warning: On AIX and Windows, the somFindClass and somFindClsInFile methods should
not be used to create a class whose implementation is statically linked with the client program.
Instead, the class object should be created using the <className>NewClass procedure
provided by the class’s .h/.xh header file. Static linkage is not created by simply including usage
bindings in a program, but by use of the offset-resolution method-invocation macros.

Referring to class objects
Saving a pointer as the class object is created: The <className>NewClass macro and the
somFindClass method, used to create class objects, both return a pointer to the newly created
class object. Hence, one way to obtain a pointer to a class object is to save the value returned by
<className>NewClass or somFindClass when the class object is created.

Getting a pointer after the class object is created: After a class object has been created,
client programs can also get a pointer to the class object from the class name. When the class
name is known at compile time and the client program is using the C or C++ language bindings,
the macro

_<className>

can be used to refer to the class object for <className>. Also, when the class name is known at
compile time and the client program is using the C or C++ language bindings, the expression

<className>ClassData.classObject

3 – 233. Using SOM Classes in Client Programs

refers to the class object for <className>. For example, _Hello refers to the class object for
class “Hello” in C or C++ programs, and HelloClassData.classObject refers to the class
object for class “Hello.” in C or C++ programs.

Getting a pointer to the class object from an instance: If any instances of the class are
known to exist, a pointer to the class object can also be obtained by invoking the somGetClass
method on such an instance. (See “Getting the class of an object,” above.)

Getting a pointer in other situations: If the class name is not known until run time, or if the
client program is not using the C or C++ language bindings, and no instances of the class are
known to exist, then the somClassFromId method can be used to obtain a pointer to a class
object after the class object has been created. The somClassFromId method should be
invoked on the class manager, which is pointed to by the global variable SOMClassMgrObject.
The only argument to the method is a somId for the class name, which can be obtained using
the somIdFromString function. The method somClassFromId returns a pointer to the class
object of the specified class. For example, the following C code stores in “myClass” a pointer to
the class object for class “Hello” (or NULL, if the class cannot be located):

SOMClassMgr cm = somEnvironmentNew();
somId classId = somIdFromString(”Hello”);
SOMClass myClass = _somClassFromId(SOMClassMgrObject, classId,

Hello_MajorVersion, Hello_MinorVersion);
SOMFree(classId);

Compiling and linking
This section describes how to compile and link C and C++ client programs. Compiling and linking
a client program with a SOM class is done in one of two ways, depending upon whether or not
the class is packaged as a library, as described below.

Note: If you are building an application that uses a combination of C and C++ compiled object
modules, then the C++ linker must be used to link them.

If the class is not packaged as a library (that is, the client program has the implementation
source code for the class, as in the examples given in the SOM IDL tutorial), then the client
program can be compiled together with the class implementation file as follows. (This assumes
that the client program and the class are both implemented in the same language, C or C++. If
this is not the case, then each module must be compiled separately to produce an object file and
the resulting object files linked together to form an executable.)

In the following examples, the environment variable SOMBASE refers to the directory in which
SOM has been installed. The examples also assume that the header files and the import library
for the “Hello” class reside in the “include” and “lib” directories where SOM has been installed. If
this is not the case, additional path information should be supplied for these files. For client
program “main” and class “Hello”:

Under AIX, for C programmers:
> xlc –I. –I$SOMBASE/include main.c hello.c \
 –L$SOMBASE/lib –lsomtk –o main

Under AIX, for C++ programmers:
> xlC –I. –I$SOMBASE/include main.C hello.C \
 –L$SOMBASE/lib –lsomtk –o main

Under OS/2, for C programmers:
> set LIB=%SOMBASE%\lib;%LIB%
> icc –I. –I%SOMBASE%\include main.c hello.c somtk.lib

3 – 24 SOMobjects Developer Toolkit Users Guide

Under OS/2, for C++ programmers:
> set LIB=%SOMBASE%\lib;%LIB%
> icc –I. –I%SOMBASE%\include main.cpp hello.cpp somtk.lib

Under Windows, for C programmers:

> cl –AL –Zp1 –I. –I%SOMBASE%\include \
 main.c hello.c llibcew.lib libw.lib somtk.lib main.def

