
Chapter 7. The Interface Repository Framework

Contents

7.1 Introduction 7 – 1.

7.2 Using the SOM Compiler to Build an Interface Repository 7 – 2.

7.3 Managing Interface Repository files 7 – 3.
The SOM IR file “som.ir” 7 – 3.
Managing IRs via the SOMIR environment variable 7 – 3.
Placing ‘private’ information in the Interface Repository 7 – 5.

7.4 Programming with the Interface Repository Objects 7 – 6.
Methods introduced by Interface Repository classes 7 – 7.
Accessing objects in the Interface Repository 7 – 8.
A word about memory management 7 – 10.
Using TypeCode pseudo-objects 7 – 11.

Providing ‘alignment’ information 7 – 13.
Using the ‘tk_foreign’ TypeCode 7 – 14.
TypeCode constants 7 – 15.
Using the IDL basic type ‘any’ 7 – 15.

ii SOMobjects Developer Toolkit Users Guide

Chapter 7. The Interface Repository Framework

7.1 Introduction
The SOM Interface Repository (IR) is a database that the SOM Compiler optionally creates and
maintains from the information supplied in IDL source files. The Interface Repository contains
persistent objects that correspond to the major elements in IDL descriptions. The SOM
Interface Repository Framework is a set of classes that provide methods whereby executing
programs can access these objects to discover everything known about the programming
interfaces of SOM classes.

The programming interfaces used to interact with Interface Repository objects, as well as the
format and contents of the information they return, are architected and defined as part of the
Object Management Group’s CORBA standard. The classes composing the SOM Interface
Repository Framework implement the programming interface to the CORBA Interface Reposito-
ry. Accordingly, the SOM Interface Repository Framework supports all of the interfaces de-
scribed in The Common Object Request Broker: Architecture and Specification (OMG Docu-
ment Number 91.12.1, Revision 1.1, chapter 7).

As an extension to the CORBA standard, the SOM Interface Repository Framework permits
storage in the Interface Repository of arbitrary information in the form of SOM IDL modifiers.
That is, within the SOM-unique implementation section of an IDL source file or through the use
of the #pragma modifier statement, user-defined modifiers can be associated with any ele-
ment of an IDL specification. (See the section entitled “SOM Interface Definition Language” in
Chapter 4, “SOM IDL and the SOM Compiler.”) When the SOM Compiler creates the Interface
Repository from an IDL specification, these potentially arbitrary modifiers are stored in the IR
and can then be accessed via the methods provided by the Interface Repository Framework.

This chapter describes, first, how to build and manage interface repositories, and second, the
programming interfaces embodied in the SOM Interface Repository Framework.

7 – 2 SOMobjects Developer Toolkit Users Guide

7.2 Using the SOM Compiler to Build an Interface Repository
The SOMobjects Toolkit includes an Interface Repository emitter that is invoked whenever the
SOM Compiler is run using an sc or somc command with the –u option (which “updates” the
interface repository). The IR emitter can be used to create or update an Interface Repository
file. The IR emitter expects that an environment variable, SOMIR, was first set to designate a file
name for the Interface Repository. For example, to compile an IDL source file named
“newcls.idl” and create an Interface Repository named “newcls.ir”, use a command sequence
similar to the following:

For OS/2:

set SOMIR=c:\myfiles\newcls.ir
sc –u newcls

For AIX:

export SOMIR=~/newcls.ir
sc –u newcls

For Windows:
Note: Ensure that no spaces separate the environment variable “SOMIR”, the equals sign “=”,
and the value being set.

set SOMIR=c:\myfiles\newcls.ir
somc –u newcls

If the SOMIR environment variable is not set, the Interface Repository emitter creates a file
named “som.ir” in the current directory.

The sc or somc command runs the Interface Repository emitter plus any other emitters
indicated by the environment variable SMEMIT (described in the topic “Running the SOM
Compiler” in Chapter 4, “SOM IDL and the SOM Compiler”). To run the Interface Repository
emitter by itself, issue the sc or somc command with the –s option (which overrides SMEMIT)
set to “ir”. For example:

sc –u –sir newcls (On OS/2 or AIX)
somc –u –sir newcls (On Windows)

or equivalently,

sc –usir newcls (On OS/2 or AIX)
somc –usir newcls (On Windows)

The Interface Repository emitter uses the SOMIR environment variable to locate the designated
IR file. If the file does not exist, the IR emitter creates it. If the named interface repository already
exists, the IR emitter checks all of the “type” information in the IDL source file being compiled for
internal consistency, and then changes the contents of the interface repository file to agree with
with the new IDL definition. For this reason, the use of the –u compiler flag requires that all of the
types mentioned in the IDL source file must be fully defined within the scope of the compilation.
Warning messages from the SOM Compiler about undefined types result in actual error mes-
sages when using the –u flag.

The additional type checking and file updating activity implied by the –u flag increases the time it
takes to run the SOM Compiler. Thus, when developing an IDL class description from scratch,
where iterative changes are to be expected, it may be preferable not to use the –u compiler
option until the class definition has stabilized.

7 – 37. The Interface Repository

7.3 Managing Interface Repository files
Just as the number of interface definitions contained in a single IDL source file is optional,
similarly, the number of IDL files compiled into one interface repository file is also at the
programmer’s discretion. Commonly, however, all interfaces needed for a single project or class
framework are kept in one interface repository.

The SOM IR file “som.ir”
The SOMobjects Toolkit includes an Interface Repository file (“som.ir”) that contains objects
describing all of the types, classes, and methods provided by the various frameworks of the
SOMobjects Toolkit. Since all new classes will ultimately be derived from these predefined SOM
classes, some of this information also needs to be included in a programmer’s own interface
repository files.

For example, suppose a new class, called “MyClass”, is derived from SOMObject. When the
SOM Compiler builds an Interface Repository for “MyClass”, that IR will also include all of the
information associated with the SOMObject class. This happens because the SOMObject
class definition is inherited by each new class; thus, all of the SOMObject methods and
typedefs are implicitly contained in the new class as well.

Eventually, the process of deriving new classes from existing ones would lead to a great deal of
duplication of information in separate interface repository files. This would be inefficient, waste-
ful of space, and extremely difficult to manage. For example, to make an evolutionary change to
some class interface, a programmer would need to know about and subsequently update all of
the interface repository files where information about that interface occurred.

One way to avoid this dilemma would be to keep all interface definitions in a single interface
repository (such as “som.ir”). This is not recommended, however. A single interface repository
would soon grow to be unwieldy in size and become a source of frequent access contention.
Everyone involved in developing class definitions would need update access to this one file, and
simultaneous uses might result in longer compile times.

Managing IRs via the SOMIR environment variable
The SOMobjects Toolkit offers a more flexible approach to managing interface repositories. The
SOMIR environment variable can reference an ordered list of separate IR files, which process
from left to right. Taken as a whole, however, this gives the appearance of a single, logical
interface repository. A programmer accessing the contents of “the interface repository” through
the SOM Interface Repository framework would not be aware of the division of information
across separate files. It would seem as though all of the objects resided in a single interface
repository file.

A typical way to utilize this capability is as follows:

• The first (leftmost) Interface Repository in the SOMIR list would be “som.ir”. This file
contains the basic interfaces and types needed in all SOM classes.

• The second file in the list might contain interface definitions that are used globally across a
particular enterprise.

• A third interface repository file would contain definitions that are unique to a particular
department, and so on.

• The final interface repository in the list should be set aside to hold the interfaces needed
for the project currently under development.

Developers working on different projects would each set their SOMIR environment variables to
hold slightly different lists. For the most part, the leftmost portions of these lists would be the
same, but the rightmost interface repositories would differ. When any given developer is ready

7 – 4 SOMobjects Developer Toolkit Users Guide

to share his/her interface definitions with other people outside of the immediate work group, that
person’s interface repository can be promoted to inclusion in the master list.

With this arrangement of IR files, the more stable repositories are found at the left end of the list.
For example, a developer should never need to make any significant changes to “som.ir”,
because these interfaces are defined by IBM and would only change with a new release of the
SOMobjects Toolkit.

The Interface Repository Framework only permits updates in the rightmost file of the SOMIR
interface repository list. That is, when the SOM Compiler –u flag is used to update the Interface
Repository, only the final file on the IR list will be affected. The information in all preceding
interface repository files is treated as “read only”. Therefore, to change the definition of an
interface in one of the more global interface repository files, a developer must overtly construct a
special SOMIR list that omits all subsequent (that is, further to the right) interface repository files,
or else petition the owner of that interface to make the change.

It is important that the rightmost filename in the SOMIR interface repository list not appear
elsewhere in the list. For example, the following setting for SOMIR:

%SOMBASE%\ETC\SOM.IR;SOM.IR;C:\IR\COMPANY.IR;SOM.IR

would cause problems when attempting to update the SOM.IR file, because SOM.IR appears
twice in the list.

Here is an example that illustrates the use of multiple IR files with the SOMIR environment
variable. In this example, the SOMBASE environment variable represents the directory in which
the SOMobjects Toolkit files have been installed. Only the “myown.ir” interface repository file
will be updated with the interfaces found in files “myclass1.idl”, “myclass2.idl”, and “my-
class3.idl”.

For OS/2:

set BASE_IRLIST=%SOMBASE%\IR\SOM.IR;C:\IR\COMPANY.IR;C:\IR\DEPT10.IR
set SOMIR=%BASE_IRLIST%;D:\MYOWN.IR
set SMINCLUDE=.;%SOMBASE%\INCLUDE;C:\COMPANY\INCLUDE;C:\DEPT10\INCLUDE
sc –usir myclass1
sc –usir myclass2
sc –usir myclass3

For AIX:

export BASE_IRLIST=$SOMBASE/ir/som.ir:/usr/local/ir/company.ir:\
 /usr/local/ir/dept10.ir
export SOMIR=$BASE_IRLIST:~/myown.ir
export SMINCLUDE=.:$SOMBASE/INCLUDE:/usr/local/company/include:\
 /usr/local/dept10/include
sc –usir myclass1
sc –usir myclass2
sc –usir myclass3

For Windows:
The following example (of multiple IR files with the SOMIR environment variable) will work
correctly only if it is executed from within a .BAT file. (Otherwise, the %BASE_IRLIST% is not
interpreted but is taken literally.)

set BASE_IRLIST=%SOMBASE%\IR\SOM.IR;C:\IR\COMPANY.IR;C:\IR\DEPT10.IR
set SOMIR=%BASE_IRLIST%;D:\MYOWN.IR
set SMINCLUDE=.;%SOMBASE%\INCLUDE;C:\COMPANY\INCLUDE;C:\DEPT10\INCLUDE
somc –usir myclass1
somc –usir myclass2
somc –usir myclass3

7 – 57. The Interface Repository

Placing ‘private’ information in the Interface Repository
When the SOM Compiler updates the Interface Repository in response to the –u flag, it uses all
of the information available from the IDL source file. However, if the __PRIVATE__ preprocessor
variable is used to designate certain portions of the IDL file as private, the preprocessor actually
removes that information before the SOM Compiler sees it. Consequently, private information
will not appear in the Interface Repository unless the –p compiler option is also used in
conjunction with –u. For example:

sc –up myclass1 (On AIX or OS/2)
somc –up myclass1 (On Windows)

This command will place all of the information in the “myclass1.idl” file, including the private
portions, in the Interface Repository.

If you are using tools that understand SOM and rely on the Interface Repository to describe the
types and instance data in your classes, you may need to include the private sections from your
IDL source files when building the Interface Repository.

7 – 6 SOMobjects Developer Toolkit Users Guide

7.4 Programming with the Interface Repository Objects
The SOM Interface Repository Framework provides an object-oriented programming interface
to the IDL information processed by the SOM Compiler. Unlike many frameworks that require
you to inherit their behavior in order to use it, the Interface Repository Framework is useful in its
own right as a set of predefined objects that you can access to obtain information. Of course, if
you need to subclass a class to modify its behavior, you can certainly do so; but typically this is
not necessary.

The SOM Interface Repository contains the fully-analyzed (compiled) contents of all informa-
tion in an IDL source file. This information takes the the form of persistent objects that can be
accessed from a running program. There are ten classes of objects in the Interface Repository
that correspond directly to the major elements in IDL source files; in addition, one instance of
another class exists outside of the IR itself, as follows:

Contained — All objects in the Interface Repository are instances of
classes derived from this class and exhibit the common
behavior defined in this interface.

Container — Some objects in the Interface Repository hold (or contain)
other objects. (For example, a module [ModuleDef] can
contain an interface [InterfaceDef].) All Interface Reposi-
tory objects that hold other objects are instances of classes
derived from this class and exhibit the common behavior
defined by this class.

ModuleDef — An instance of this class exists for each module defined in
an IDL source file. ModuleDefs are Containers, and they
can hold ConstantDefs, TypeDefs, ExceptionDefs,
InterfaceDefs, and other ModuleDefs.

InterfaceDef — An instance of this class exists for each interface named in
an IDL source file. (One InterfaceDef corresponds to one
SOM class.) InterfaceDefs are Containers, and they
can hold ConstantDefs, TypeDefs, ExceptionDefs,
AttributeDefs, and OperationDefs.

AttributeDef — An instance of this class exists for each attribute defined in
an IDL source file. AttributeDefs are found only inside of
(contained by) InterfaceDefs.

OperationDef — An instance of this class exists for each operation (meth-
od) defined in an IDL source file. OperationDefs are Con-
tainers that can hold ParameterDefs. OperationDefs are
found only inside of (contained by) InterfaceDefs.

ParameterDef — An instance of this class exists for each parameter of each
operation (method) defined in an IDL source file.
ParameterDefs are found only inside of (contained by)
OperationDefs.

TypeDef — An instance of this class exists for each typedef, struct,
union, or enum defined in an IDL source file. TypeDefs
may be found inside of (contained by) any Interface Repos-
itory Container except an OperationDef.

ConstantDef — An instance of this class exists for each constant defined
in an IDL source file. ConstantDefs may be found inside
(contained by) of any Interface Repository Container ex-
cept an OperationDef.

7 – 77. The Interface Repository

ExceptionDef — An instance of this class exists for each exception defined
in an IDL source file. ExceptionDefs may be found inside
of (contained by) any Interface Repository Container ex-
cept an OperationDef.

Repository — One instance of this class exists for the entire SOM Inter-
face Repository, to hold IDL elements that are global in
scope. The instance of this class does not, however, reside
within the IR itself.

Methods introduced by Interface Repository classes
The Interface Repository classes introduce nine new methods, which are briefly described
below. Many of the classes simply override methods to customize them for the corresponding
IDL element; this is particularly true for classes representing IDL elements that are only con-
tained within another syntactic element. Full descriptions of each method are found in the
SOMobjects Developer Toolkit: Programmers Reference Manual.

� Contained class methods (all IR objects are instances of this class and exhibit this behavior):

describe — Returns a structure of type Description containing all in-
formation defined in the IDL specification of the syntactic
element corresponding to the target Contained object. For
example, for a target InterfaceDef object, the describe
method returns information about the IDL interface decla-
ration. The Description structure contains a “name” field
with an identifier that categorizes the description (such as,
“InterfaceDescription”) and a “value” field holding an “any”
structure that points to another structure containing the IDL
information for that particular element (in this example, the
interface’s IDL specifications).

within — Returns a sequence designating the object(s) of the IR
within which the target Contained object is contained. For
example, for a target TypeDef object, it might be contained
within any other IR object(s) except an OperationDef ob-
ject.

� Container class methods (some IR objects contain other objects and exhibit this behavior):

contents — Returns a sequence of pointers to the object(s) of the IR
that the target Container object contains. (For example,
for a target InterfaceDef object, the contents method re-
turns a pointer to each IR object that corresponds to a part
of the IDL interface declaration.) The method provides op-
tions for excluding inherited objects or for limiting the
search to only a specified kind of object (such as
AttributeDefs).

describe_contents — Combines the describe and contents methods; returns a
sequence of ContainerDescription structures, one for
each object contained by the target Container object.
Each structure has a pointer to the related object, as well as
“name” and “value” fields resulting from the describe
method.

lookup_name — Returns a sequence of pointers to objects of a given name
contained within a specified Container object, or within
(sub)objects contained in the specified Container object.

7 – 8 SOMobjects Developer Toolkit Users Guide

� ModuleDef class methods:

— Override describe and within.

� InterfaceDef class methods:

describe_interface — Returns a description of all methods and attributes of a
given interface definition object that are held in the Inter-
face Repository.

— Also overrides describe and within.

� AttributeDef class method:

— Overrides describe.

� OperationDef class method:

— Overrides describe.

� ParameterDef class method:

— Overrides describe.

� TypeDef class method:

— Overrides describe.

� ConstantDef class method:

— Overrides describe.

� ExceptionDef class method:

— Overrides describe.

� Repository class methods:

lookup_id — Returns the Contained object that has a specified
RepositoryId.

lookup_modifier — Returns the string value held by a SOM or user-defined
modifier, given the name and type of the modifier, and the
name of the object that contains the modifier.

release_cache — Releases, from the internal object cache, the storage used
by all currently unreferenced Interface Repository objects.

Accessing objects in the Interface Repository
As mentioned above, one instance of the Repository class exists for the entire SOM Interface
Repository. This object does not, itself, reside in the Interface Repository (hence it does not
exhibit any of the behavior defined by the Contained class). It is, however, a Container, and it
holds all ConstantDefs, TypeDefs, ExceptionDefs, InterfaceDefs, and ModuleDefs that are
global in scope (that is, not contained inside of any other Containers).