Under Windows, for C++ programmers:

> cl –AL –Zp1 –I. –I%SOMBASE%\include \
 main.cpp hello.cpp llibcew.lib libw.lib somtk.lib main.def

Windows compiler notes: The SOM Compiler and runtime libraries under Windows only
provide support for Large Memory Model systems. The “–Oi” compile flag should be used
whenever a SOM Windows program contains or calls any functions that return floats or doubles.
The “–F” option can be used to set the stack size if STACKSIZE is not specified in a .def file.
Additionally, for this manual, compile and link commands are demonstrated using the Visual C++

compiler. Sample Makefiles shipped with SOMobjects For Windows also show how to build with
other compilers.

If the class is packaged as a class library, then the client program, “main”, is compiled as
above, except that the class implementation file is not part of the compilation. Instead, the
“import library” provided with the class library is used to resolve the symbolic references that
appear in “main”. For example, to compile the C client program “main.c” that uses class “Hello”:

Under AIX:
> xlc –I. –I$SOMBASE/include main.c –lc –L$SOMBASE/lib –lsomtk \
 –lhello –o main

Under OS/2:
> set LIB=%SOMBASE%\lib;%LIB%
> icc –I. –I%SOMBASE%\include main.c somtk.lib hello.lib

Under Windows:

> cl –AL –Zp1 –I. –I%SOMBASE%\include \
 main.c llibcew.lib libw.lib somtk.lib hello.lib main.def

Windows users: See also “Windows Compiler Notes” above.

3 – 253. Using SOM Classes in Client Programs

3.3 Language-neutral Methods and Functions
This section describes methods, functions, and macros that client programs can use regardless
of the programming language in which they are written. In other words, these functions and
methods are not part of the C or C++ bindings.

Generating output
The following functions and methods are used to generate output, including descriptions of
SOM objects. They all produce their output using the character-output procedure held by the
global variable SOMOutCharRoutine. The default procedure for character output simply
writes the character to stdout, but it can be replaced to change the output destination of the
methods and functions below. (See Chapter 5 for more information on customizing SOM.)

somDumpSelf — (method) Writes a detailed description of an object, includ-
ing its class, its location, and its instance data. The receiver
of the method is the object to be dumped. An additional
argument is the “nesting level” for the description. [All lines
in the description will be indented by (2 * level) spaces.]

somPrintSelf — (method) Writes a brief description of an object, including
its class and location in memory. The receiver of the meth-
od is the object to be printed.

somPrintf — (function) SOM’s version of the C “printf” function. It gener-
ates character stream output via SOMOutCharRoutine. It
has the same interface as the C “printf” function.

somVprintf — (function) Represents the “vprint” form of somPrintf. Its
arguments are a formatting string and a va_list holding the
remaining arguments.

somPrefixLevel — (function) Generates (via somPrintf) spaces to prefix a
line at the indicated level. The return type is void. The
argument is an integer specifying the level. The number of
spaces generated is (2 * level).

somLPrintf — (function) Combines somPrefixLevel and somPrintf.
The first argument is the level of the description (as for
somPrefixLevel) and the remaining arguments are as for
somPrintf (or for the C “printf” function).

See the SOMobjects Developer Toolkit Programmers Reference Manual for more information
on a specific function or method.

Getting information about a class
The following methods are used to obtain information about a class or to locate a particular class
object:

somCheckVersion — Checks a class for compatibility with the specified major
and minor version numbers. The receiver of the method is
the SOM class about which information is needed. Addi-
tional arguments are values of the major and minor version
numbers. The method returns TRUE if the class is compat-
ible, or FALSE otherwise.