When any method provided by the Repository class is used to locate other objects in the
Interface Repository, those objects are automatically instantiated and activated. Consequently,
when the program is finished using an object from the Interface Repository, the client code
should release the object using the somFree method.

All objects contained in the Interface Repository have both a “name” and a “Repository ID”
associated with them. The name is not guaranteed to be unique, but it does uniquely identify an
object within the context of the object that contains it. The Repository ID of each object is
guaranteed to uniquely identify that object, regardless of its context.

7 – 97. The Interface Repository

For example, two TypeDef objects may have the same name, provided they occur in separate
name scopes (ModuleDefs or InterfaceDefs). In this case, asking the Interface Repository to
locate the TypeDef object based on its name would result in both TypeDef objects being
returned. On the other hand, if the name is looked up from a particular ModuleDef or
InterfaceDef object, only the TypeDef object within the scope of that ModuleDef or
InterfaceDef would be returned. By contrast, once the Repository ID of an object is known, that
object can always be directly obtained from the Repository object via its Repository ID.

C or C++ programmers can obtain an instance of the Repository class using the
RepositoryNew macro. Programmers using other languages (and C/C++ programmers with-
out static linkage to the Repository class) should invoke the method
somGetInterfaceRepository on the SOMClassMgrObject. For example,

For C or C++ (static linkage):

#include <repostry.h>
Repository repo;

...

repo = RepositoryNew();

From other languages (and for dynamic linkage in C/C++):

1. Use the somEnvironmentNew function to obtain a pointer to the SOMClassMgrObject,
as described in Chapter 3, “Using SOM Classes in Client Programs.”

2. Use the somResolve or somResolveByName function to obtain a pointer to the
somGetInterfaceRepository method procedure.

3. Invoke the method procedure on the SOMClassMgrObject, with no additional argu-
ments, to obtain a pointer to the Repository object.

After obtaining a pointer to the Repository object, use the methods it inherits from Container or
its own lookup_id method to instantiate objects in the Interface Repository. As an example, the
contents method shown in the C fragment below activates every object with global scope in the
Interface Repository and returns a sequence containing a pointer to every global object:

#include <containd.h> /* Behavior common to all IR objects */
Environment *ev;
int i;
sequence(Contained) everyGlobalObject;

ev = SOM_CreateLocalEnvironment(); /* Get an environment to use */
printf (”Every global object in the Interface Repository:\n”);

everyGlobalObject = Container_contents (repo, ev, ”all”, TRUE);

for (i=0; i < everyGlobalObject._length; i++) {
 Contained aContained;

 aContained = (Contained) everyGlobalObject._buffer[i];
 printf (”Name: %s, Id: %s\n”,
 Contained__get_name (aContained, ev),
 Contained__get_id (aContained, ev));
 SOMObject_somFree (aContained);
}

7 – 10 SOMobjects Developer Toolkit Users Guide

Taking this example one step further, here is a complete program that accesses every object in
the entire Interface Repository. It, too, uses the contents method, but this time recursively calls
the contents method until every object in every container has been found:

#include <stdio.h>
#include <containd.h>
#include <repostry.h>

void showContainer (Container c, int *next);

main ()
{
 int count = 0;
 Repository repo;

 repo = RepositoryNew ();
 printf (”Every object in the Interface Repository:\n\n”);
 showContainer ((Container) repo, &count);
 SOMObject_somFree (repo);
 printf (”%d objects found\n”, count);
 exit (0);
}

void showContainer (Container c, int *next)
{
 Environment *ev;
 int i;
 sequence(Contained) everyObject;

 ev = SOM_CreateLocalEnvironment (); /* Get an environment */
 everyObject = Container_contents (c, ev, ”all”, TRUE);

 for (i=0; i<everyObject._length; i++) {
 Contained aContained;

 (*next)++;
aContained = (Contained) everyObject._buffer[i];

 printf (”%6d. Type: %–12s id: %s\n”, *next,
 SOMObject_somGetClassName (aContained),
 Contained__get_id (aContained, ev));

 if (SOMObject_somIsA (aContained, _Container))
 showContainer ((Container) aContained, next);
SOMObject_somFree (aContained);

 }
}

Once an object has been retrieved, the methods and attributes appropriate for that particular
object can then be used to access the information contained in the object. The methods
supported by each class of object in the Interface Repository, as well as the classes themselves,
are documented in the SOMobjects Developer Toolkit: Programmers Reference Manual.

A word about memory management
Several conventions are built into the SOM Interface Repository with regard to memory man-
agement. You will need to understand these conventions to know when it is safe and appropriate
to free memory references and also when it is your responsibility to do so.

All methods that access attributes (such as, the _get_<attribute> methods) always return
either simple values or direct references to data within the target object. This is necessary
because these methods are heavily used and must be fast and efficient. Consequently, you
should never free any of the memory references obtained through attributes. This memory will
be released automatically when the object that contains it is freed.

7 – 117. The Interface Repository

For all methods that give out object references (there are five: within, contents,
lookup_name, lookup_id, and describe_contents), when finished with the object, you are
expected to release the object reference by invoking the somFree method. (This is illustrated in
the sample program that accesses all Interface Repository objects.) Do not release the object
reference until you have either copied or finished using all of the information obtained from the
object.

The describe methods (describe, describe_contents, and describe_interface) return
structures and sequences that contain information. The actual structures returned by these
methods are passed by value (and hence should only be freed if you have allocated the memory
used to receive them). However, you may be required to free some of the information contained
in the returned structures when you are finished. Consult the specific method in the SOMobjects
Developer Toolkit: Programmers Reference Manual for more details about what to free.

During execution of the describe and lookup methods, sometimes intermediate objects are
activated automatically. These objects are kept in an internal cache of objects that are in use,
but for which no explicit object references have been returned as results. Consequently, there is
no way to identify or free these objects individually. However, whenever your program is finished
using all of the information obtained thus far from the Interface Repository, invoking the
release_cache method causes the Interface Repository to purge its internal cache of these
implicitly referenced objects. This cache will replenish itself automatically if the need to do so
subsequently arises.

Using TypeCode pseudo-objects
Much of the detailed information contained in Interface Repository objects is represented in the
form of TypeCodes. TypeCodes are complex data structures whose actual representation is
hidden. A TypeCode is an architected way of describing in complete detail everything that is
known about a particular data type in the IDL language, regardless of whether it is a (built-in)
basic type or a (user-defined) aggregate type.

Conceptually, every TypeCode contains a “kind” field (which classifies it), and one or more
parameters that carry descriptive information appropriate for that particular category of
TypeCode. For example, if the data type is long, its TypeCode would contain a “kind” field with
the value tk_long. No additional parameters are needed to completely describe this particular
data type, since long is a basic type in the IDL language.

By contrast, if the TypeCode describes an IDL struct, its “kind” field would contain the value
tk_struct, and it would possess the following parameters: a string giving the name of the struct,
and two additional parameters for each member of the struct: a string giving the member name
and another (inner) TypeCode representing the member’s type. This example illustrates the
fact that TypeCodes can be nested and arbitrarily complex, as appropriate to express the type
of data they describe. Thus, a structure that has N members will have a TypeCode of tk_struct
with 2N+1 parameters (a name and TypeCode parameter for each member, plus a name for the
struct itself).

A tk_union TypeCode representing a union with N members has 3N+2 parameters: the type
name of the union, the switch TypeCode, and a label value, member name and associated
TypeCode for each member. (The label values all have the same type as the switch, except that
the default member, if present, has a label value of zero octet.)

A tk_enum TypeCode (which represents an enum) has N+1 parameters: the name of the
enum followed by a string for each enumeration identifier. A tk_string TypeCode has a single
parameter: the maximum string length, as an integer. (A maximum length of zero signifies an
unbounded string.)

A tk_sequence TypeCode has two parameters: a TypeCode for the sequence elements, and
the maximum size, as an integer. (Again, zero signifies unbounded.)

7 – 12 SOMobjects Developer Toolkit Users Guide

A tk_array TypeCode has two parameters: a TypeCode for the array elements, and the array
length, as an integer. (Arrays must be bounded.)

The tk_objref TypeCode represents an object reference; its parameter is a repository ID that
identifies its interface.

A complete table showing the parameters of all possible TypeCodes is given in the SOMobjects
Developer Toolkit Programmers Reference Manual; see the TypeCode_kind function of the
Interface Repository Framework.

TypeCodes are not actually “objects” in the formal sense. TypeCodes are referred to in the
CORBA standard as pseudo-objects and described as “opaque”. This means that, in reality,
TypeCodes are special data structures whose precise definition is not fully exposed. Their
implementation can vary from one platform to another, but all implementations must exhibit a
minimal set of architected behavior. SOM TypeCodes support the architected behavior and
have additional capability as well (for example, they can be copied and freed).

Although TypeCodes are not objects, the programming interfaces that support them adhere to
the same conventions used for IDL method invocations in SOM. That is, the first argument is
always a TypeCode pseudo-object, and the second argument is a pointer to an Environment
structure. Similarly, the names of the TypeCode functions are constructed like SOM’s C-lan-
guage method-invocation macros (all functions that operate on TypeCodes are named
TypeCode_<function–name>). Because of this ostensible similarity to an IDL class, the
TypeCode programming interfaces can be conveniently defined in IDL as shown below.

interface TypeCode {

enum TCKind {
 tk_null, tk_void,
 tk_short, tk_long, tk_ushort, tk_ulong,
 tk_float, tk_double, tk_boolean, tk_char,
 tk_octet, tk_any, tk_TypeCode, tk_Principal, tk_objref,
 tk_struct, tk_union, tk_enum, tk_string,
 tk_sequence, tk_array,

 // The remaining enumerators are SOM–unique extensions
 // to the CORBA standard.
 //
 tk_pointer, tk_self, tk_foreign
};

exception Bounds {};
// This exception is returned if an attempt is made
// by the parameter() operation (described below) to
// access more parameters than exist in the receiving
// TypeCode.

boolean equal (in TypeCode tc);
// Compares the argument with the receiver and returns TRUE
// if both TypeCodes are equivalent. This is NOT a test for
// identity.

TCKind kind ();
// Returns the type of the receiver as a TCKind.

long param_count ();
// Returns the number of parameters that make up the
// receiving TypeCode.

any parameter (in long index) raises (Bounds);
// Returns the indexed parameter from the receiving TypeCode.
// Parameters are indexed from 0 to param_count()–1.

7 – 137. The Interface Repository

//
// The remaining operations are SOM–unique extensions.
//

short alignment ();
// This operation returns the alignment required for an instance
// of the type described by the receiving TypeCode.

TypeCode copy (in TypeCode tc);
// This operation returns a copy of the receiving TypeCode.

void free (in TypeCode tc);
// This operation frees the memory associated with the
// receiving TypeCode. Subsequently, no further use can be
// made of the receiver, which, in effect, ceases to exist.

void print (in TypeCode tc);
// This operation writes a readable representation of the
// receiving TypeCode to stdout. Useful for examining
// TypeCodes when debugging.

void setAlignment (in short align);
// This operation overrides the required alignment for an
// instance of the type described by the receiving TypeCode.

long size (in TypeCode tc);
// This operation returns the size of an instance of the
// type represented by the receiving TypeCode.
};

A detailed description of the programming interfaces for TypeCodes is given in the SOMobjects
Developer Toolkit: Programmers Reference Manual.

Providing ‘alignment’ information
In addition to the parameters in the TypeCodes that describe each type, a SOM-unique
extension to the TypeCode functionality allows each TypeCode to carry alignment information
as a “hidden” parameter. Use the TypeCode_alignment function to access the alignment
value. The alignment value is a short integer that should evenly divide any memory address
where an instance of the type will occur.

If no alignment information is provided in your IDL source files, all TypeCodes carry default
alignment information. The default alignment for a type is the natural boundary for the type,
based on the natural boundary for the basic types of which it may be composed. This informa-
tion can vary from one hardware platform to another. The TypeCode will contain the default
alignment information appropriate to the platform where it was defined.

To provide alignment information for the types and instances of types in your IDL source file, use
the “align=N” modifier, where N is your specified alignment. Use standard modifier syntax of the
SOM Compiler to attach the alignment information to a particular element in the IDL source file.
In the following example, align=1 (that is, unaligned or no alignment) is attached to the struct
“abc” and to one particular instance of struct “def” (the instance data item “y”).

7 – 14 SOMobjects Developer Toolkit Users Guide

 interface i {
 struct abc {
 long a;
 char b;
 long c;
 };

struct def {
 char l;
 long m;
 };

 void foo ();

implementation {

 //# instance data
 abc x;
 def y;
 def z;

//# alignment modifiers
 abc: align=1;
 y: align=1;
 };
 };

Be aware that assigning the required alignment information to a type does not guarantee that
instances of that type will actually be aligned as indicated. To ensure that, you must find a way to
instruct your compiler to provide the desired alignment. In practice, this can be difficult except in
simple cases. Most compilers can be instructed to treat all data as aligned (that is, default
alignment) or as unaligned, by using a compile-time option or #pragma. The more important
consideration is to make certain that the TypeCodes going into the Interface Repository
actually reflect the alignment that your compiler provides. This way, when programs (such as
the DSOM Framework) need to interpret the layout of data during their execution, they will be
able to accurately map your data structures. This happens automatically when using the normal
default alignment.

If you wish to use unaligned instance data when implementing a class, place an “unattached”
align=1 modifier in the implementation section. An unattached align=N modifier is presumed
to pertain to the class’s instance data structure, and will by implication be attached to all of the
instance data items.

When designing your own public types, be aware that the best practice of all (and the one that
offers the best opportunity for language neutrality) is to lay out your types carefully so that it will
make no difference whether they are compiled as aligned or unaligned!

Using the ‘tk_foreign’ TypeCode
TypeCodes can be used to partially describe types that cannot be described in IDL (for
example, a FILE type in C, or a specific class type in C++). The SOM-unique extension
tk_foreign is used for this purpose. A tk_foreign TypeCode contains three parameters:

1. The name of the type,
2. An implementation context string, and
3. A length.

The implementation context string can be used to carry an arbitrarily long description that
identifies the context where the foreign type can be used and understood. If the length of the
type is also known, it can be provided with the length parameter. If the length is not known or is
not constant, it should be specified as zero. If the length is not specified, it will default to the size
of a pointer. A tk_foreign TypeCode can also have alignment information specified, just like
any other TypeCode.

7 – 157. The Interface Repository

Using the following steps causes the SOM Compiler to create a foreign TypeCode in the
Interface Repository:

1. Define the foreign type as a typedef SOMFOREIGN in the IDL source file.

2. Use the #pragma modifier statement to supply the additional information for the
TypeCode as modifiers. The implementation context information is supplied
using the “impctx” modifier.

3. Compile the IDL file using the –u option to place the information in the Interface
Repository.

For example:

typedef SOMFOREIGN Point;
#pragma modifier Point: impctx=”C++ Point class”,length=12,align=4;

If a foreign type is used to define instance data, structs, unions, attributes, or methods in an
IDL source file, it is your responsibility to ensure that the implementation and/or usage bindings
contain an appropriate definition of the type that will satisfy your compiler. You can use the
passthru statement in your IDL file to supply this definition. However, it is not recommended
that you expose foreign data in attributes, methods, or any of the public types, if this can be
avoided, because there is no guarantee that appropriate usage binding information can be
provided for all languages. If you know that all users of the class will be using the same
implementation language that your class uses, you may be able to disregard this recommenda-
tion.

TypeCode constants
TypeCodes are actually available in two forms: In addition to the TypeCode information
provided by the methods of the Interface Repository, TypeCode constants can be generated by
the SOM Compiler in your C or C++ usage bindings upon request. A TypeCode constant
contains the same information found in the corresponding IR TypeCode, but has the advantage
that it can be used as a literal in a C or C++ program anywhere a normal TypeCode would be
acceptable.

TypeCode constants have the form TC_<typename>, where <typename> is the name of a
type (that is, a typedef, union, struct, or enum) that you have defined in an IDL source file. In
addition, all IDL basic types and certain types dictated by the OMG CORBA standard come with
pre-defined TypeCode constants (such as TC_long, TC_short, TC_char, and so forth). A full
list of the pre-defined TypeCode constants can be found in the file “somtcnst.h”. You must
explicitly include this file in your source program to use the pre-defined TypeCode constants.

Since the generation of TypeCode constants can increase the time required by the SOM
Compiler to process your IDL files, you must explicitly request the production of TypeCode
constants if you need them. To do so, use the “tcconsts” modifier with the –m option of the sc or
somc command. For example, the command

sc –sh –mtcconsts myclass.idl (On AIX or Windows)
somc –sh –mtcconsts myclass.idl (On Windows)

will cause the SOM Compiler to generate a “myclass.h” file that contains TypeCode constants
for the types defined in “myclass.idl”.

Using the IDL basic type ‘any’
Some Interface Repository methods and TypeCode functions return information typed as the
IDL basic type any. Usually this is done when a wide variety of different types of data may need
to be returned through a common interface. The type any actually consists of a structure with
two fields: a _type field and a _value field. The _value field is a pointer to the actual datum that
was returned, while the _type field holds a TypeCode that describes the datum.

7 – 16 SOMobjects Developer Toolkit Users Guide

In many cases, the context in which an operation occurs makes the type of the datum apparent.
If so, there is no need to examine the TypeCode unless it is simply as a consistency check. For
example, when accessing the first parameter of a tk_struct TypeCode, the type of the result
will always be the name of the structure (a string). Because this is known ahead of time, there is
no need to examine the returned TypeCode in the any _type field to verify that it is a tk_string
TypeCode. You can just rely on the fact that it is a string; or, you can check the TypeCode in the
_type field to verify it, if you so choose.