3 – 26 SOMobjects Developer Toolkit Users Guide

somClassFromId — Finds the class object of an existing class when given its
somId, but without loading the class. The receiver of the
method is the class manager (pointed to by the global
variable SOMClassMgrObject). The additional argument
is the class’s somId. The method returns a pointer to the
class (or NULL if the class does not exist).

somDescendedFrom — Tests whether one class is derived from another. The re-
ceiver of the method is the class to be tested, and the
potential ancestor class is the argument. The method re-
turns TRUE if the relationships exists, or FALSE otherwise.

somFindClass — Finds or creates the class object for a class, given the
class’s somId and its major and minor version numbers.
The receiver of the method is the class manager (pointed to
by the global variable SOMClassMgrObject). Additional
arguments are the class’s somId and the major and minor
version numbers. The method returns a pointer to the class
object, or NULL if the class could not be created.

somFindClsInFile — Finds or creates the class object for a class. This method is
similar to somFindClass, except the user also provides
the name of a file to be used for dynamic loading, if needed.
The receiver of the method is the class manager (pointed to
by the global variable SOMClassMgrObject). Additional
arguments are the class’s somId, the major and minor
version numbers, and the file name. The method returns a
pointer to the class object, or NULL if the class could not be
created.

somGetInstancePartSize — Obtains the size of the instance variables introduced by a
class. The receiver of the method is the class object. The
method returns the amount of space, in bytes, needed for
the instance variables.

somGetInstanceSize — Obtains the total size requirements for an instance of a
class. The receiver of the method is the class object. The
method returns the amount of space, in bytes, required for
the instance variables introduced by the class itself and by
all of its ancestor classes.

somGetName — Obtains the name of a class. The receiver of the method is
the class object. The method returns the class name.

somGetNumMethods — Obtains the number of methods available for a class. The
receiver of the method is the class object. The method
returns the total number of currently available methods
(static or otherwise, including inherited methods).

somGetNumStaticMethods
— Obtains the number of static methods available for a class.

(A static method is one declared in the class’s interface
specification [.idl] file.) The receiver of the method is the
class object. The method returns the total number of avail-
able static methods, including inherited ones.

somGetParents — Obtains a sequence of the parent (base) classes of a speci-
fied class. The receiver of the method is the class object.
The method returns a pointer to a linked list of the parent
(base) classes (unless the receiver is SOMObject, for
which it returns NULL).

3 – 273. Using SOM Classes in Client Programs

somGetVersionNumbers — Obtains the major and minor version numbers of a class.
The receiver of the method is the class object. The return
type is void, and the two arguments are pointers to loca-
tions in memory where the method can store the major and
minor version numbers (of type long).

somSupportsMethod — Indicates whether instances of a given class support a
given method. The receiver of the somSupportsMethod
method is the class object. The argument is the somId for
the method in question. The somSupportsMethod meth-
od returns TRUE if the method is supported, or FALSE other-
wise.

See the SOMobjects Developer Toolkit Programmers Reference Manual for more information
on a specific method.

Getting information about an object
The following methods and functions are used to obtain information about an object (instance)
or to determine whether a variable holds a valid SOM object.

Methods
somGetClass — Gets the class object of a specified object. The receiver of

the method is the object whose class is desired. The meth-
od returns a pointer to the object’s corresponding class
object.

somGetClassName — Obtains the class name of an object. The receiver of the
method is the object whose class name is desired. The
method returns a pointer to the name of the class of which
the specified object is an instance.

somGetSize — Obtains the size of an object. The receiver of the method is
the object. The method returns the amount of contiguous
space, in bytes, that is needed to hold the object itself (not
including any additional space that the object may be using
or managing outside of this area).

somIsA — Determines whether an object is an instance of a given
class or of one of its descendant classes. The receiver of
the method is the object to be tested. An additional argu-
ment is the name of the class to which the object will
be compared. This method returns TRUE if the object
is an instance of the specified class or if (unlike
somIsInstanceOf) it is an instance of any descendant
class of the given class; otherwise, the method returns
FALSE.

somIsInstanceOf — Determines whether an object is an instance of a specific
class (but not of any descendant class).The receiver of the
method is the object. The argument is the name of the class
to which the object will be compared. The method returns
TRUE if the object is an instance of the specified class, or
FALSE otherwise.

somRespondsTo — Determines whether an object supports a given method.
The receiver of the method is the object. The argument is
the somId for the method in question. (A somId can be
obtained from a string by using the somIdFromString
function.) The somRespondsTo method returns TRUE if
the object supports the method, or FALSE otherwise.

3 – 28 SOMobjects Developer Toolkit Users Guide

Functions
somIsObj — Takes as its only argument an address (which may not be

valid). The function returns TRUE (1) if the address contains
a valid SOM object, or FALSE (0) otherwise. This function is
designed to be failsafe.

See the SOMobjects Developer Toolkit Programmers Reference Manual for more information
on a specific method or function.

Debugging
The following macros are used to conditionally generate output for debugging. All output
generated by these macros is written using the replaceable character-output procedure pointed
to by the global variable SOMOutCharRoutine. The default procedure simply writes the
character to stdout, but it can be replaced to change the output destination of the methods and
functions below. (See Chapter 5, “Implementing Classes in SOM,” for more information on
customizing SOM.)

Debugging output is produced or suppressed based on the settings of three global variables,
SOM_TraceLevel, SOM_WarnLevel, and SOM_AssertLevel:

� SOM_TraceLevel controls the behavior of the <className>MethodDebug macro;

� SOM_WarnLevel controls the behavior of the macros SOM_WarnMsg, SOM_TestC,
 and SOM_Expect; and

� SOM_AssertLevel controls the behavior of the SOM_Assert macro.

Available macros for generating debugging output are as follows:

<className>MethodDebug
— (macro for C and C++ programmers using the SOM lan-

guage bindings for <className>)
The arguments to this macro are a class name and a meth-
od name. If the SOM_TraceLevel global variable has a
nonzero value, the <className>MethodDebug macro
produces a message each time the specified method (as
defined by the specified class) is executed. This macro is
typically used within the procedure that implements the
specified method. (The SOM Compiler automatically gen-
erates calls to the <className>MethodDebug macro
within the implementation template files it produces.) To
suppress method tracing for all methods of a class, put the
following statement in the implementation file after includ-
ing the header file for the class:
#define <className>MethodDebug(c,m) \
 SOM_NoTrace(c,m)
This can yield a slight performance improvement. The
SOMMTraced metaclass, discussed below, provides a
more extensive tracing facility that includes method param-
eters and returned values.

SOM_TestC — The SOM_TestC macro takes as an argument a boolean
expression. If the boolean expression is TRUE (nonzero)
and SOM_AssertLevel is greater than zero, then an in-
formational message is output. If the expression is FALSE
(zero) and SOM_WarnLevel is greater than zero, a warn-
ing message is produced.

SOM_WarnMsg — The SOM_WarnMsg macro takes as an argument a char-
acter string. If the value of SOM_WarnLevel is greater
than zero, the specified message is output.

3 – 293. Using SOM Classes in Client Programs

SOM_Assert — The SOM_Assert macro takes as arguments a boolean
expression and an error code (an integer). If the boolean
expression is TRUE (nonzero) and SOM_AssertLevel is
greater than zero, then an informational message is output.
If the expression is FALSE (zero), and the error code indi-
cates a warning-level error and SOM_WarnLevel is great-
er than zero, then a warning message is output. If the
expression is FALSE and the error code indicates a fatal
error, then an error message is produced and the process is
terminated.

SOM_Expect — The SOM_Expect macro takes as an argument a boolean
expression. If the boolean expression is FALSE (zero) and
SOM_WarnLevel is set to be greater than zero, then a
warning message is output. If condition is TRUE and
SOM_AssertLevel is set to be greater than zero, then an
informational message is output.

See the SOMobjects Developer Toolkit Programmers Reference Manual for more information
on a specific macro.

The somDumpSelf and somPrintSelf methods can be useful in testing and debugging. The
somPrintSelf method produces a brief description of an object, and the somDumpSelf meth-
od produces a more detailed description. See the SOMobjects Developer Toolkit Programmers
Reference Manual for more information.

Checking the validity of method calls
The C and C++ language bindings include code to check the validity of method calls at run time.
If a validity check fails, the SOM_Error macro ends the process. (SOM_Error is described
below.) To enable method-call validity checking, place the following directive in the client
program prior to any #include directives for SOM header files:

#define SOM_TestOn

Alternatively, the –DSOM_TestOn option can be used when compiling the client program to
enable method-call validity checking.

Exceptions and error handling
In the classes provided in the SOM run-time library (that is, SOMClass, SOMObject, and
SOMClassMgr), error handling is performed by a user-replaceable procedure, pointed to by the
global variable SOMError, that produces an error message and an error code and, if appropri-
ate, ends the process where the error occurred. (Chapter 5 describes how to customize the
error handling procedure.)