An IDL any type can be used in an interface as a way of bypassing the strong type checking that
occurs in languages like ANSI C and C++. Your compiler can only check that the interface
returns the any structure; it has no way of knowing what type of data will be carried by the any
during execution of the program. Consequently, in order to write C or C++ code that accesses the
contents of the any correctly, you must always cast the _value field to reflect the actual type of
the datum at the time of the access.

Here is an example of a code fragment written in C that illustrates how the casting must be done
to extract various values from an any:

 #include <som.h> /* For ”any” & ”Environment” typedefs */
 #include <somtc.h> /* For TypeCode_kind prototype */

 any result;
 Environment *ev;

 printf (”result._value = ”);
 switch (TypeCode_kind (result._type, ev)) {

 case tk_string:

 printf (”%s\n”, *((string *) result._value));
 break;

 case tk_long:
 printf (”%ld\n”, *((long *) result._value));
 break;

 case tk_boolean:
 printf (”%d\n”, *((boolean *) result._value));

 break;

 case tk_float:
 printf (”%f\n”, *((float *) result._value));
 break;

 case tk_double:
 printf (”%f\n”, *((double *) result._value));
 break;

 default:

 printf (”something else!\n”);
 }

Note: Of course, an any has no restriction, per se, on the type of datum that it can carry.
Frequently, however, methods that return an any or that accept an any as an argument do place
semantic restrictions on the actual type of data they can accept or return. Always consult the
reference page for a method that uses an any to determine whether it limits the range of types
that may be acceptable.

Chapter 8. The Persistence Framework

Contents

8.1 Introduction 8 – 1.

8.2 The Telephone-Directory Application 8 – 1.
Example 1: Nonpersistent telephone-directory example 8 – 2.

8.3 Persistent Objects 8 – 7.
Example 2: Single inheritance definition of persistent “phoneDir” 8 – 8.
Implementation of the persistent telephone directory 8 – 9.
Example 3: Definition of persistent “dirEntry” 8 – 12.
Example 4: Multiple inheritance definition of persistent “pphoneDir” 8 – 12.
Embedded objects 8 – 14.
Persistent object IDs 8 – 15.
I/O groups 8 – 16.

I/O Group Managers 8 – 17.

8.4 Saving and Restoring Persistent Objects 8 – 18.
Saving a persistent object 8 – 18.
Restoring a persistent object 8 – 18.
Example 5: Storing and restoring a persistent “phoneDir” 8 – 19.

The save function 8 – 20.
The restore function 8 – 22.

Persistent Object ID initialization 8 – 23.
Initialization with given ID 8 – 23.
Environment variables in pathnames 8 – 24.
Initialization with next available ID 8 – 24.
Initialization near another object 8 – 25.

Example 6: Storing objects in multiple files using system-assigned IDs 8 – 26.
Read/Write without children 8 – 27.
Choosing I/O Group Manager SOMPAscii or SOMPBinary 8 – 30.
SOMPAscii and SOMPBinary characteristics 8 – 30.

Store characteristics 8 – 30.
Restore characteristics 8 – 31.
Modifying an object previously stored with SOMPAscii or SOMPBinary 8 – 33.
Adding an object to an existing group stored with SOMPAscii or SOMPBinary 8 – 34
Files created by SOMPAscii and SOMPBinary 8 – 34.

Activation and passivation 8 – 35.

8.5 Managing Persistent Objects 8 – 36.
Checking persistent object existence 8 – 36.
Deleting persistent objects 8 – 36.
Persistent object states 8 – 36.
Garbage collection 8 – 37.

8.6 Storing Objects in Specialized Formats. 8 – 39.
Persistent object format 8 – 39.
Encoder/Decoders 8 – 40.
The default Encoder/Decoder 8 – 41.
Writing an Encoder/Decoder 8 – 42.
Methods supporting encoder/decoders 8 – 42.

ii SOMobjects Developer Toolkit Users Guide

Example 7: Encoder/Decoder example implementation 8 – 45.
The “dirEntry” Encoder/Decoder — “entryED” 8 – 45.
The “phoneDir” encoder/decoder — “dirED” 8 – 46.

8.7 Multi-thread Considerations 8 – 51.

8.8 Error Handling 8 – 51.
Error codes 8 – 53.

Chapter 8. The Persistence Framework

8.1 Introduction
This chapter and the programs it describes demonstrate the use of the Persistence Framework
of the SOMobjects Toolkit. It is assumed that the reader is proficient in the C programming
language and has a working knowledge of Object-Oriented Programming (OOP) with SOM.

The SOMobjects Persistence Framework allows SOM objects to be saved in a persistent state
and then later restored. The term “persistent” as used here means that an object’s state can be
preserved beyond the termination of the process that creates it. Objects can be stored by
themselves or grouped with other objects. Objects can be stored in default formats or in
specially designed formats. Objects can be stored in the file system or in more specialized
repositories. The examples in this chapter assume that objects are being stored in the file
system by the default classes of the framework.

Functionally, the Persistence Framework replaces the file-system interface of a programming
language. The Persistence Framework is not, however, designed to compete with a database
management system. It does not provide recovery, transactions, or multi-user record locking.
These should be handled at a higher level.

Several of the classes of the Persistence Framework can be subclassed to customize how and
where objects are stored. This chapter deals primarily with the default framework classes. For a
detailed discussion of subclassing the framework to change its default behavior, refer to
Appendix D, “Subclassing the Persistence Framework.”

The next section describes a telephone-directory application, which will be used throughout this
chapter to illustrate various features of the Persistence Framework. Subsequent sections
discuss different aspects of persistent objects, techniques for saving and restoring persistent
objects, managing persistent objects, and lastly, advanced topics on customizing the Persis-
tence Framework.

Release 2.1 note: Many of the examples in this chapter make use of the somInit and
somUninit methods. Although these methods have been superseded by the somDefaultInit
and somDestruct methods, which are more efficient, be assured that somInit still executes
correctly. When developing your own applications, however, you may wish to override
somDefaultInit instead of somInit to customize object initialization.

8.2 The Telephone-Directory Application
This chapter uses example programs to demonstrate using the SOMobjects Persistence
Framework. Each example is a variation on a telephone-directory application. The telephone-
directory application creates a list of phone numbers, stores the list, recalls the list, and displays
its contents. This section describes the basic, nonpersistent version of the telephone applica-
tion. Later examples use the Persistence Framework to store and restore the list.

The telephone-directory application includes SOM classes: A directory-entry class (“dirEntry”)
and a phone-directory class (“phoneDir”). An object of class “phoneDir” encapsulates the phone
directory so that individual entires can be added to or deleted from the phone directory. The
“phoneDir” class is defined as follows:

8 – 2 SOMobjects Developer Toolkit Users Guide

Example 1: Nonpersistent telephone-directory example
#include <somobj.idl>
interface dirEntry;

interface phoneDir : SOMObject{
 const unsigned long MAXDIRSIZE = 16;
 attribute sequence<dirEntry, MAXDIRSIZE> directory;

 long addEntry(in dirEntry entry);
// Adds a dirEntry object to the directory.

 void printDirInfo();
// Invokes lsEntry for each instance of direntry.

 dirEntry getEntry(in string entryID);
// getEntry returns a pointer to the list entry with name == entryID.
// If a matching entry is not found, it returns NULL.

 dirEntry dropEntry(in string entryID);
// dropEntry removes the entry with name == entryID from the directory
// array, and returns a pointer to the dropped entry.
// If a matching entry is not found, it returns NULL.
// The client application must use sompDeleteObject on the returned object
// to delete it from the IO Group. The client must also free the dirEntry
// Object returned.

 #ifdef __SOMIDL__

 implementation
 {
 callstyle=oidl;
 releaseorder: addEntry, printDirInfo, getEntry, dropEntry,
 _get_directory, _set_directory;

 // Class Modifiers
 filestem = phonedir;

 passthru C_h = ”#include <direntry.h>”;

 // Method Modifiers
 somInit: override;
 somUninit: override;
 };
 #endif /* __SOMIDL__ */
};

The implementation of “phoneDir” follows:

#define phoneDir_Class_Source
#define SOM_Module_phonedir_Source
#include <phonedir.ih>

8 – 38. The Persistence Framework

SOM_Scope long SOMLINK addEntry(phoneDir somSelf, dirEntry entry)
{
 Environment *ev;
 long rc;

 phoneDirData *somThis = phoneDirGetData(somSelf);
 phoneDirMethodDebug(”phoneDir”,”addEntry”);

 ev = SOM_CreateLocalEnvironment();
 if (sequenceLength(_directory) < sequenceMaximum(_directory)) {
 sequenceElement(_directory, sequenceLength(_directory)) = entry;
 sequenceLength(_directory)++;
 rc = 0L;
 } else
 rc = –1L;
 SOM_DestroyLocalEnvironment(ev);
 return(rc);
}

SOM_Scope void SOMLINK printDirInfo(phoneDir somSelf)
{
 int probe;

 phoneDirData *somThis = phoneDirGetData(somSelf);
 phoneDirMethodDebug(”phoneDir”,”printDirInfo”);

 if (sequenceLength(_directory) > 0) {
 somPrintf(”\n”);
 somPrintf(”Name Phone\n”);
 somPrintf(”–––––––––––––––– ––––––––––––––––\n”);
 for (probe = 0; probe < sequenceLength(_directory); probe++) {
 _lsEntry(sequenceElement(_directory, probe));
 }
 } else {
 somPrintf (”\nDirectory is Empty\n”);
 }
}

SOM_Scope dirEntry SOMLINK getEntry(phoneDir somSelf, string entryID)
{
 int probe;
 char *probename;

 phoneDirData *somThis = phoneDirGetData(somSelf);
 phoneDirMethodDebug(”phoneDir”,”getEntry”);

 for (probe = 0;probe < sequenceLength(_directory);probe++) {
 probename = dirEntry__get_name(sequenceElement(_directory,
 probe));
 if (strcmp(probename, entryID) == 0)
 return (sequenceElement(_directory, probe));
 } /* endfor */

 return (dirEntry) NULL;
}

8 – 4 SOMobjects Developer Toolkit Users Guide

SOM_Scope dirEntry SOMLINK dropEntry(phoneDir somSelf, string entryID)
{
 int probe;
 char *probename;
 dirEntry dptr;
 Environment *ev;

 phoneDirData *somThis = phoneDirGetData(somSelf);
 phoneDirMethodDebug(”phoneDir”,”dropEntry”);

 ev = SOM_CreateLocalEnvironment();
 for (probe = 0;probe < sequenceLength(_directory);probe++) {
 probename = dirEntry__get_name(sequenceElement(_directory,
 probe));
 if (strcmp(probename, entryID) == 0) {
 dptr = sequenceElement(_directory, probe);
 sequenceLength(_directory)––;
 for (; probe < sequenceLength(_directory); probe++) {
 sequenceElement(_directory, probe) =
 sequenceElement(_directory, (probe + 1));
 }
 SOM_DestroyLocalEnvironment(ev);
 return dptr;
 } /* endif */
 } /* endfor */

 SOM_DestroyLocalEnvironment(ev);
 return (dirEntry) NULL;
}

SOM_Scope void SOMLINK somInit(phoneDir somSelf)
{
 phoneDirData *somThis = phoneDirGetData(somSelf);
 phoneDirMethodDebug(”phoneDir”,”somInit”);
 phoneDir_parent_SOMObject_somInit(somSelf);

 sequenceMaximum(_directory) = MAXDIRSIZE;
 sequenceLength(_directory) = 0;
 _directory._buffer = SOMMalloc(sizeof (dirEntry) * MAXDIRSIZE);

}

SOM_Scope void SOMLINK somUninit(phoneDir somSelf)
{
 phoneDirData *somThis = phoneDirGetData(somSelf);
 phoneDirMethodDebug(”phoneDir”,”somUninit”);
 phoneDir_parent_SOMObject_somUninit(somSelf);

 if (_directory._buffer) SOMFree(_directory._buffer);
}

8 – 58. The Persistence Framework

A “dirEntry” object encapsulates the name and phone number of a single entry in the telephone
directory. Methods are provided for assigning name and phone number values to an object, and
for displaying the object’s contents. The “dirEntry” is defined as shown here:

#include <somobj.idl>
interface dirEntry : SOMObject
{
 attribute string name;
 attribute string phone;

 void mkEntry(in string name, in string phone_no);
// Initialize new entry.

 void lsEntry();
// lsEntry displays the entry on a single line.

 #ifdef __SOMIDL__
 implementation
 {
 callstyle=oidl;
 // no Environment on methods

 releaseorder: mkEntry, lsEntry,
 _get_name, _set_name,
 _get_phone, _set_phone;

 // Class modifiers
 filestem = direntry;

 // Method modifiers
 somInit: override;
 somUninit: override;

 };
 #endif /* __SOMIDL__ */
};

The following code gives the implementation of “dirEntry”:

#ifndef SOM_Module_direntry_Source
#define SOM_Module_direntry_Source
#endif
#define dirEntry_Class_Source
#include <direntry.ih>
#include <string.h>
SOM_Scope void SOMLINK mkEntry(dirEntry somSelf, string name,
 string phone_no)
{
 dirEntryData *somThis = dirEntryGetData(somSelf);
 dirEntryMethodDebug(”dirEntry”,”mkEntry”);

 if (_name) SOMFree(_name);
 _name = (string)SOMMalloc(strlen(name)+1);
 strcpy (_name, name);
 if (_phone) SOMFree(_phone);
 _phone = (string)SOMMalloc(strlen(phone_no)+1);
 strcpy (_phone, phone_no);
}

8 – 6 SOMobjects Developer Toolkit Users Guide

SOM_Scope void SOMLINK lsEntry(dirEntry somSelf)
{
 dirEntryData *somThis = dirEntryGetData(somSelf);
 dirEntryMethodDebug(”dirEntry”,”lsEntry”);

 somPrintf (”%–16s %–16s\n”, _name, _phone);
}

SOM_Scope void SOMLINK somInit(dirEntry somSelf)
{
 dirEntryData *somThis = dirEntryGetData(somSelf);
 dirEntryMethodDebug(”dirEntry”,”somInit”);
 dirEntry_parent_SOMObject_somInit(somSelf);

 _name = NULL;
 _phone = NULL;
}
SOM_Scope void SOMLINK somUninit(dirEntry somSelf)
{
 dirEntryData *somThis = dirEntryGetData(somSelf);
 dirEntryMethodDebug(”dirEntry”,”somUninit”);
 dirEntry_parent_SOMObject_somUninit(somSelf);

 if (_name) SOMFree(_name);
 if (_phone) SOMFree(_phone);
}

The following test program demonstrates the use of the “phoneDir” class:

#include ”phonedir.h” /* Client Class Includes */
#include ”direntry.h”

main()
{
 long int rc;

 dirEntry name1, name2;
 phoneDir mylist;
 Environment *ev;

/* Initialize system.
 –––––––––––––––––– */
 ev = SOM_CreateLocalEnvironment();

/* Create a directory with two entries.
 –––––––––––––––––––––––––––––––––––– */
 mylist = phoneDirNew();
 name1 = dirEntryNew();
 _mkEntry (name1, ev, ”Roger”, ”555–8585”);
 _addEntry (mylist, ev, name1);

 name2 = dirEntryNew();
 _mkEntry (name2, ev, ”Charles”, ”555–1717”);
 _addEntry (mylist, ev, name2);

8 – 78. The Persistence Framework

/* Display the directory.
 ––––––––––––––––––––––*/
 _printDirInfo(mylist, ev);

/* Shutdown.
 ––––––––– */
 SOM_DestroyLocalEnvironment(ev);
}

This program produces the following output:

Name Phone
–––––––––––––––– ––––––––––––––––
Roger 555–8585
Charles 555–1717

8.3 Persistent Objects
A persistent object is one whose state can be preserved beyond the termination of the process
that creates it. An object is potentially persistent if its class is derived (either directly or indirectly)
from the SOMPPersistentObject class, either through single or multiple inheritance. If through
single inheritance, the class of persistent objects (such as “phoneDir”) is usually derived directly
from SOMPPersistentObject. If through multiple inheritance, typically a nonpersistent version
of the class already exists, and then the persistent version of the class is derived from both the
nonpersistent version and SOMPPersistentObject.

The following definition of the “phoneDir” class from the telephone directory application demon-
strates the single inheritance case. The differences between the nonpersistent and the persis-
tent versions of “phoneDir” are shown in bold.

8 – 8 SOMobjects Developer Toolkit Users Guide

Example 2: Single inheritance definition of persistent “phoneDir”

#include <po.idl>

interface dirEntry;

interface phoneDir : SOMPPersistentObject
{
 const unsigned long MAXDIRSIZE = 16;
 attribute sequence<dirEntry, MAXDIRSIZE> directory;

 long addEntry(in dirEntry entry);
// Adds a dirEntry object to the directory.

 void printDirInfo();
// Invokes lsEntry for each instance of direntry.

 dirEntry getEntry(in string entryID);
// getEntry returns a pointer to the list entry with name == entryID.
// If a matching entry is not found, it returns NULL.

 dirEntry dropEntry(in string entryID);
// dropEntry removes the entry with name == entryID from the directory
// array, and returns a pointer to the dropped entry.
// If a matching entry is not found, it returns NULL.
// The client application must use sompDeleteObject on the returned object
// to delete it from the IO Group. The client must also free the dirEntry
// Object returned.