Each error is assigned a unique integer error code. Errors are grouped into three categories,
based on the last digit of the error code:

SOM_Ignore — This category of error represents an informational event.
The event is considered normal and can be ignored or
logged at the user’s discretion. Error codes having a last
digit of 2 belong to this category.

SOM_Warn — This category of error represents an unusual condition that
is not a normal event, but is not severe enough to require
program termination. Error codes having a last digit of 1
belong to this category.

3 – 30 SOMobjects Developer Toolkit Users Guide

SOM_Fatal — This category of error represents a condition that should
not occur or that would result in loss of system integrity if
processing were allowed to continue. In the default error
handling procedure, these errors cause the termination of
the process in which they occur. Error codes having a last
digit of 9 belong to this category.

The various codes for all errors detected by SOM are listed in Appendix A, “Customer Support
and Error Codes.”

When errors are encountered in client programs or user defined-classes, the following two mac-
ros can be used to invoke the error-handling procedure:

SOM_Error — The SOM_Error macro takes an error code as its only
argument and invokes the SOM error handling procedure
(pointed to by the global variable SOMError) to handle the
error. The default error handling procedure prints a mes-
sage that includes the error code, the name of the source
file, and the line number where the macro was invoked. If
the last digit of the error code indicates a serious error (of
category SOM_Fatal), the process causing the error is
terminated. (Chapter 5 describes how to customize the
error handling procedure.)

SOM_Test — The SOM_Test macro takes a boolean expression as an
argument. If the expression is TRUE (nonzero) and the
SOM_AssertLevel is greater than zero, then an informa-
tional message is output. If the expression is FALSE (zero),
an error message is produced and the program is termi-
nated.

See the SOMobjects Developer Toolkit Programmers Reference Manual for more information
on a specific macro.

Other classes provided by the SOMobjects Toolkit (including those in the Persistence, Replica-
tion, DSOM, and Interface Repository frameworks, and the utility classes and metaclasses)
handle errors differently. Rather than invoking SOMError with an error code, their methods
return exceptions via the (Environment *) inout parameter required by these methods. The
following sections describe the exception declarations, the standard exceptions, and how to set
and get exception information in an Environment structure.

Exception declarations
As discussed in Chapter 4 in Section 4.2 entitled “SOM Interface Definition Language,” a
method may be declared to return zero or more exceptions. IDL exceptions are implemented
by simply passing back error information after a method call, as opposed to the “catch/throw”
model where an exception is implemented by a long jump or signal. Associated with each type of
exception is a name and, optionally, a struct-like data structure for holding error information. A
method declares the types of exceptions it may return in a raises expression.

Below is an example IDL declaration of a ��������	
 exception, which may be “raised” by a
“checkFlag” method, as part of a “MyObject” interface:

interface MyObject {
 exception BAD_FLAG { long ErrCode; char Reason[80]; };

 void checkFlag(in unsigned long flag) raises(BAD_FLAG);
};

3 – 313. Using SOM Classes in Client Programs

An exception structure contains whatever information is necessary to help the caller understand
the nature of the error. The exception declaration can be treated like a struct definition: that is,
whatever you can access in an IDL struct, you can access in an exception declaration.
Alternatively, the structure can be empty, whereby the exception is just identified by its name.

The SOM Compiler will map the exception declaration in the above example to the following C
language constructs:

typedef struct BAD_FLAG {
 long ErrCode;
 char Reason[80];
} BAD_FLAG;

#define ex_BAD_FLAG ”MyObject::BAD_FLAG”

When an exception is detected, the “checkFlag” method must call SOMMalloc to allocate a
“BAD_FLAG” structure, initialize it with the appropriate error information, and make a call to
somSetException (see “Setting an exception value,” below) to record the exception value in
the Environment structure passed in the method call. The caller, after invoking “checkFlag”,
can check the Environment structure that was passed to the method to see if there was an
exception, and if so, extract the exception value from the Environment (see “Getting an
exception value,” below.)