 #ifdef __SOMIDL__

 implementation
 {
 callstyle=oidl;

 releaseorder: addEntry, printDirInfo, getEntry, dropEntry,
 _get_directory, _set_directory;

 // Class Modifiers
 filestem = phonedir;

 passthru C_h = ”#include <direntry.h>”;

 // Attribute Modifiers
 directory: persistent;

 // Method Modifiers
 somInit: override;
 somUninit: override;
 sompIsDirty: override;
 };
 #endif /* __SOMIDL__ */

};

To make the object persistent we have derived it from SOMPPersistentObject. The
SOMPPersistentObject class is defined in the po.idl file which is included at the beginning of
the file.

8 – 98. The Persistence Framework

Observe that Example 2 includes the following new statement, which registers the “directory”
attribute as a persistent attribute:

 directory: persistent;

In order to use the default format (class SOMPAttrEncoderDecoder) for writing persistent
object data to a file, persistent object classes must fulfill the following design criteria:

• All persistent data must be one of these standard CORBA types:
short, long, unsigned short, unsigned long, float, double,
boolean, char, octet, string, sequence, structure, union,
enum, array, union, or a persistent object.

• All persistent data must be declared as an attribute, and each of these attributes must be
signified by the attribute modifier persistent. The persistent modifier for an attribute may
appear in a derived class.

• Your persistent object interface definitions and those which they are derived from, if they
contain persistent data, must be put in the SOM Interface Repository. This is done by
compiling your .idl files with the –u flag, for example:

sc –sir –u myclass.idl (On AIX or OS/2),
somc –sir –u myclass.idl (On Windows)

Finally, observe that the SOMPPersistentObject method sompIsDirty has been overridden.
The sompIsDirty method is responsible for reporting whether the object is “dirty”. That is, that
the object’s persistent data has been changed. By default, the sompIsDirty method always
returns TRUE.

The implementation of the persistent “phoneDir” class is, for the most part, unchanged from the
nonpersistent “phoneDir” class, except for the addition of the lines shown in bold in the following
methods and the addition of the sompIsDirty implementation. Also take note of the additions to
somInit and somUninit. These methods must pass through to their parent implementations for
the Persistence Framework to initialize your object correctly.

Implementation of the persistent telephone directory
The following highlights the modifications to the “addEntry” method:

SOM_Scope long SOMLINK addEntry(phoneDir somSelf, dirEntry entry)
{
 Environment *ev;
 long rc;

 phoneDirData *somThis = phoneDirGetData(somSelf);
 phoneDirMethodDebug(”phoneDir”,”addEntry”);

 ev = SOM_CreateLocalEnvironment();
 if (sequenceLength(_directory) < sequenceMaximum(_directory)) {
 sequenceElement(_directory, sequenceLength(_directory)) = entry;
 sequenceLength(_directory)++;
 _sompSetDirty (somSelf, ev);
 rc = 0L;
 } else
 rc = –1L;
 SOM_DestroyLocalEnvironment(ev);
 return(rc);
}

8 – 10 SOMobjects Developer Toolkit Users Guide

The modification of the “dropEntry” method is similar to the “addEntry” method:

SOM_Scope dirEntry SOMLINK dropEntry(phoneDir somSelf, string entryID)
{
 int probe;
 char *probename;
 dirEntry dptr;
 Environment *ev;

 phoneDirData *somThis = phoneDirGetData(somSelf);
 phoneDirMethodDebug(”phoneDir”,”dropEntry”);

 ev = SOM_CreateLocalEnvironment();
 for (probe = 0;probe < sequenceLength(_directory);probe++) {
 probename = dirEntry__get_name(sequenceElement(_directory,
 probe));
 if (strcmp(probename, entryID) == 0) {
 dptr = sequenceElement(_directory, probe);
 sequenceLength(_directory)––;
 for (; probe < sequenceLength(_directory); probe++) {
 sequenceElement(_directory, probe) =
 sequenceElement(_directory, (probe + 1));
 }
 _sompSetDirty (somSelf, ev);
 SOM_DestroyLocalEnvironment(ev);
 return dptr;
 } /* endif */
 } /* endfor */

 SOM_DestroyLocalEnvironment(ev);
 return (dirEntry) NULL;
}

Dirty Objects: Observe that the implementation of the persistent “phoneDir” class has the
following line added to each method that modifies a persistent object:

 _sompSetDirty (somSelf, env);

This line invokes the sompSetDirty method. The Persistence Framework can be optimized to
write only “dirty” objects (objects that have been modified since they were last written) whenever
possible. Therefore, any method that updates the persistent data of an object should use the
sompSetDirty method to mark the object as dirty. Clean objects may also be stored at the
discretion of the Persistence Framework.

Recall that sompIsDirty by default always returns TRUE. In the implementation of the
sompIsDirty method below, sompIsDirty returns the result of sompGetDirty. sompGetDirty
reports TRUE if sompSetDirty has been invoked on the object.

SOM_Scope boolean SOMLINK sompIsDirty(phoneDir somSelf,
Environment *ev)
{
 phoneDirData *somThis = phoneDirGetData(somSelf);
 phoneDirMethodDebug(”phoneDir”,”sompIsDirty”);

 return (_sompGetDirty(somSelf, ev));
}

Below, the additions to somInit and somUninit are shown in bold. These additions must be
made to your persistent object if your object overrides somInit and somUninit. These methods
perform initialization and cleanup that must be completed for the framework to work correctly.

8 – 118. The Persistence Framework

SOM_Scope void SOMLINK somInit(phoneDir somSelf)
{
 phoneDirData *somThis = phoneDirGetData(somSelf);
 phoneDirMethodDebug(”phoneDir”,”somInit”);

 phoneDir_parent_SOMPPersistentObject_somInit(somSelf);
 sequenceMaximum(_directory) = MAXDIRSIZE;
 sequenceLength(_directory) = 0;
 _directory._buffer =
 SOMMalloc(sizeof (dirEntry) * MAXDIRSIZE);
}

SOM_Scope void SOMLINK somUninit(phoneDir somSelf)
{
 phoneDirData *somThis = phoneDirGetData(somSelf);
 phoneDirMethodDebug(”phoneDir”,”somUninit”);

 if (_directory._buffer) SOMFree(_directory._buffer);
 phoneDir_parent_SOMPPersistentObject_somUninit(somSelf);
}

8 – 12 SOMobjects Developer Toolkit Users Guide

Example 3: Definition of persistent “dirEntry”
Revising “dirEntry”: The following code shows the definition of the persistent “dirEntry” class,
with differences from the nonpersistent version shown in bold:

#include <po.idl>

interface dirEntry : SOMPPersistentObject
{
 attribute string name;
 attribute string phone;

 void mkEntry(in string name, in string phone_no);
// Initialize new entry.

 void lsEntry();
// lsEntry displays the entry on a single line.

 #ifdef __SOMIDL__
 implementation
 {
 callstyle=oidl;
 // no Environment on methods

 releaseorder: mkEntry, lsEntry,
 _get_name, _set_name,
 _get_phone, _set_phone;

 // Class modifiers
 filestem = direntry;

 // Attribute modifiers
 name: persistent;
 phone: persistent;

 // Method modifiers
 somInit: override;
 somUninit: override;
 sompIsDirty: override;

 };
 #endif /* __SOMIDL__ */
};

These changes are analogous to the changes in the “phoneDir” class. The implementation of
the persistent “dirEntry” class is the same as for the nonpersistent “dirEntry” and includes the
addition of the sompIsDirty implementation. One might expect to initialize the persistent
objects as dirty in their somInit methods; however, this is unnecessary because initializing an
object with a persistent ID automatically sets its state to dirty. Persistent-object initialization is
discussed in a later section.

The next version of the “phoneDir” class demonstrates the multiple inheritance case.

Example 4: Multiple inheritance definition of persistent “pphoneDir”
Assuming that the original non-persistent definition of the “phoneDir” class is in the
“phonedir.idl” file, then the following interface definition of “pphoneDir” demonstrates the ability
to define a new persistent object class that inherits both from SOMPPersistentObject and from
an existing base class, namely “phoneDir”. Notice that, although the “directory” attribute was
defined in the base “phoneDir” class, it can be marked as persistent in the derived class.

8 – 138. The Persistence Framework

#include <po.idl>
#include <phonedir.idl>

interface pphoneDir : phoneDir, SOMPPersistentObject {

 #ifdef __SOMIDL__
 implementation
 {
 callstyle=oidl;
 // Attribute modifiers
 directory: persistent;
 // Method modifiers
 addEntry: override;
 dropEntry: override;
 somInit: override;
 somUninit: override;
 sompIsDirty: override;
 };
 #endif /* __SOMIDL__ */
};

Because most of the implementation remains in the “phoneDir” object the implementation of
pphoneDir is quite small. The overridden methods “addEntry” and “dropEntry” make use of their
parent implementations and then mark the object as dirty if the parent methods were success-
ful.

SOM_Scope long SOMLINK addEntry(pphoneDir somSelf, dirEntry entry)
{
 Environment *ev;
 long rc;
 /* pphoneDirData *somThis = pphoneDirGetData(somSelf); */
 pphoneDirMethodDebug(”pphoneDir”,”addEntry”);

 rc = pphoneDir_parent_phoneDir_addEntry(somSelf, entry);
 if (rc==0) {
 ev = SOM_CreateLocalEnvironment();
 _sompSetDirty (somSelf, ev);
 SOM_DestroyLocalEnvironment(ev);
 }
 return (rc);
}
SOM_Scope dirEntry SOMLINK dropEntry(pphoneDir somSelf, string
entryID)
{
 dirEntry dptr;
 Environment *ev;
 /* pphoneDirData *somThis = pphoneDirGetData(somSelf); */
 pphoneDirMethodDebug(”pphoneDir”,”dropEntry”);

 dptr = pphoneDir_parent_phoneDir_dropEntry(somSelf, entryID);
 if (dptr) {
 ev = SOM_CreateLocalEnvironment();
 _sompSetDirty (somSelf, ev);
 SOM_DestroyLocalEnvironment(ev);
 }
 return(dptr);
}

8 – 14 SOMobjects Developer Toolkit Users Guide

It is very important that you override the somInit and somUninit methods in the multiply
inherited “pphoneDir” class. If you do not override these methods, then only the leftmost
parent’s somInit and somUninit methods are invoked for the object when it is created and
freed. The following example shows the correct implementation of the somInit and somUninit
methods for the “pphoneDir” class:

SOM_Scope void SOMLINK somInit(pphoneDir somSelf)
{
 pphoneDirMethodDebug(”pphoneDir”,”somInit”);

 pphoneDir_parent_phoneDir_somInit(somSelf);
 pphoneDir_parent_SOMPPersistentObject_somInit(somSelf);
}

SOM_Scope void SOMLINK somUninit(pphoneDir somSelf)
{
 pphoneDirMethodDebug(”pphoneDir”,”somUninit”);

 pphoneDir_parent_phoneDir_somUninit(somSelf);
 pphoneDir_parent_SOMPPersistentObject_somUninit(somSelf);
}

The sompIsDirty method override in “pphoneDir” is implemented the same as earlier examples
and thus is not shown.

Embedded objects
In the phone directory example, note that the “phoneDir” class attribute “directory” is a se-
quence of objects. The Persistence Framework can save and restore objects that are arbitrarily
complex. That is, the Persistence Framework can save and restore objects that contain point-
ers to other objects, which themselves contain pointers to yet other objects. For example, a
“phoneDir” object might contain an sequence of pointers to “dirEntry” objects, as shown in the
following illustration:

Data

myPhoneDir

Data

Data

Data

Mary

John

Mom

= object of class “phoneDir”

= object of class “dirEntry”

Objects pointing to other objects

The relationship between the “myPhoneDir” object and the “Mary,” “John,” and “Mom” objects is
referred to here as a “parent-child” relationship. For example, “myPhoneDir” is said to be the
“parent object” of “Mary,” “John,” and “Mom,” and “Mary,” “John,” and “Mom” are said to be the
“children” of the “myPhoneDir” object. Parent-child relationships between objects are orthogo-

8 – 158. The Persistence Framework

nal to parent-child relationships between classes; “Mary” can be an instance of a class that is not
related (in terms of the class derivation hierarchy) to the class of which “myPhoneDir” is an
instance.

Because the “myPhoneDir” object points to the “Mary”, “John”, and “Mom” objects, all the
objects are stored and restored at the same time, even if they are stored in different files. That is,
when the programmer asks for myPhoneDir to be stored, as a consequence, “Mary”, “John”,
and “Mom” will also be stored. Similarly, when the programmer asks for myPhoneDir to be
restored, “Mary”, “John”, and “Mom” will be restored as well. (There are methods available
whereby the programmer can request that the children of an object not be saved/restored along
with its parent object. This will be discussed later.)

Persistent object IDs
So far, we have described only how you would go about declaring an object as persistent. In this
section and the next, we describe two key characteristics of the Persistence Framework which
must be understood before we show how to store your persistent objects. These are Persistent
Object IDs and I/O Groups. In order to be saved and restored, each persistent object must be
assigned an ID. When you assign an ID to a persistent object, this tells the Persistence
Framework how and where to store your object. This also tells the Framework whether an object
should be grouped with another.

A persistent ID is an object which contains a string value that uniquely identifies a persistent
object. In general, a persistent ID string has the following format:

<IOGroupMgrClassName>:<IOGroupName>:<GroupOffset>

The first part of the ID string is the name of an I/O Group Manager class. This class defines how
the object will be stored. The second part of the ID string is a name which is understandable to
the I/O Group Manager class. The I/O Group Name defines where you want the object stored.
By initializing multiple objects with the same I/O Group Manager class name and I/O Group
Name, you indicate to the Persistence Framework that the objects should be grouped together
into an I/O Group. (I/O Groups are described more in the next section.) The last part of the ID,
the group offset, is used to uniquely identify an object within a group of objects that have the
same I/O Group Manager class name and I/O Group name.

Consider the following specific example of a persistent ID string:

SOMPAscii:./pdata/phoneDir:0

The first part of the above persistent ID (SOMPAscii) identifies the class of the object’s I/O
Group Manager. In this case, the default I/O Group Manager class SOMPAscii is used. The
second part (./pdata/phoneDir) is a name that the I/O Group Manager SOMPAscii under-
stands. For the SOMPAscii I/O Group Manager, the second part of the ID is always a file name
indicating the file in which the object will be stored. The final portion of the ID (0) is a key number
(also known as the group offset number) that uniquely identifies the object within an I/O Group
and therefore within the file where the persistent object will be stored.

Note: Throughout this chapter, persistent IDs are shown for AIX. For OS/2 or Windows, a
persistent ID string shown as SOMPAscii:./pdata/phoneDir:0 would be written
instead as SOMPAscii:.\\pdata\\phoneDir:0 (using double backslashes within
a string in order to designate a backslash rather than the escape character, as defined in
the C language).

A Persistent ID string has a maximum size of SOMPMAXIDSIZE. This number is defined in the
main Persistence Framework header file (somp.h).

8 – 16 SOMobjects Developer Toolkit Users Guide

A persistent object must be associated with an ID before it can be stored/restored. Every
persistent object supports methods (inherited from SOMPPersistentObject) for setting its
persistent ID. These methods will be demonstrated later. There are several ways to create a
persistent ID:

• The programmer can specifically create an ID;

• The programmer can ask an “ID Assigner” to create an ID; or

• The programmer can ask for an ID to be assigned that will place the object in the same I/O
group as some other object.

To have the system assign an ID for a persistent object (the second item above), a client
program must create an ID Assigner object. An ID Assigner is an object that knows how to
manufacturer a persistent ID for an object. The Persistence Framework supplies a class,
SOMPIdAssigner, from which ID Assigners can be instantiated.

I/O groups
All persistent objects, once initialized with a Persistent ID, are placed into an I/O Group. One I/O
group consists of all the objects that are stored together in a single file. An I/O group can consist
of a single object. The organization of objects into I/O groups is unrelated to their pointer
relationships. Thus, the previously discussed “phoneDir” and “dirEntry” objects might have any
of the following groupings, among others:

myPhoneDir

Grouping 1: myphoneDir Mary John Mom

= a single file

Grouping 2: myPhoneDir Mary John MommyPhoneDir

myPhoneDirmyPhoneDir Mary John MomGrouping 3:

myPhoneDirmyPhoneDir Mary John MomGrouping 4:

Mary John MomGrouping 5:

Possible I/O groupings

Regardless of how persistent objects are grouped, the parent-child relationships among them
still hold. That is, even if the “myPhoneDir” object belongs to a different I/O group from the
“Mary,” “John,” and “Mom” objects, whenever the “myPhoneDir” object is saved or restored, the
other objects will also be saved/restored (unless the programmer specifies otherwise), because
they are children of “myPhoneDir.”

An I/O Group is an object of class SOMPIOGroup. You can obtain a persistent object’s I/O
Group by invoking the method sompGetIOGroup on the persistent object.

8 – 178. The Persistence Framework

I/O Group Managers
Each I/O group is associated with exactly one I/O Group Manager object — an object whose
class is derived from SOMPIOGroupMgrAbstract. The I/O Group Manager is determined
based on the Persistent ID(s) of the object(s) contained in the I/O Group. The default I/O Group
Manager class, supplied by the Persistence Framework, is SOMPAscii.

The SOMPAscii I/O Group Manager stores each I/O group as a single file. In addition to
organizing persistent objects into groups, a SOMPAscii I/O Group Manager also maintains
structure and status (“bookkeeping”) information pertaining to the persistent object(s) in the
group. This bookkeeping data is stored in the I/O group as readable text. Other I/O group
managers may store these data in different formats. A second I/O Group Manager class
supplied by the Persistence Framework is SOMPBinary. The SOMPBinary I/O Group Manag-
er is similar to SOMPAscii except that numeric data is stored in binary format .