Standard exceptions
In addition to user-defined exceptions (those defined explicitly in an IDL file), there are several
predefined exceptions for system run-time errors. A system exception can be returned on any
method call. (That is, they are implicitly declared for every method whose class uses IDL call
style, and they do not appear in any raises expressions.) The standard exceptions are listed in
Table 2 of Section 4.2, “SOM Interface Definition Language” in Chapter 4, “SOM IDL and the
SOM Compiler.” Most of the predefined system exceptions pertain to Object Request Broker
errors. Consequently, these types of exceptions are most likely to occur in DSOM applications
(Chapter 6).

Each of the standard exceptions has the same structure: an error code (to designate the
subcategory of the exception) and a completion status code. For example, the NO_MEMORY
standard exception has the following definition:

enum completion_status {YES, NO, MAYBE};
exception NO_MEMORY { unsigned long minor;
 completion_status completed; };

The completion status value indicates whether the method was never initiated (NO), completed
execution prior to the exception (YES), or the completion status is indeterminate (MAYBE).

Since all the standard exceptions have the same structure, file “somcorba.h” (included by
“som.h”) defines a generic StExcep typedef which can be used instead of the specific typedefs:

typedef struct StExcep {
 unsigned long minor;
 completion_status completed;
} StExcep;

The standard exceptions are defined in an IDL module called StExcep, in the file named
“stexcep.idl”, and the C definitions can be found in “stexcep.h”.

The Environment
The Environment is a data structure that contains environmental information that can be
passed between a caller and a called object when a method is executed. For example, it is used
to pass information about the user id of a client, to return exception data to the client following a
method call, and so on.

3 – 32 SOMobjects Developer Toolkit Users Guide

A pointer to an Environment variable is passed as an argument to method calls (unless the
method’s class has the callstyle=oidl SOM IDL modifier). The Environment typedef is defined
in “som.h”, and an instance of the structure is allocated by the caller in any reasonable way:
on the stack (by declaring a local variable and initializing it using the macro
SOM_InitEnvironment), dynamically (using the SOM_CreateLocalEnvironment macro), or
by calling the somGetGlobalEnvironment function to allocate an Environment structure to
be shared by objects running in the same thread.

For class libraries that use callstyle=oidl, there is no explicit Environment parameter. For
these libraries, exception information may be passed using the per-thread Environment struc-
ture returned by the somGetGlobalEnvironment procedure.

Setting an exception value
To set an exception value in the caller’s Environment structure, a method implementation
makes a call to the somSetException procedure:

void somSetException (Environment *ev,
exception_type major,

 string exception_name,
void *params);

where “ev” is a pointer to the Environment structure passed to the method, “major” is an
exception_type, “exception_name” is the string name of the exception (usually the constant
defined by the IDL compiler, for example, ex_BAD_FLAG), and “params” is a pointer to an
(initialized) exception structure which must be allocated by SOMMalloc:

typedef enum exception_type {
 NO_EXCEPTION, USER_EXCEPTION, SYSTEM_EXCEPTION
} exception_type;

It is important to reiterate that somSetException expects the params argument to be a
pointer to a structure that was allocated using SOMMalloc. When somSetException is called,
the client passes ownership of the exception structure to the SOM run-time environment. The
SOM run-time environment will free the structure when the exception is reset (that is, upon the
next call to somSetException), or when the somExceptionFree function is called.

Note that somSetException simply sets the exception value; it performs no exit processing. If
there are multiple calls to somSetException before the method returns, the caller will only see
the last exception value.

Getting an exception value
After a method returns, the calling client program can look at the Environment structure to see
if there was an exception. The Environment struct is mostly opaque, except for an exception
type field named _major:

typedef struct Environment {
 exception_type _major;
 ...
} Environment;

If ev._major != NO_EXCEPTION, there was an exception returned by the call. The caller can
retrieve the exception name and value (passed as parameters in the somSetException call)
from an Environment struct via the following functions:

string somExceptionId (Environment *ev);
somToken somExceptionValue (Environment *ev);

3 – 333. Using SOM Classes in Client Programs

The somExceptionId function returns the exception name, if any, as a string. The function
somExceptionValue returns a pointer to the value of the exception, if any, contained in the
exception structure. If NULL is passed as the Environment pointer in either of the above calls,
an implicit call is made to somGetGlobalEnvironment.