When you store an object with either of the supplied I/O Group Managers, this also stores all of
the objects in the same I/O Group if they are dirty. Consider the following groups of objects:

Grouping 6: student1 student2 student3 student4

= a single file

I/O grouping with no parent-child relationships

Grouping 7: student1 student2 student3 student4

In the Grouping 6 of student objects, there are no parent-child relationships as in the previous
example groupings; however, when “student1” is stored, the other objects (“student2”,
“student3” and “student4”) are also stored. In Grouping 7, by contrast, when “student1” is
stored, the other student objects will not be stored.

When you restore an object with either of the supplied I/O Group Managers, all objects in the
group are instantiated and initialized, but only the data of the requested object is read. Thus,
when “student1” of Grouping 6 is restored, the other students grouped with “student1” are
instantiated and initialized, but their persistent data is not read. In Grouping 7, when “student1”
is restored, none of the other student objects is restored.

It is possible to define your own I/O Group Manager classes by subclassing from the
SOMPIOGroupMgrAbstract class. For complete information, refer to Appendix D, “Subclas-
sing the Persistence Framework.”

8 – 18 SOMobjects Developer Toolkit Users Guide

8.4 Saving and Restoring Persistent Objects
This section describes how to save and restore persistent objects. First, we give an overview of
the general approach, then we examine an example program that follows this approach to
create, store, and restore a persistent telephone-directory object.

Saving a persistent object
There are five steps for creating and storing a persistent object:

1. Initialize the Persistence Framework.

The Persistence Framework is initialized by creating a Persistent Storage Manager
object. The Persistent Storage Manager coordinates the saving and restoring of
persistent objects. It provides the primary interface for clients of the Persistence
Framework. A Persistent Storage Manager is created by instantiating the
SOMPPersistentStorageMgr class, using the SOM-defined procedure
SOMPPersistentStorageMgrNew.

There is only one instance of a Persistent Storage Manager object for a running
process, regardless of how often you call the SOMPPersistentStorageMgrNew
procedure. Therefore, while it may appear to be a memory leak to call
SOMPPersistentStorageMgrNew often, it is not. You must not free (via somFree)
the object returned from SOMPPersistentStorageMgrNew. If you do, the Frame-
work will forget about previously initialized and restored objects.

If the client program is to use system-assigned IDs for persistent objects, then
initialization also includes creating a new instance of the SOMPIdAssigner class.
The ID assigner object supports methods and data elements needed for manufactur-
ing persistent IDs. If you instantiate a SOMPIdAssigner object you must also free it
with somFree.

2. Instantiate the persistent object. (This is done in the same way that nonpersistent
objects are instantiated.)

3. Assign a persistent ID to the persistent object.

A persistent object must have a persistent ID to identify its I/O group. A later section
discusses the options available for assigning IDs to objects.

4. Store the object, using the sompStoreObject method.

5. Remember the ID of the persistent object. To restore the object you just stored, you
will need to remember the string representation of its ID. This is particularly important
if the ID has been generated for you with a SOMPIdAssigner object. The ID string
can be obtained by using the sompGetPersistentIdString method of the persistent
object.

Restoring a persistent object
There are four steps involved in restoring a persistent object:

1. Initialize the Persistence Framework, by instantiating a Persistent Storage Manager
object (as described above).

2. Set the ID of the object to be restored.

The Persistence Framework must be supplied with the persistent ID of the persistent
object to be restored. To assign an ID string to a persistent ID object:

A. Instantiate a new persistent ID object using SOMPPersistentIdNew, and
B. Assign the correct ID string to the ID object using the somutSetIdString method.
The string value specified on somutSetIdString must be the same as that returned
by sompGetPersistentIdString in step 5 above.

8 – 198. The Persistence Framework

3. Restore the object, using the sompRestoreObject method.

The sompRestoreObject method restores the object having the specified persistent
ID, as well all of the object’s persistent children.

4. Free the ID object, using the somFree method.

Example 5: Storing and restoring a persistent “phoneDir”

The following example program creates, saves, and restores a persistent telephone directory
containing two entries. The main program invokes two functions: “save”, which creates and
stores the persistent phone directory, and “restore”, which restores the directory object. These
use the persistent telephone directory as implemented in Examples 2 and 3.

#include <somp.h>
#include ”phonedir.h”
#include ”direntry.h”

void checkError(Environment *ev);
void save(Environment *ev);
void restore(Environment *ev);

main()
{
 Environment *ev;
 ev = SOM_CreateLocalEnvironment();

 save(ev);
 restore(ev);

 SOM_DestroyLocalEnvironment(ev);
}

The following function is used throughout the sample to check for errors returned by the
Persistence Framework.

void checkError(Environment *ev)
{
 sompException *params;

 if(ev–>_major == NO_EXCEPTION) return;

 somPrintf(”Exception %s raised.\n”, somExceptionId(ev));
 if (strcmp(somExceptionId(ev), ex_SOMPError_sompException)==0) {
 params = (sompException*)somExceptionValue(ev);
 somPrintf(” SOMP primary error = %d\n”, params–>primary);
 somPrintf(”SOMP secondary error = %d\n”, params–>secondary);
 }
 somExceptionFree(ev);
 exit(1);
}

8 – 20 SOMobjects Developer Toolkit Users Guide

The save function
The “save” function creates and stores the persistent phone directory:

void save(Environment *ev)
{
 SOMPPersistentStorageMgr psm = SOMPPersistentStorageMgrNew();
 dirEntry name1, name2;
 phoneDir mylist;
 SOMPPersistentId pid;

/* Create persistent phone directory.
 ––––––––––––––––––––––––––––––––––*/
 mylist = phoneDirNew();
 pid = SOMPPersistentIdNew();
 _somutSetIdString(pid, ev, ”SOMPAscii:./pdata/phoneDir:0”);
 checkError(ev);
 _sompInitGivenId (mylist, ev, pid); /* copies the given ID */
 checkError(ev);
 _somFree (pid); /* Free the ID, mylist retains a copy */

/* Add entry 1.
 ––––––––––––*/
 name1 = dirEntryNew();
 _mkEntry (name1, ”Roger”, ”555–5085”);
 /* put name1 in same group as mylist */
 _sompInitNearObject(name1, ev, mylist);
 checkError(ev);
 _addEntry (mylist, name1);

/* Add entry 2.
 ––––––––––––*/
 name2 = dirEntryNew();
 _mkEntry (name2, ”Hari”, ”555–5079”);
 /* put name2 in same group as mylist */
 _sompInitNearObject (name2, ev, mylist);
 checkError(ev);
 _addEntry (mylist, name2);

/* Display phone directory.
 ––––––––––––––––––––––––*/
 _printDirInfo(mylist);

/* Store the phone directory.
 Since name1 and name2 are children of mylist, they are
 stored along with mylist.
 ––*/
 _sompStoreObject (psm, ev, mylist);
 checkError(ev);

 _somFree (name2);
 _somFree (name1);
 _somFree (mylist);
}

8 – 218. The Persistence Framework

The code that assigns the “phoneDir” object (“mylist”) its persistent ID is shown in bold. The
persistent ID consists of three parts, delimited by colons and concatenated into a single string,
as follows:

• For this example, the I/O Group Manager class is SOMPAscii, the default I/O group
manager supplied with the Persistence Framework for storing persistent objects in files.

• The pathname for the object’s group is “./pdata/phoneDir”, which indicates that the I/O
group “phoneDir” is stored in the “pdata” subdirectory of the directory in which the process
is run. (This example is for AIX. For OS/2 and Windows users, the comparable pathname
would be specified as “.\\pdata\\phoneDir”, using double backslashes within the string to
designate a backslash rather than the escape character, as defined in the C language.)

• The offset of the object is 0. The offset number is used to uniquely identify the phone
directory object within the group. The offset should not be confused as being the byte
offset of the object data within the file in which the object is stored.

The persistent ID value is assigned to a persistent ID object (“pid”) using the somutSetIdString
method:

 _somutSetIdString(pid, ev, ”SOMPAscii:./pdata/phoneDir:0”);

and is assigned to the “mylist” persistent object using the sompInitGivenId method:

 _sompInitGivenId (mylist, ev, pid);

Persistent IDs are assigned to the two directory-entry objects using the sompInitNearObject
method:

 _sompInitNearObject(name1, ev, mylist);

This method assigns a persistent ID to the “name1” object, which is equivalent to the “mylist”
object ID except for the persistent ID offset number. The sompInitNearObject method will
assign a new offset number for the “name1” ID. You can determine the ID string of the directory
entry objects with the sompGetPersistentIdString method. By initializing the directory entry
objects with sompInitNearObject, they become grouped with the phone directory object. For
the SOMPAscii I/O Group Manager class that will be used to store these objects, that means
that all the objects will be stored in the same file.

The phone directory and both of the directory entries are stored by the method
sompStoreObject. Since the two “dirEntry” objects are children of (pointed to by) the
“phoneDir” object, all three are stored by a single invocation of the sompStoreObject method.

Finally, the persistent ID object (“pid”) is freed, using the somFree method. The persistent ID
you pass to the sompInitGivenId is copied; therefore, to avoid a memory leak, you must free
the ID you allocated.

8 – 22 SOMobjects Developer Toolkit Users Guide

The restore function
The “restore” function restores the persistent phone directory:

void restore(Environment *ev)
{
 SOMPPersistentStorageMgr psm = SOMPPersistentStorageMgrNew();
 SOMPPersistentId pid;
 phoneDir mylist;

 InitPhoneLib();

 /* Set persistent ID.
 –––––––––––––––––– */
 pid = SOMPPersistentIdNew();
 _somutSetIdString(pid, ev, ”SOMPAscii:./pdata/phoneDir:0”);
 checkError(ev);

/* Restore the Directory.
 –––––––––––––––––––––– */
 mylist = _sompRestoreObject (psm, ev, pid);
 checkError(ev);

/* Display the directory.
 ––––––––––––––––––––––*/
 _printDirInfo(mylist);

 _somFree (pid);
}

Notice the call to the “InitPhoneLib” function. This serves as a reminder that, before you can
restore objects with the Persistence Framework, the class objects of the objects you will be
restoring must exist. The implementation of “InitPhoneLib” is specific to how the implementation
of the “phoneDir” and “dirEntry” classes is linked with the client program. If the classes are
statically linked with the “restore” function, “InitPhoneLib” should instantiate each class object
involved in the restore (_phoneDir and _dirEntry). In this case, “InitPhoneLib” could be written
as

void InitPhoneLib() {
 phoneDirNewClass(0,0);
 dirEntryNewClass(0,0);
}

If the client program is not statically linked with the implementation of the “phoneDir” and
“dirEntry” classes, the call to “InitPhoneLib” can be omitted. The Persistence Framework will
dynamically load the classes and create their class objects (via somFindClass), assuming that
the dllname modifier of the classes correctly specifies the name of the DLL containing the class
implementation or the default DLL name (the class name) is applicable. For more information on
building dynamically loadable class libraries, see “Creating a SOM Class Library” in Chapter 5,
“Implementing Classes in SOM.”

The Persistence Framework must be supplied with the persistent ID of the persistent object to
be restored. The ID value includes both the complete pathname used for storing the phone
directory and the offset number (0) of the phone directory object. To assign the ID string to a
persistent object ID, two steps are required:

A. Instantiate a new persistent ID (“pid”) with SOMPPersistentIdNew, and
B. Assign the correct ID value to “pid” with the somutSetIdString method.

The phone directory is restored using the sompRestoreObject method. As the name implies,
this method restores the object specified by “pid”, as well all of the object’s persistent children. In

8 – 238. The Persistence Framework

this example, the first object of the I/O group (offset 0) was specified by “pid.” Since the object
stored at offset 0 is an instance of the “phoneDir” class, and the instances of the “dirEntry” class
are its children, the complete phone directory is restored by a single invocation of the
sompRestoreObject method.

After the directory object is restored, its contents are displayed using the method “printDirInfo”.
The persistent ID is then freed (using somFree) prior to termination of the “restore()” function.

Unlike the “save” function, the “restore” function does not explicitly instantiate “phoneDir” and
“dirEntry” objects. Instead, the necessary instances are created by the Persistence Framework
when the phone directory is restored.

Persistent Object ID initialization
There are three ways a persistent object can have its ID initialized. An object can be explicitly
given an ID, an object can be given a system-assigned ID, or an object can be assigned an ID
near some other specified object. The three different methods for Persistent Object ID initializa-
tion are sompInitGivenId, sompInitNextAvail, and sompInitNearObject, respectively.

Initialization with given ID
To initialize a persistent object with a given ID, follow these steps:

• Instantiate a SOMPPersistentId object,

• Tell the SOMPPersistentId object what its ID string is, and

• Tell the Persistent Object to use this ID, using the sompInitGivenId method.

The following example code demonstrates this process:

 PersistentDog dog = PersistentDogNew();
 SOMPPersistentId pid = SOMPPersistentIdNew();
 _somutSetIdString
 (pid, ev, ”SOMPAscii:/u/roger/dogs/dog1.dog:0”);
 _sompInitGivenId(dog, env, pid);

There are a number of methods for telling an ID what its ID string is:

somutSetIdString To give the complete ID string (that specifies the I/O Group
Manager class name, the group name and the object offset number), and

sompSetIOGroupName To give only the group name. The I/O Group Manager class
name and offset number remain unchanged and, if never previously set,
default to SOMPAscii and 0 respectively.

The following example code demonstrates the use of sompSetIOGroupName:

 PersistentDog dog = PersistentDogNew();
 SOMPPersistentId pid = SOMPPersistentIdNew();
 _sompSetIOGroupName(pid, ev, ”/u/roger/dogs/dog1.dog”);
 _sompInitGivenId(dog, ev, pid);

Notice that these two code examples differ only in the string passed to somutSetIdString or
sompSetIOGroupName.

You can specify the other two parts of the persistent ID string independently with
sompSetIOGroupMgrClassName and sompSetGroupOffset. For example, each part of the
ID string could be set independently, as follows:

 PersistentDog dog = PersistentDogNew();
 SOMPPersistentId pid = SOMPPersistentIdNew();
 _sompSetIOGroupMgrClassName(pid, ev, ”SOMPBinary”);
 _sompSetIOGroupName(pid, ev, ”/u/roger/dogs/dog1.dog”);
 _sompSetGroupOffset(pid, ev, 0);
 _sompInitGivenId(dog, ev, pid);

8 – 24 SOMobjects Developer Toolkit Users Guide

Environment variables in pathnames
Environment variables can be used in the Group Name part of a Persistent ID string. When they
are used, they are expanded at store and restore time to determine actual values. This is
primarily intended to allow programs to easily move objects from one directory to another. The
following code initializes an object with a known persistent ID containing an environment
variable:

 PersistentDog dog = PersistentDogNew();
 SOMPPersistentId pid = SOMPPersistentIdNew();
 _somutSetIdString
 (pid, ev, ”SOMPBinary:\”DOGDIR\”/dogs/dog1.dog:0”);
 _sompInitGivenId(dog, ev, pid);

Note that the environment variable is quoted, and that a backslash is used to insert a quote
character in a string.

The Persistence Framework will then expand DOGDIR just before storing (or restoring), and the
resulting ID becomes the final ID. For example, if DOGDIR is set to /u/roger, this previous code
would be equivalent to the following code:

 PersistentDog dog = PersistentDogNew();
 SOMPPersistentId pid = SOMPPersistentIdNew();
 _somutSetIdString
 (pid, ev, ”SOMPBinary:/u/roger/dogs/dog1.dog:0”);
 _sompInitGivenId(dog, ev, pid);

The environment variable can be used any place within the group name portion of the ID string.

Initialization with next available ID
In this mode of ID initialization, the SOMPIdAssigner object assigns a persistent object the
next available persistent ID. The steps necessary to assign a persistent ID using the
SOMPIdAssigner object are as follows:

• Instantiate an ID Assigner object, and

• Initialize the persistent object, with method sompInitNextAvail,
passing the instantiated ID Assigner as a parameter.

The following code demonstrates these steps:

 PersistentDog dog = PersistentDogNew();
 SOMPIdAssigner systemIdAssigner = SOMPIdAssignerNew();
 _sompInitNextAvail(dog, ev, systemIdAssigner);

The default SOMPIdAssigner makes use of the environment variable SOMP_PERSIST. If
SOMP_PERSIST is set to a directory path, the SOMPIdAssigner will create IDs so that persis-
tent objects with those IDs will be stored in the named directory.

The algorithm used by SOMPIdAssigner to select the next available persistent ID is as follows:

If (environment variable SOMP_PERSIST is set)
 storage directory is value of SOMP_PERSIST
else storage directory is current directory.

if (file somplast.id exists in storage directory)
 read somplast.id to find last assigned ID number
else {
 create somplast.id
 assume last assigned ID number is 0
}
id = SOMPAscii:/storage_dir/p<last assigned id in hex>:0
increment last assigned ID in file somplast.id

8 – 258. The Persistence Framework

Because the names of the files produced by the supplied SOMPIdAssigner object are limited to
eight bytes in length, the algorithm is limited to producing at most 268,435,455 file names.

To change the supplied algorithm, developers can derive a new class from SOMPIdAssigner
and override the method sompGetSystemAssignedId.

Initialization near another object
Initialization near another object is perhaps the most common mode of persistent ID initializa-
tion. This mode assumes that some object knows its persistent ID, and another object will be
assigned a persistent ID so that it resides in the same I/O group. The following code demon-
strates this technique:

 PersistentDog dog1, dog2;
 SOMPIdAssigner systemIdAssigner;

/* Instantiate dogs. */
 dog1 = PersistentDogNew();
 dog2 = PersistentDogNew();

/* Instantiate an ID Assigner. */
 systemIdAssigner = SOMPIdAssignerNew();

/* Have system assign ID. */
 _sompInitNextAvail(dog1, ev, systemIdAssigner);

/* Place dog 2 in same IO Group as dog 1. */
 _sompInitNearObject(dog2, ev, dog1);

The ID string assigned to the objects initialized with sompInitNextAvail can be determined with
the sompGetPersistentIdString method as shown:

 string idBuffer[SOMPMAXIDSIZE];

 _sompGetPersistentIdString(dog1, ev, idBuffer);
 somPrintf(”dog1 ID string is : %s\n”, idBuffer);
 _sompGetPersistentIdString(dog2, ev, idBuffer);
 somPrintf(”dog2 ID string is : %s\n”, idBuffer);

Assuming that the environment variable SOMP_PERSIST has not been set, the ID strings output
by the above example would be:

dog1 ID string is : SOMPAscii:./p00000000:0
dog2 ID string is : SOMPAscii:./p00000000:1

It is also possible to initialize objects “near” to one another by initializing them with the same ID
with a change made to the group offset number between initializations. In the example below,
dog0 and dog1 are placed in the same I/O Group.

 PersistentDog dog0 = PersistentDogNew();
 PersistentDog dog1 = PersistentDogNew();
 SOMPPersistentId pid = SOMPPersistentIdNew();
 _somutSetIdString
 (pid, ev, ”SOMPAscii:./dogs/dog1.dog:0”);
 _sompInitGivenId(dog0, env, pid);
 _sompSetGroupOffset(pid, ev, 1);/* change offset */
 _sompInitGivenId(dog1, ev, pid);

8 – 26 SOMobjects Developer Toolkit Users Guide

Example 6: Storing objects in multiple files using system-assigned IDs

This example is identical to Example 5, except that the two “dirEntry” objects and the “phoneDir”
objects are all stored in different files, and an ID Assigner is used to create system-assigned
persistent IDs. The definitions and implementations of “phoneDir” and “dirEntry” are un-
changed.

The test program is unchanged except that the “save” method differs, as shown below (with
significant differences shown in bold):

void save(Environment *ev)
{
 SOMPPersistentStorageMgr psm = SOMPPersistentStorageMgrNew();
 SOMPIdAssigner idAssigner = SOMPIdAssignerNew();
 dirEntry name1, name2;
 phoneDir mylist;

/* Create phone directory. */
 mylist = phoneDirNew();
 _sompInitNextAvail (mylist, ev, idAssigner);
 checkError(ev);

/* Add entry 1. */
 name1 = dirEntryNew();
 _mkEntry (name1, ”Roger”, ”555–5085”);
 _sompInitNextAvail (name1, ev, idAssigner);
 checkError(ev);
 _addEntry (mylist, name1);

/* Add entry 2. */
 name2 = dirEntryNew();
 _mkEntry (name2, ”Hari”, ”555–5079”);
 _sompInitNextAvail (name2, ev, idAssigner);
 checkError(ev);
 _addEntry (mylist, name2);

/* Display phone directory. */
 _printDirInfo(mylist);

/* Store the phone directory. */
 _sompStoreObject (psm, ev, mylist);
 checkError(ev);

 _somFree (idAssigner);
 _somFree (name2);
 _somFree (name1);
 _somFree (mylist);
}

The main difference from the previous example is that each of the three persistent objects is
stored in a separate I/O group (file). This is accomplished by using the system ID Assigner to
assign new IDs through the sompInitNextAvail method. This can be contrasted to the previous
example in which only one group (for “mylist”) was used, and the IDs for “name1” and “name2”
were initialized as “near objects” of “mylist” (that is, objects to be stored in the same I/O group
with “mylist”). This difference only changes the physical storage arrangement of the phone
directory and its entries. The “name1” and “name2” objects are still children of “mylist”; thus, all
three objects are still stored by a single invocation of sompStoreObject.

8 – 278. The Persistence Framework

The previous examples have demonstrated storing multiple persistent objects in a single I/O
group, and storing persistent objects in multiple I/O groups, one object per group. These
techniques can be combined to produce other arrangements, such as multiple groups, each
containing multiple objects. For example, assume that six persistent objects, “p0” through “p5”,
are to be stored in two groups. The first group is to contain objects p0 through p2, and the
second group objects p3 through p5. This would be accomplished by initializing the persistent
IDs for the objects in the following way:

 /* For the first I/O group: */
 SOMPPersistentId pid;
 _sompGetSystemAssignedId(idAssigner, ev, &pid);
 _sompInitGivenId (p0, ev, pid);
 _sompInitNearObject (p1, ev, p0);
 _sompInitNearObject (p2, ev, p0);
 _somFree(pid);

 /* For the second I/O group */
 _sompGetSystemAssignedId(idAssigner, ev, &pid);
 _sompInitGivenId (p3, ev, pid);
 _sompInitNearObject (p4, ev, p3);
 _sompInitNearObject (p5, ev, p3);
 _somFree(pid);

Notice the highlighted line above which creates a new system assigned persistent ID. In the
previous example, the invocation of sompGetSystemAssignedId was made for you by
sompInitNextAvail. When you invoke sompGetSystemAssignedId directly, you must pass
the address of an ID object. When the method completes successfully, the ID (pid) contains a
newly instantiated persistent ID object. Notice also that the caller is responsible for freeing the
returned ID.

By extension of these techniques, an almost limitless variety of storage groupings can be
arranged.

Another difference between this example and the previous example is the use of system-
assigned persistent IDs, rather than application-assigned IDs. While the use of system-
assigned IDs is often more convenient, the use of application-assigned IDs provides greater
application control over object storage. By placing I/O group pathnames under application
control, persistent objects can be stored in any file system directory without the need to alter the
SOMP_PERSIST environment variable prior to process execution.

Application-assigned IDs have another advantage over system-assigned IDs, which can be
seen by comparing the results of multiple runs of the two example programs. When the previous
example (using system-assigned IDs) is run repeatedly, a new copy of the persistent object is
created on each run. When the application-assigned ID is employed (as in the first example),
each run of the program overwrites the previous version of the persistent object. When replace-
ment of an existing persistent object is desired, application-assigned IDs are appropriate, rather
than system-assigned IDs.

Read/Write without children
There are two modes to reading and writing. The first is reading/writing a whole object hierarchy.
This is the standard read/write mode. The second is reading/writing an object without following
persistent pointers. The second is called “read/write without children” mode. The first mode has
been demonstrated in the previous two examples. Read/write without children is useful with a
large hierarchy of objects, when only a part of the hierarchy needs to be read. For example,
consider the following object hierarchy:

8 – 28 SOMobjects Developer Toolkit Users Guide

my_address_book

company abc

company def

company ghi

Alice

John

Harry

Joe

Karen

Charles

Joan

Roger

Anne

Assume here that “my_address_book” is an object of class “addressBook” that supports the
method “findCompany,” which takes a string and returns a pointer to a “company” object.
Assume that “company” objects support the method “findPerson,” which takes a string and
returns a pointer to a “person” object. The standard mode read would be as follows:

 SOMPPersistentStorageMgr psm = SOMPPersistentStorageMgrNew();
 SOMPPersistentId pid = SOMPPersistentIdNew();
 phoneDir mylist;

 _somutSetIdString(pid, ev,
 ”SOMPAscii:/u/roger/data/myPhoneBook:0”);
 checkError(ev);
 mylist = _sompRestoreObject (psm, ev, pid);
 checkError(ev);

At the end of the invocation of sompRestoreObject, the entire hierarchy of objects will have
been restored. It is then valid to ask the address book for the company named “def”, and then to
ask that object for the person “Karen” without any further calls to the Persistence Framework.

Suppose, however, that “my_address_book” has pointers to a dozen companies, and each
company has pointers to hundreds of people. Suppose further that we want to find “Roger” in
company “ghi”. Because we really don’t want to read in the entire hierarchy in this case, we can
specify how to traverse the hierarchy.

To avoid traversing the hierarchy, use the sompRestoreObjectWithoutChildren method.
When reading an object without children the Persistence Framework will first read in the

8 – 298. The Persistence Framework

requested object, and then for each persistent child object referenced by the restore object it
will:

• Instantiate an object of the correct type,

• Initialize that object with its correct ID, and

• Set the persistent pointer in the parent object.

The Framework will not read in the data for the child objects. The result of this is that the initial
object has all its persistent object pointers set to objects which have the correct IDs and are the
correct type, but which have not had their data read. An object which is the correct type and
knows its ID but which has not been read from storage is called an unstable object (its state is
SOMP_STATE_UNSTABLE). Before attempting to use an unstable object, you must ask the
Persistent Storage Manager to restore the object, either with or without children.

Code that follows the pointers from “my_address_book” to company “def” to person “Karen”
would look like this example:

 SOMPPersistentStorageMgr psm = SOMPPersistentStorageMgrNew();
 SOMPPersistentId pid = SOMPPersistentIdNew();
 phoneDir mylist;
 company myCompany;
 person myPerson;

 _somutSetIdString(pid, ev,
 ”SOMPAscii:/u/roger/data/myPhoneBook:0”);
 checkError(ev);
 mylist = _sompRestoreObjectWithoutChildren (psm, ev, pid);
 checkError(ev);

 myCompany = _findCompany(myList, ev, ”def”);
 _sompRestoreObjectWithoutChildren(psm, ev,
 _sompGetPersistentId(myCompany, ev));
 checkError(ev);

 myPerson = _findPerson(myCompany, ev, ”Karen”);
 _sompRestoreObjectWithoutChildren(psm, ev,
 _sompGetPersistentId(myPerson, ev));
 checkError(ev);

In the line

 _sompRestoreObjectWithoutChildren(psm, ev,
 _sompGetPersistentId(myCompany, ev));

it is not necessary to check the returned pointer (myCompany), since it will be unchanged from
before the call. Before the call, the pointer points to an unstable object, whereas after the call, it
points to a stable object.

The Persistence Framework also supports writing an object without its children. When storing
an object without children, the object itself is stored, but none of the persistent pointers are
followed. This is useful when a hierarchy contains many objects, but only a few are to be stored.
This is accomplished with sompStoreObjectWithoutChildren.

Note: When child objects are grouped with their parent object (by initializing them near the
parent) so that they are stored in the same file, sompStoreObjectWithoutChildren
will store the children. This is because the SOMPAscii and SOMPBinary I/O Group
Manager classes store a group at a time. You must initialize children into a different I/O
Group if you do not want them stored.

8 – 30 SOMobjects Developer Toolkit Users Guide

Choosing I/O Group Manager SOMPAscii or SOMPBinary
The Persistence Framework provides two I/O Group Managers. The ASCII version
(SOMPAscii, defined in fsagm.idl) stores all data in ASCII format. This allows the resulting data
file to be viewed in a text editor. Although you can view the data, you should not modify the data
with a text editor. Because SOMPAscii stores persistent object data as one continuous line,
larger files may not be readable by some text editors.

Also included is a Binary version (SOMPBinary, defined in fsgm.idl), which stores data in binary
format. These files cannot be viewed in a text editor, but are more efficient for I/O. It is advisable
to use the SOMPAscii I/O Group Manager during initial application development and the
SOMPBinary I/O Group Manager when preparing the final code.

Programmers choose which IOGroupManager to use by giving the appropriate name in the
Persistent ID string for an object. As an example, the following code sets up a Persistent Object
with the SOMPAscii I/OGroup Manager:

 SOMPPersistentId pid = SOMPPersistentIdNew();
 phoneDir mylist = phoneDirNew();
 char idBuff[SOMPMAXIDSIZE];

/* Use Ascii IOGroupMgr:
 ––––––––––––––––––––– */
 strcpy(idBuff, ”SOMPAscii:./pdata/phoneDir:0”);
 _somutSetIdString(pid, ev, idBuff);

 _sompInitGivenId (mylist, ev, pid);
 checkError(ev);
 _somFree(pid);
 _sompStoreObject (psm, ev, mylist);

The following segment uses the Binary IOGroupMgr. Note the only change is to the line in bold.

 SOMPPersistentId pid = SOMPPersistentIdNew();
 phoneDir mylist = phoneDirNew();
 char idBuff[SOMPMAXIDSIZE];

/* Use Binary IOGroupMgr:
 –––––––––––––––––––––– */
 strcpy(idBuff, ”SOMPBinary:./pdata/phoneDir:0”);
 _somutSetIdString(pid, ev, idBuff);

 _sompInitGivenId (mylist, ev, pid);
 checkError(ev);
 _somFree(pid);
 _sompStoreObject (psm, ev, mylist);

SOMPAscii and SOMPBinary characteristics
The supplied I/O Group Manager classes SOMPAscii and SOMPBinary exhibit the following
characteristics. A user-written I/O Group Manager may or may not emulate these charac-
teristics.

Store characteristics
When you store an object with either of the supplied SOMPAscii or SOMPBinary I/O Group
Managers, this also stores all of the objects in the same I/O Group as the stored object, if the
sompIsDirty method on those objects returns TRUE. Consider the following example which

8 – 318. The Persistence Framework

stores several objects grouped together. In the example, three “dirEntry” objects are created
and initialized near to one another. While there are no parent-child object relationships between
these objects, the single invocation of sompStoreObject will store all three objects into the file
“entries”.

Invoking sompStoreObject for the other two objects (“name2” and “name3”) is unnecessary; in
fact, if you haven’t overridden sompIsDirty in your object implementation, this would cause all
of the objects to be stored again a second and third time. The Framework clears the “dirty” flag
after an object has been stored but, by default, sompIsDirty returns TRUE whether the dirty flag
is set or not.

 SOMPPersistentStorageMgr psm = SOMPPersistentStorageMgrNew();
 SOMPPersistentId pid = SOMPPersistentIdNew();
 dirEntry name1, name2, name3;
 char idBuff[SOMPMAXIDSIZE];

 name1 = dirEntryNew();
 _mkEntry (name1, ”Roger”, ”555–5085”);
 strcpy(idBuff, ”SOMPAscii:entries:0”);
 _somutSetIdString(pid, ev, idBuff);
 _sompInitGivenId (name1, ev, pid);
 checkError(ev);

 name2 = dirEntryNew();
 _mkEntry (name2, ”Hari”, ”555–5079”);
 _sompSetGroupOffset(pid, ev, 10);
 _sompInitGivenId (name2, ev, pid);
 checkError(ev);

 name3 = dirEntryNew();
 _mkEntry (name3, ”Louie”, ”555–5080”);
 _sompSetGroupOffset(pid, ev, 100);
 _sompInitGivenId (name3, ev, pid);
 checkError(ev);
 _somFree(pid);

/* Store all three dirEntry objects. */
 _sompStoreObject (psm, ev, name1);
 checkError(ev);

Note in the example above that the objects are considered “near” to one another and therefore in
the same I/O Group, even though they were initialized with sompInitGivenId. This happens
because the only difference between the objects’s Persistent IDs is the offset number that was
set with sompSetGroupOffset.

Restore characteristics
When a persistent object is restored using the supplied SOMPAscii or SOMPBinary I/O Group
Managers, the other objects grouped with the requested object are created and initialized with a
Persistent ID by the Framework; however, only the requested object’s persistent data is read.
The other objects remain in an unstable state. Refer to the topic “Persistent object states” below
for more information on the states of a persistent object.

8 – 32 SOMobjects Developer Toolkit Users Guide

The following example shows how to restore the objects in the “entries” file built by the previous
example.

 SOMPPersistentStorageMgr psm = SOMPPersistentStorageMgrNew();
 SOMPPersistentId pid = SOMPPersistentIdNew();
 dirEntry name1, name2, name3;
 char idBuff[SOMPMAXIDSIZE];

/* Ensure class object of restored objects exists */
 dirEntryNewClass(0, 0);

 strcpy(idBuff, ”SOMPAscii:entries:0”);
 _somutSetIdString(pid, ev, idBuff);
 checkError(ev);

/* Restore the first object in the group. */
 name1 = _sompRestoreObject(psm, ev, pid);
 checkError(ev);
 _lsEntry(name1); /* Print out restored object */
 _somDumpSelf(_sompGetIOGroup(name1, ev), 0);

/* Restore the second object in the group. */
 _sompSetGroupOffset(pid, ev, 10);
 name2 = _sompRestoreObject(psm, ev, pid);
 checkError(ev);
 _lsEntry(name2); /* Print out restored object */
 _somDumpSelf(_sompGetIOGroup(name2, ev), 0);

/* Restore the third object in the group. */
 _sompSetGroupOffset(pid, ev, 100);
 name3 = _sompRestoreObject(psm, ev, pid);
 checkError(ev);
 _lsEntry(name3); /* Print out restored object */
 _somDumpSelf(_sompGetIOGroup(name3, ev), 0);

The example dumps the restored I/O Group with somDumpSelf after each restore. In the
output produced by the example below, notice that all of the objects exist after the first restore.
However, only the object requested for the restore has its data read and is then considered to be
in a stable state.