The somExceptionFree function will free any memory in the Environment associated with the
last exception:

void somExceptionFree (Environment *ev);

If preferred, developers can alternatively use the CORBA “exception_free” API to free the
memory in an Environment structure.

Note: File “somcorba.h” (included by “som.h”) provides the following aliases for strict com-
pliance with CORBA programming interfaces:

#ifdef CORBA_FUNCTION_NAMES
#define exception_id somExceptionId
#define exception_value somExceptionValue
#define exception_free somExceptionFree
#endif /* CORBA_FUNCTION_NAMES */

Example
The following IDL interface for a “MyObject” object (in a file called “myobject.idl”) declares a
“BAD_FLAG” exception, which can be raised by the “checkFlag” method,:

interface MyObject {
 exception BAD_FLAG { long ErrCode; char Reason[80]; };

 void checkFlag(in unsigned long flag) raises(BAD_FLAG);
};

The SOM IDL compiler will map the exception to the following C language constructs, in
“myobject.h”:

typedef struct BAD_FLAG {
 long ErrCode;
 char Reason[80];
} BAD_FLAG;

#define ex_BAD_FLAG ”MyObject::BAD_FLAG”

A client program that invokes the “checkFlag” method might contain the following error handling
code. (Note: The error checking code below lies in the user-written procedure, “ErrorCheck,” so
the code need not be replicated through the program.)

3 – 34 SOMobjects Developer Toolkit Users Guide

#include ”som.h”
#include ”myobject.h”

boolean ErrorCheck(Environment *ev); /* prototype */

main()
{
 unsigned long flag;
 Environment ev;
 MyObject myobj;
 char *exId;
 BAD_FLAG *badFlag;
 StExcep *stExValue;

 myobj = MyObjectNew();
 flag = 0x01L;
 SOM_InitEnvironment(&ev);

 /* invoke the checkFlag method, passing the Environment param */
 _checkFlag(myobj, &ev, flag);

 /* check for exception */
 if (ErrorCheck(&ev))
 {
 /* ... */
 somExceptionFree(&ev); /* free the exception memory */
 }

 /* ... */
}

/* error checking procedure */

boolean ErrorCheck(Environment *ev)
{
 switch (ev._major)
 {
 case SYSTEM_EXCEPTION:
 /* get system exception id and value */
 exId = somExceptionId(ev);
 stExValue = somExceptionValue(ev);
 /* ... */
 return(TRUE);

 case USER_EXCEPTION:
 /* get user–defined exception id and value */
 exId = somExceptionId(ev);
 if (strcmp(exId, ex_BAD_FLAG) == 0)
 {
 badFlag = (BAD_FLAG *) somExceptionValue(ev);
 /* ... */
 }
 /* ... */
 return(TRUE);

 case NO_EXCEPTION:
 return(FALSE);
 }
}

3 – 353. Using SOM Classes in Client Programs

The implementation of the “checkFlag” method might contain the following error-handling code:

#include ”som.h”
#include ”myobject.h”

void checkFlag(MyObject somSelf, Environment *ev,
 unsigned long flag)
{
 BAD_FLAG *badFlag;
 /* ... */

 if (/* flag is invalid */)
 {
 badFlag = (BAD_FLAG *) SOMMalloc(sizeof(BAD_FLAG));
 badFlag–>ErrCode = /* bad flag code */;
 strcpy(badFlag–>Reason, ”bad flag was passed”);
 somSetException(ev, USER_EXCEPTION,
 ex_BAD_FLAG, (void *)badFlag);
 return;
 }
 /* ... */
}

Memory management
The SOMobjects Toolkit provides several functions that can be used for memory management.

Using SOM equivalents to ANSI C functions
The memory management functions used by SOM are a subset of those supplied in the ANSI C
standard library. They have the same calling interface and the same return types as their ANSI C
equivalents, but include supplemental error checking. Errors detected by these functions are
passed to SOMError (described in the previous section). The correspondence between SOM
memory management functions and their ANSI C standard library equivalents is shown below:

Equivalent ANSI C
SOM Function Library Routine

SOMMalloc malloc
SOMCalloc calloc
SOMRealloc realloc
SOMFree free

SOMMalloc, SOMCalloc, SOMRealloc, and SOMFree are actually global variables that point
to the SOM memory management functions (rather than being the names of the functions
themselves), so that users can replace them with their own memory management functions if
desired. (See Chapter 5 for information on replacing the SOM memory management functions.)