8 – 338. The Persistence Framework

Roger 555–5085
{An instance of class SOMPIOGroup at address 200A3B40
SOMPAscii:entries:0
SOMP_STATE_STABLE
SOMPAscii:entries:10
SOMP_STATE_UNSTABLE
SOMPAscii:entries:100
SOMP_STATE_UNSTABLE
}
Hari 555–5079
{An instance of class SOMPIOGroup at address 200A3B40
SOMPAscii:entries:0
SOMP_STATE_STABLE
SOMPAscii:entries:10
SOMP_STATE_STABLE
SOMPAscii:entries:100
SOMP_STATE_UNSTABLE
}
Louie 555–5080
{An instance of class SOMPIOGroup at address 200A3B40
SOMPAscii:entries:0
SOMP_STATE_STABLE
SOMPAscii:entries:10
SOMP_STATE_STABLE
SOMPAscii:entries:100
SOMP_STATE_STABLE
}

Modifying an object previously stored with SOMPAscii or SOMPBinary
To modify an object previously stored with either SOMPAscii or SOMPBinary, you must first
restore the object. Consider the previous example. Suppose you want to change Roger’s phone
number to 555–5086. The following code would accomplish this:

 Environment *ev;
 SOMPPersistentStorageMgr psm = SOMPPersistentStorageMgrNew();
 SOMPPersistentId pid = SOMPPersistentIdNew();
 dirEntry name1, name2, name3;
 char idBuff[SOMPMAXIDSIZE];

 ev = SOM_CreateLocalEnvironment();

/* Ensure class object of restored object exists */
 dirEntryNewClass(0, 0);

 strcpy(idBuff, ”SOMPAscii:entries:0”);
 _somutSetIdString(pid, ev, idBuff);
 checkError(ev);

/* Restore the first object in the group. */
 name1 = _sompRestoreObject(psm, ev, pid);
 checkError(ev);

/* Modify object */
 _mkEntry (name1, ”Roger”, ”555–5086”);
 _sompSetDirty(name1, ev);
 _lsEntry(name1); /* Print out restored object */
 _sompStoreObject (psm, ev, name1);
 checkError(ev);

 SOM_DestroyLocalEnvironment(ev);

8 – 34 SOMobjects Developer Toolkit Users Guide

You must mark the modified object as “dirty” with sompSetDirty for the object to be stored if
sompIsDirty has been overridden. Typically, this would be done for you by the persistent object
implementation and in this example, by the “mkEntry” method. Here, we explicitly do it to make it
obvious.

If, instead of first restoring the “Roger” object, you were to instantiate a new object with the same
Persistent ID string as the stored “Roger” object, set its phone number to the new number
555–5086, and then store the object, this would effectively delete any other objects stored with
“Roger”. In the example, this means that the “Hari” and “Louie” objects would be destroyed.

Adding an object to an existing group stored with SOMPAscii or SOMPBinary
Adding an object to an existing file is similar to modifying an object. To add an object, you must
first restore at least one of the objects that is already in the file. The following example adds a
new “dirEntry” object “Chuck”, with offset number 1000, to the other “dirEntry” objects in the
“entries” file.

/* Ensure class object of restored object exists */
 dirEntryNewClass(0, 0);

 strcpy(idBuff, ”SOMPAscii:entries:0”);
 _somutSetIdString(pid, ev, idBuff);
 checkError(ev);

/* Restore the first object in the group. */
 name1 = _sompRestoreObject(psm, ev, pid);
 checkError(ev);
 _lsEntry(name1); /* Print restored object */

 name2 = dirEntryNew();
 _mkEntry (name2, ”Chuck”, ”555–5017”);
 _sompSetGroupOffset(pid, ev, 1000);
 _sompInitGivenId (name2, ev, pid);
 checkError(ev);

 _sompStoreObject (psm, ev, name2);
 checkError(ev);

Files created by SOMPAscii and SOMPBinary
The SOMPAscii I/O Group Manager reads and writes to the file system using the
SOMPAsciiMediaInterface class. Similarly, the SOMPBinary class uses the
SOMPBinaryFileMedia class. Both classes open the files they build for exclusive read/write
access (by initializing their Media Interface with sompInitReadWrite). If multiple processes
using the Persistence Framework attempt to access the same file at the same time, the
secondary request(s) are blocked. The Media Interface classes will not immediately report this
condition as an error, since most file accesses are for a relatively short period of time. Instead,
they will try again every three seconds for up to one minute.

The number of retries and the interval (in seconds) between retries can be changed via the two
environment variables SOMP_RETRY and SOMP_RETRYI. If not set, SOMP_RETRY defaults to
20 and SOMP_RETRYI defaults to 3.

8 – 358. The Persistence Framework

Activation and passivation

Frequently an object has both persistent and nonpersistent data. In some cases, the persistent
data does not require constant maintenance and only must be brought up-to-date before the
persistent object containing it is stored to persistent media. The SOMPPersistentObject class
supports two methods to facilitate the movement of data between persistent and nonpersistent
data. These methods are sompActivated and sompPassivate. Both methods are designed to
be overridden by subclasses of SOMPPersistentObject.

The Persistence Framework invokes the sompPassivate method at store time just before
writing a persistent object to persistent media. To have an object update its persistent data
before being written, override the sompPassivate method in a subclass of
SOMPPersistentObject to include code to set up the persistent data.

The Persistence Framework invokes the sompActivated method at restore time immediately
after reading persistent data. To have an object update its nonpersistent data after being
restored, override the sompActivated method in a subclass of SOMPPersistentObject to
include code to update nonpersistent data.

These methods may also be useful if you would like to keep your persistent data in an internal,
non-persistent data structure but still take advantage of the default attribute encoder/decoder
class SOMPAttrEncoderDecoder. For example, suppose you have built a special collection
class object which can contain a set of objects. Internal to the object, its collection of objects can
be kept in any data structure you like; but doing so will not allow you to use the default attribute
encoder/decoder. You could write an encoder/decoder (see “Storing Objects in Specialized
Formats” later in this chapter), but using the default would be simpler. To use the default
encoding for this example, you could define a sequence attribute “collection” and override the
sompActivated and sompPassivate methods as highlighted below:

#include <po.idl>

interface myCollection : SOMPPersistentObject {

attribute sequence<SOMPPersistentObject> collection;

/* ... methods ... */

 #ifdef __SOMIDL__
 implementation
 {
 // Attribute modifiers
 collection: persistent;
 // Method modifiers
 somInit: override;
 somUninit: override;
 sompIsDirty: override;
 sompActivated: override;
 sompPassivate: override;
 };
 #endif /* __SOMIDL__ */
};

In the overridden sompPassivate method, you would transfer the contents of your internally
defined collection to the collection sequence. The default encoder/decoder would then store the
sequence of persistent objects. Likewise, after the collection sequence has been restored, your
overridden sompActivated method would transfer the contents of the restored collection
sequence to your internally defined collection.

8 – 36 SOMobjects Developer Toolkit Users Guide

8.5 Managing Persistent Objects

Checking persistent object existence
The Persistent Storage Manager can determine whether a persistent object exists in storage,
given its persistent ID, via the SOMPPersistentStorageMgr method sompObjectExists. The
following code shows how this method is used to detect whether the 0th object in file
/mydogs/dog.dat exists:

 SOMPPersistentStorageMgr psm = SOMPPersistentStorageMgrNew();
 SOMPPersistentId pid = SOMPPersistentIdNew();

 _somutSetIdString(pid, ev, ”SOMPAscii:/mydogs/dog.dat:0”);
 if (_sompObjectExists(psm, ev, pid)) {
 somPrintf(”Oth object exists\n”);
 } else {
 somPrintf(”Oth object does not exist\n”);
 }
 _somFree(pid);

boolean sompObjectExists
 (in SOMPPersistentId objectID) raises(sompException);
// Checks to see if object exists. If so, returns TRUE; otherwise,
// returns FALSE.

Deleting persistent objects
To delete a persistent object, use the SOMPPersistentStorageMgr method
sompDeleteObject. This method removes the persistent object with the specified persistent ID
from its I/O group. The following code shows how this method is used to delete the 0th object in
the /mydogs/dog.dat file:

 SOMPPersistentStorageMgr psm = SOMPPersistentStorageMgrNew();
 SOMPPersistentId pid = SOMPPersistentIdNew();

 _somutSetIdString(pid, ev, ”SOMPAscii:/mydogs/dog.dat:0”);
 _sompDeleteObject(psm, ev, pid);
 _somFree(pid);

Persistent object states
As persistent objects are created, initialized, stored and restored, they pass through a number
of states. These states can be checked with the sompCheckState method. The method
returns TRUE if the object is in the given state. The states are defined in file po.idl.

State Description

SOMP_STATE_UNDEFINED
When a persistent object is first instantiated, its state is undefined. A persistent
object cannot be stored when it is in this state.

SOMP_STATE_STABLE
When a persistent object is initialized (with sompInitGivenId, etc.), its state
moves from an undefined state to a stable state. Once the object is in this
state, it can be stored.

8 – 378. The Persistence Framework

SOMP_STATE_DIRTY
When a persistent object is initialized by you, it is assumed to be dirty. As
discussed earlier in this chapter, a dirty object is one which has persistent data
that has changed and should be stored.

When a persistent object is restored, it is initialized for you by the Framework.
Because a freshly restored object is not yet dirty, the Framework turns the dirty
state off after it has initialized the object. It is then the responsibility of your
persistent object implementation to indicate that the object’s persistent data
has been changed. You can set the dirty state with sompSetDirty.

SOMP_STATE_UNSTABLE
When a persistent object is restored, it is first instantiated and initialized for you
by the I/O Group Manager. At this point, the object exists but its persistent data
has not yet been read. An object in this state is considered to be unstable.
Once the object’s data has been read, the state of the object is moved from an
unstable state to a stable state.

Usually an object remains unstable for only a short period of time. There are,
however, a couple of cases where you will encounter unstable objects
which exist for a longer period of time. When you restore an object with
sompRestoreObjectWithoutChildren, child objects are only instantiated
and initialized and therefore remain unstable. Also, when restoring an object
with either of the SOMPAscii or SOMPBinary I/O Group Managers, all other
objects grouped in the same file with the restored object are instantiated and
initialized, but their data is not read unless they are children of the originally
requested object.

Garbage collection
When persistent objects are rewritten to files by the supplied I/O Group Managers, they are
appended to the end of the file, and their original space is garbage. When an object is deleted, its
space is not reclaimed. Thus, over time, an I/O group will accumulate unused space, which
should occasionally be compacted. Clients can request I/O groups be compacted by marking
any object in the I/O group for compaction.

A persistent object is marked for compaction with the sompMarkForCompaction method,
which lets a persistent object know that, the next time it is stored, the entire I/O group in which it
resides should be compacted. This slows down the store, since all objects in the I/O group must
be moved within the file, but it also frees any unused space in the I/O group. Sample code for
doing this follows:

 SOMPPersistentStorageMgr psm = SOMPPersistentStorageMgrNew();
 SOMPPersistentId pid = SOMPPersistentIdNew();
 phoneDir mylist;

 _somutSetIdString(pid, ev,
 ”SOMPAscii:/u/roger/data/myPhoneBook.dat:0”);
 checkError(ev);
 mylist = _sompRestoreObject (psm, ev, pid);
 checkError(ev);
 _somFree(pid);
 /* ... */
 _sompMarkForCompaction(mylist, ev);
 checkError(ev);
 _sompStoreObject(psm, ev, mylist);
 checkError(ev);

8 – 38 SOMobjects Developer Toolkit Users Guide

To clean up unused space in files produced by the SOMPAscii or SOMPBinary I/O Group
Manager classes, you may use a garbage collection program named “srgarbcl”. This program
can be run from the command line as follows:

srgarbcl /u/roger/data/myPhoneBook.dat

The parameter given is a file produced by SOMPAscii which contains your objects. To clean up a
file produced by SOMPBinary you would use the following syntax:

srgarbcl –iSOMPBinary /u/roger/data/myPhoneBook.dat

8 – 398. The Persistence Framework

8.6 Storing Objects in Specialized Formats.
This section describes how to customize the format in which objects are written. This
is done by replacing the Persistence Framework’s default Encoder/Decoder class
(SOMPAttrEncoderDecoder). Before discussing the role of the encoder/decoder, however, it
is necessary to introduce the notion of a persistent object format.

Persistent object format
Persistent objects are associated with two types of formats:

• Persistent object format (POF) — the format of the portion of the file where the object’s
persistent data resides, and

• I/O group format (IOGF) — the format of the file or files which serves as a skeleton to hold
together individual objects.

The Persistence Framework’s supplied I/O Group Mangers build files containing regions that
are formatted in IOGF (I/O group format) and regions that are formatted in POF (persistent
object format), as depicted in the following illustration:

Ç
Ç
Ç

myPhoneDir

ÇÇÇ
ÇÇÇ
ÇÇÇ

Mary

ÇÇÇ
ÇÇÇ
ÇÇÇ

John

ÇÇ
ÇÇ
ÇÇ

Mom

ÇÇÇÇÇÇ
ÇÇÇÇÇÇ
ÇÇÇÇÇÇ

ÇÇÇÇ
ÇÇÇÇ

= POF (Persistent object format)

= IOGF (I/O group format)

A file containing regions in POF and IOGF formats

Objects that belong to the same class (such as “Mary”, “John”, and “Mom”) need not all be
written in the same POF. That is, a given class can be associated with many POFs. The choice
as to which POF to use is made at run time.

Most objects can be stored in a default POF. The default POF stores each object as a series of
tuples, where each tuple consists of an attribute name and value. The default POF requires
that each element of persistent data be in the form of an attribute and that each persistent
attribute is so noted with the persistent attribute modifier in the .idl file. (This .idl entry takes the
form <attributeName> : persistent.) Persistent attributes may be of any valid CORBA data type.

For example, given an object with persistent attributes “name” and “phone,” both of type string,
having values “Roger” and “555–8585”, the object would have the following default persistent
object format:

2 (4)name (5)Roger (5)phone (8)555–8585

The respective elements of the POF are shown in bold and are described in the following text.

2 (4)name (5)Roger (5)phone (8)555–8585

The 2 indicates this record has two attributes.

2 (4)name (5)Roger (5)phone (8)555–8585

The 4 means the first attribute’s identifier has 4 characters.

2 (4)name (5)Roger (5)phone (8)555–8585

The name indicates that the identifier of the first attribute is “name”.

8 – 40 SOMobjects Developer Toolkit Users Guide

2 (4)name (5)Roger (5)phone (8)555–8585

The 5 means the value of the first attribute has 5 characters.

2 (4)name (5)Roger (5)phone (8)555–8585

The Roger indicates that the value of the “name” attribute is “Roger”.

2 (4)name (5)Roger (5)phone (8)555–8585

Similarly, the remainder of the line gives the name and value of the second attribute.

Note: This description is conceptual. The actual storage format is not identical to the examples
above.

Both the persistent object format and the I/O group format can be changed, but the procedure
for changing the POF is quite different from the procedure for changing the IOGF. This section
only concerns changing the POF. See Appendix D, “Subclassing the Persistence Framework,”
for more detail concerning changing the Persistence Framework.

One reason for changing an object’s POF is to store it in a format compatible with some other
object. For example, an EXCEL spreadsheet might be stored in a Lotus 1-2-3 format. Given two
spreadsheets, any of the following POF formats might be used, as illustrated:

ÇÇ
ÇÇ
ÇÇ

ÇÇ
ÇÇ
ÇÇ

SS1 SS2

SS1 and SS2 (data from two spreadsheets)

= EXCEL format

= Lotus 1-2-3 format

ÇÇ
ÇÇ

ÇÇ
ÇÇ

SS1 SS2

Ç
Ç
Ç

ÇÇ
ÇÇ
ÇÇ

SS1 SS2

Ç
Ç

ÇÇ
ÇÇ

SS1 SS2

Creating a new persistent object format involves creating a new encoder/decoder class.

Encoder/Decoders
Every persistent object is associated with an Encoder/Decoder. An Encoder/Decoder is the
class that knows how to read and write the object’s persistent object format. Because a given
persistent object can potentially be associated with many different Encoder/Decoders, the
actual association between an object and an Encoder/Decoder is done at run time.

The Encoder/Decoder supplies two methods: a “Write” method, which converts a persistent
object from its internal (run-time) form to a form suitable for storage on the persistent media, and
a “Read” method, which performs the inverse conversion. The Write/Read methods must also
preserve and recover any relationships (pointers) between the persistent objects.

The Persistence Framework supplies a default Encoder/Decoder class,
SOMPAttrEncoderDecoder, which reads and writes the default POF described above. You

8 – 418. The Persistence Framework

can also create your own Encoder/Decoder classes for your persistent objects. When an
application supplies its own Encoder/Decoder class, it is free to decide how data is passed
between the Encoder/Decoder and the persistent object. If your persistent data must be
maintained in private instance variables or is not easily represented in one of the IDL data
types, you must build your own Encoder/Decoder class.

The default Encoder/Decoder
The supplied default Encoder/Decoder class, SOMPAttrEncoderDecoder, requires the client
application to make each element of persistent data an attribute, and to signify each persistent
attribute with the “persistent” modifier in the .idl file. The “phoneDir” and “dirEntry” example
classes used throughout this chapter have used the default Encoder/Decoder.

The default Encoder/Decoder makes use of attribute “get” and “set” methods. Whenever you
define a class with an attribute, the SOM Compiler defines “get” and “set” methods for that
attribute and supplies a default implementation. The default implementations of the “set”
methods do only a shallow copy of the data passed to them. For example, when you set a string
attribute, only the pointer to the string of data is copied. The string itself is not copied and
therefore the storage containing the string must not be freed by the caller of the “set” method.