Clearing memory for objects
The memory associated with objects initialized by a client program must also be freed by the
client. The SOM-provided method somFree is used to release the storage containing the
receiver object:

#include ”origcls.h”

main ()
{
 OrigCls myObject;
 myObject = OrigClsNew ();

 /* Code to use myObject */

 _somFree (myObject);
}

3 – 36 SOMobjects Developer Toolkit Users Guide

Clearing memory for the Environment
Any memory associated with an exception in an Environment structure is typically freed using
the somExceptionFree function. (Or, the CORBA “exception_free” API can be used.) The
somExceptionFree function takes the following form (also see “Example” in the previous topic
for an application example):

void somExceptionFree (Environment *ev);

Note: For information on managing the memory, objects, and exceptions used by DSOM
applications, see “Memory management for DSOM” in Chapter 6, “Distributed SOM (DSOM).”

SOM manipulations using somId’s
A somId is similar to a number that represents a zero-terminated string. A somId is used in
SOM to identify method names, class names, and so forth. For example, many of the SOM
methods that take a method or class name as a parameter require a value of type somId rather
than string. All SOM manipulations using somIds are case insensitive, although the original
case of the string is preserved.

During its first use with any of the following functions, a somId is automatically converted to an
internal representation (registered). Because the representation of a somId changes, a special
SOM type (somId) is provided for this purpose. Names and the corresponding somId can be
declared at compile time, as follows:

string example = ”exampleMethodName”;
somId exampleId = &example;

or a somId can be generated at run time, as follows:

somId myMethodId;
myMethodId = somIdFromString(”exampleMethodName”);

SOM provides the following functions that generate or use a somId:

somIdFromString — Finds the somId that corresponds to a string. The method
takes a string as its argument, and returns a value of type
somId that represents the string. The returned somId
must later be freed using SOMFree.

somStringFromId — Obtains the string that corresponds to a somId. The func-
tion takes a somId as its argument and returns the string
that the somId represents.

somCompareIds — Determines whether two somId values are the same (that
is, represent the same string). This function takes two
somId values as arguments. It returns TRUE (1) if the
somIds represent the same string, or FALSE (0) other-
wise.

somCheckId — Determines whether SOM already knows a somId. The
function takes a somId as its argument. It verifies whether
the somId is registered and in normal form, registers it if
necessary, and returns the input somId.

somRegisterId — The same as somCheckId, except it returns TRUE (1) if
this is the first time the somId has been registered, or
FALSE (0) otherwise.

somUniqueKey — Finds the unique key for a somId. The function takes a
somId identifier as its argument, and returns the unique
key for the somId — a number that uniquely represents the
string that the somId represents. This key is the same as
the key for another somId if and only if the other somId
refers to the same string as the input somId.

3 – 373. Using SOM Classes in Client Programs

somTotalRegIds — Finds the total number of somIds that have been regis-
tered, as an unsigned long. This function is used to deter-
mine an appropriate argument to somSetExpectedIds,
below, in later executions of the program. The function
takes no input arguments.

somSetExpectedIds — Indicates how many unique somIds SOM can expect to
use during program execution, which, if accurate, can im-
prove the space and time utilization of the program slightly.
This routine must be called before the SOM run-time
environment is initialized (that is, before the function
somEnvironmentNew is invoked and before any objects
are created). This is the only SOM function that can be
invoked before the SOM run-time environment is initial-
ized. The input argument is an unsigned long. The func-
tion has no return value.

somBeginPersistentIds and somEndPersistentIds
— Delimit a time interval for the current thread during which it

is guaranteed that (a) any new somIds that are created will
refer only to static strings and (b) these strings will not be
subsequently modified or freed. These functions are useful
because somIds that are registered within a “persistent ID
interval” can be handled more efficiently.

See the SOMobjects Developer Toolkit Programmers Reference Manual for more information
on a specific function.

3 – 38 SOMobjects Developer Toolkit Users Guide