When the default Encoder/Decoder restores your data, it allocates space to contain the data it
reads. It then invokes the object’s “set” methods to copy the restored data into the object. The
default Encoder/Decoder assumes you are using the supplied “set” methods that do a shallow
copy of the data. Therefore, the Encoder/Decoder does not free any of the storage it has
allocated.

If you use the supplied “set” methods in your client applications, you may unwittingly cause a
memory leak. To avoid this potential memory leak, you can take control of the implementation of
the “set” method by using the noset modifier for the attribute. For example, to write your own
“set” method for the “name” attribute of the “dirEntry” class, you would first change the .idl file of
the class to indicate that you want to implement the “set” method:

name: noset, persistent;

Then, implement the “set” method along with the remainder of the methods. For example:

SOM_Scope void SOMLINK _set_name(dirEntry somSelf, string name)
{
 dirEntryData *somThis = dirEntryGetData(somSelf);
 dirEntryMethodDebug(”dirEntry”, ”_set_name”);

 if (_name) SOMFree(_name);
 _name = (string)SOMMalloc(strlen(name)+1);
 strcpy (_name, name);
}

Note: This assumes that the somInit method of the class has initialized the attribute variables.
In the example, somInit should set the _name variable to NULL, so that the first
invocation of _set_name works correctly.

8 – 42 SOMobjects Developer Toolkit Users Guide

Writing an Encoder/Decoder
An Encoder/Decoder for a persistent object is typically implemented by the same person who
implemented the persistent object’s class. To write an Encoder/Decoder, derive a new class
from SOMPEncoderDecoderAbstract and override the sompEDWrite and sompEDRead
methods, as shown below:

#include <eda.idl>
interface MyEncoderDecoder : SOMPEncoderDecoderAbstract
{
 #ifdef __SOMIDL__
 implementation
 {
 sompEDWrite: override;
 sompEDRead: override;
 };
 #endif /* __SOMIDL__ */
};

These two methods are prototyped in IDL as follows:

void sompEDWrite(in SOMPMediaInterfaceAbstract thisMedia,
 in SOMPPersistentObject thisObject)

raises (sompException);

void sompEDRead(in SOMPMediaInterfaceAbstract thisMedia,
 in SOMPPersistentOBject thisObject)

raises (sompException);

Each of these methods takes (a) a pointer to a Media Interface object and (b) a pointer to the
persistent object being read/written. A Media Interface object is an instance of a class derived
from SOMPMediaInterfaceAbstract. As its name implies, it provides the interface between
the Persistence Framework and the media onto which an object’s data is stored. Its methods
perform the tasks required for file input and output. The Encoder/Decoder uses the Media
Interface to perform actual I/O to the persistent media. The Media Interface Class passed to an
Encoder/Decoder is determined by the I/O Group Manager object that has been specified as
part of a persistent object’s ID. The supplied I/O Group Manager SOMPAscii uses the Media
Interface SOMPAsciiMediaInterface. The SOMPBinary I/O Group Manager uses
SOMPBinaryFileMedia.

Once a new Encoder/Decoder class has been implemented, the Persistence Framework must
be told to use it, rather than the default Encoder/Decoder class. The Encoder/Decoder can be
reset at either the object or the class level:

• At the object level, reset the encoder/decoder via the SOMPPersistentObject method
sompSetEncoderDecoderName.

• At the class level, reset the encoder/decoder via the M_SOMPPersistentObject method
sompSetClassLevelEncoderDecoderName. (The M_SOMPPersistentObject class
is the metaclass of SOMPPersistentObject which can be returned by somGetClass on
any persistent object).

Methods supporting encoder/decoders
A custom Encoder/Decoder is responsible for knowing how to store an object’s persistent data
via a given Media Interface object, and knowing how to restore an object’s data via a Media
Interface and restore it into the object. A set of methods defined in the
SOMPFileMediaAbstract class are designed to make this easier. They are listed here in the
IDL form used for defining each method. Also, all raise sompException, which is not shown
here.

8 – 438. The Persistence Framework

 void sompWriteBytes(in string byteStream, in long length)
// Write a byte stream of the given length to the media.

 void sompWriteOctet(in octet i1)
// Writes the given 8–bit integer

 void sompWriteShort(in short i2)
// Writes the given short integer

 void sompWriteUnsignedShort(in ushort u2)
// Writes the given unsigned short integer

 void sompWriteLong(in long i4)
// Writes the given long integer

 void sompWriteUnsignedLong(in ulong u4)
// Writes the given unsigned long integer

 void sompWriteDouble(in double f8)
// Writes the given double–precision float

 void sompWriteFloat(in float f4)
// Writes the given float

 void sompWriteCharacter(in char c)
// Writes the given character

 void sompWriteString(in string wstring)
// Writes the given string in the following format:
// (string length)(wstring data)

 void sompWriteLine(in string buffer)
// Writes the given string in <buffer> at the current position.
// The terminating null character (\0) is not written.
//
// This method does NOT append a newline character (\n) to the
// given string before writing. If the caller intends to
// restore this <buffer> of data with sompReadLine, the user must
// put the newline character in the <buffer> before calling this
// method.

 void sompReadBytes(in string byteStream, in long length)
// Read a byte stream of the given length from the media.

 void sompReadOctet(inout octet i1)
// Reads an 8–bit integer into memory at given the pointer

 void sompReadShort(inout short i2)
// Reads a short integer into memory at given the pointer

 void sompReadUnsignedShort(inout unsigned short u2)
// Reads an unsigned short integer into memory at given the pointer

 void sompReadLong(inout long i4)
// Reads a long integer into memory at given the pointer

 void sompReadUnsignedLong(inout ulong i4)
// Reads a long integer into memory at given the pointer

8 – 44 SOMobjects Developer Toolkit Users Guide

 void sompReadDouble(inout double f8)
// Reads a float into memory at given the pointer

 void sompReadFloat(inout float f4)
// Reads a float into memory at given the pointer

 void sompReadCharacter(in string c)
// Reads a character into memory at given the pointer

 void sompReadString(inout string rstring)
// Read and allocate a string. Input is a pointer to a string.
// The input pointer is modified to point to a newly allocated
// buffer which will contain the string read from the media.
// Callers are responsible for freeing the returned buffer with
// SOMFree. If you want to read a string into a predefined buffer,
// use sompReadStringToBuffer.
//
// This method can be used to read strings which were stored by
// sompWriteString. void sompReadSomid(inout somId *id)
// Reads the string on the media with sompReadString and converts
// it to a somId.

 void sompReadStringToBuffer(in string buffer, in long bufsize)
// Read a string into the preallocated buffer given. The size of the
// buffer is given in <bufsize>. If the string read is larger than
// bufsize it is truncated to fit in bufsize.
//
// This method can be used to read strings which were stored by
// sompWriteString.

 void sompReadLine(in string buffer, in long bufsize)
// Read a string up to and including the first newline character
// (\n) into the preallocated buffer given.
// Use this method for reading strings stored with sompWriteLine.
//
// The size of the buffer is given in <bufsize>. If the string read
// is larger than bufsize, it is truncated to fit in bufsize.
//
// The characters read are stored in <buffer>, and a null character
// (\0) is appended. The newline character, if read, is included in
// the string.

These methods are all designed to make it simple to read and write the basic IDL data types.
Two methods merit special attention:

 void sompWriteSomobject(in SOMObject so,
 in SOMObject parentObject)

// Writes the given object. Uses parentObject to determine whether
// relative Ids are stored. If object (so) has no persistent parent,
// client passes NULL parentObject.

 void sompReadSomobject(inout SOMObject so)
// Instantiates and returns a new object of the class specified in
// the file. Standard SOM objects are simply instantiated.
// Persistent objects are instantiated and marked for restoration.

The first of these methods is used to store an object. It is used in the sompEDWrite method of
an Encoder/Decoder when, while storing one persistent object, a pointer to another (a child
object) is encountered that should also be written. The sompWriteSomobject method adds
the child object to the set of objects to be stored by the Persistence Framework with

8 – 458. The Persistence Framework

sompAddObjectToWriteSet, and then writes the ID string of the child object. If the child object
is nonpersistent, the only thing written is the name of the class; consequently, on restore, an
instantiated object with no data will be returned. If the other object is persistent, it is stored. (The
actual storage of the child object is deferred until the write of the current object is complete, thus
reducing the number of files open concurrently.) The first argument to the method (following the
Media Interface object and Environment) is the object to be written; the second is the parent of
that object (typically the object being stored at the time the object was encountered).

The second of these methods is used to read in an object that was stored previously with
sompWriteSomobject. There should be one call to sompReadSomobject for every
sompWriteSomobject that was called when the object was stored. sompReadSomobject
first restores the Persistent ID of the child object and then recursively uses
sompRestoreObject on the Persistent Storage Manager to restore the child object.

Both of these methods behave differently if the client application has invoked either of the
methods sompStoreObjectWithoutChildren or sompRestoreObjectWithoutChildren.
sompWriteSomobject stores the ID of the object, but the object itself it not stored (unless it is in
the same I/O Group as the object currently being stored). sompReadSomobject reads an
object ID and creates a new object, but the new object’s data is not read.

Example 7: Encoder/Decoder example implementation
In this example, two Encoder/Decoders are created. The Encoder/Decoder class for use with
the “dirEntry” class is “entryED”. For the “phoneDir” class, it is “dirED”. Each Encoder/Decoder
has two methods: sompEDWrite, which encodes a persistent object’s data, and
sompEDRead, which decodes the stored data and places it into the persistent object.

The “dirEntry” Encoder/Decoder — “entryED”
The definition of the “dirEntry” encoder/decoder is as follows:

#include <eda.idl>
interface entryED: SOMPEncoderDecoderAbstract{
 #ifdef __SOMIDL__
 implementation {
 sompEDWrite: override;
 sompEDRead: override;
 };
 #endif
};

Method “sompEDWrite”: The sompEDWrite method for directory entries writes each ele-
ment of instance data (name and phone) using the sompWriteString method available on its
given Media Interface.

SOM_Scope void SOMLINK sompEDWrite(entryED somSelf,
 Environment *ev,
 SOMPMediaInterfaceAbstract thisMedia,
 SOMPPersistentObject thisObject)
{
 entryEDMethodDebug(”entryED”,”sompEDWrite”);

 /* Write name
 ––––––––––– */
 _sompWriteString(thisMedia, ev, __get_name(thisObject));
 if (ev–>_major != NO_EXCEPTION) return;

 /* Write phone number string
 ––––––––––––––––––––––––– */
 _sompWriteString(thisMedia, ev, __get_phone(thisObject));
 return;
}

8 – 46 SOMobjects Developer Toolkit Users Guide

Method “sompEDRead”: The sompEDRead method for directory entries reads the strings
written out by sompWriteString with the analogous read method sompReadString.

SOM_Scope void SOMLINK sompEDRead(entryED somSelf,
 Environment *ev,
 SOMPMediaInterfaceAbstract thisMedia,
 SOMPPersistentObject thisObject)
{
 string rstring;

 entryEDMethodDebug(”entryED”,”sompEDRead”);

 /* Read name
 rstring is malloc’d by sompReadString
 ––––––––––––––––––––––––––––––––––––– */
 _sompReadString(thisMedia, ev, &rstring);
 if (ev–>_major != NO_EXCEPTION) return;
 __set_name(thisObject, rstring);

 /* Read phone number
 ––––––––––––––––– */
 _sompReadString(thisMedia, ev, &rstring);
 if (ev–>_major != NO_EXCEPTION) return;
 __set_phone(thisObject, rstring);
 return;
}

The “phoneDir” encoder/decoder — “dirED”
The Encoder/Decoder methods for the “phoneDir” object are somewhat more complex, since
the instance data for a “phoneDir” object includes pointers to its “dirEntry” children. These child
objects must be stored by the sompEDWrite method, and must be restored by sompEDRead.

The definition of the “phoneDir” Encoder/Decoder is as follows:

#include <eda.idl>
interface dirEd: SOMPEncoderDecoderAbstract{
 #ifdef __SOMIDL__
 implementation {
 sompEDWrite: override;
 sompEDRead: override;
 };
 #endif
};

Method sompEDWrite: The sompEDWrite method for “phoneDir” objects first writes the
maximum and actual number of entries in the directory using the method sompWriteLong.
After writing the number of entries, the sompEDWrite method then loops for the length of the
sequence, writing out the contained persistent objects using the sompWriteSomobject
method.

#define dirED_Class_Source
#include ”dired.ih”

#include <somp.h>
#include <phonedir.ih>
#include <direntry.ih>

8 – 478. The Persistence Framework

SOM_Scope void SOMLINK sompEDWrite(dirED somSelf, Environment *ev,
 SOMPMediaInterfaceAbstract thisMedia,
 SOMPPersistentObject thisObject)
{
/* Local declarations.
 ––––––––––––––––––– */
 long dlen;
 int i;
 _IDL_SEQUENCE_dirEntry directory;

/* dirEDData *somThis = dirEDGetData(somSelf); */
 dirEDMethodDebug(”dirED”,”sompEDWrite”);

/* Write out sequence max
 –––––––––––––––––––––––––––– */
 directory = __get_directory(thisObject);
 _sompWriteLong(thisMedia, ev, directory._maximum);

/* Write out number of entries.
 –––––––––––––––––––––––––––– */
 dlen = directory._length;
 _sompWriteLong(thisMedia, ev, dlen);

/* Write out the persistent Ids for each child.
 –– */
 for (i=0;(i < dlen) && (ev–>_major == NO_EXCEPTION);i++) {
 _sompWriteSomobject(thisMedia, ev, directory._buffer[i],
 thisObject);
 } /* endfor */

 return;
}

Method “sompEDRead”: The sompEDRead method is the mirror image of the
sompEDWrite method. It first reads the maximum and actual number of entries in the directory
sequence with sompReadLong. Then it restores the “dirEntry” objects into the directory
sequence buffer with sompReadSomobject. Finally, it sets the “phoneDir” sequence with a call
to set_directory.

8 – 48 SOMobjects Developer Toolkit Users Guide

SOM_Scope void SOMLINK sompEDRead(dirED somSelf, Environment *ev,
 SOMPMediaInterfaceAbstract thisMedia,
 SOMPPersistentObject thisObject)
{
/* Local Declarations.
 ––––––––––––––––––– */
 int i;
 long dlen, dmax;
 SOMObject ro;
 _IDL_SEQUENCE_dirEntry directory;

 dirEDMethodDebug(”dirED”,”sompEDRead”);

/* Read maximum and actual size of sequence.
 ––– */
 _sompReadLong(thisMedia, ev, &dmax);
 directory._maximum = dmax;
 _sompReadLong(thisMedia, ev, &dlen);
 directory._length = dlen;

/* Allocate space for sequence entries.
 –––––––––––––––––––––––––––––––––––– */
 if (ev–>_major == NO_EXCEPTION) {
 directory._buffer = (dirEntry *)
 SOMMalloc(dmax*sizeof(dirEntry));

/* Restore the individual entries to the name space.
 ––– */
 for (i=0;i < dlen && (ev–>_major == NO_EXCEPTION);i++) {
 _sompReadSomobject(thisMedia, ev, (SOMObject*)(&ro));
 *(directory._buffer + i) = ro;
 } /* endfor */
 if (ev–>_major == NO_EXCEPTION) {

/* Copy structure into attribute.
 –––––––––––––––––––––––––––––– */
 __set_directory(thisObject, &directory);
 }
 }

 return;
}

The definition and implementation of the “dirEntry” and “phoneDir” classes are unchanged from
the previous example. The test program is unchanged except for small additions to the main
program, which appears as follows (with significant differences shown in bold):

main()
{

/* Initialize persistent framework.
 –––––––––––––––––––––––––––––––– */
 psm = SOMPPersistentStorageMgrNew();
 diredClass = dirEDNewClass (0,0);
 entryedClass = entryEDNewClass (0,0);
 ev = somGetGlobalEnvironment();

...

8 – 498. The Persistence Framework

In order for the Persistence Framework to instantiate a user-written Encoder/Decoder, its class
object must exist. Because you wouldn’t normally instantiate an Encoder/Decoder object on
your own, the <className>NewClass procedure of your Encoder/Decoder classes must be
called. The highlighted lines in the main program create the class objects for the “dirED” and
“entryED” classes with an explicit call to their <className>NewClass procedures. These
classes could also be built into a dynamically loadable class library where their NewClass
procedures are called automatically. For more information on building dynamically loadable
class libraries, see “Creating a SOM Class Library” in Chapter 5, “Implementing Classes in
SOM.”

Encoder/Decoder class objects must also exist at the time an object is restored.

The save function with modifications is shown below. Two methods are shown for setting an
object’s Encoder/Decoder. For the “phoneDir” object “mylist”, the Encoder/Decoder class is
set with the sompSetEncoderDecoderName method. This sets the Encoder/Decoder for only
the “mylist” object and no others. sompSetClassLevelEncoderDecoderName is used to set
the Encoder/Decoder for all objects of class “dirEntry”. The restore function in the example does
not have to set the name of an object’s Encoder/Decoder class name because the class name is
stored as part of an object’s data and restored when the object is restored.

save()
{
/* Local declarations.
 ––––––––––––––––––– */
 SOMPPersistentId pid;
 dirEntry name1, name2;
 phoneDir mylist;
 string fp;

/* Create the persistent objects.
 –––––––––––––––––––––––––––––– */
 mylist = phoneDirNew();
 name1 = dirEntryNew();
 name2 = dirEntryNew();

/* Set the encoder/decoder class.
 This call sets for only ”mylist” object.
 –– */
 _sompSetEncoderDecoderName (mylist, ev, ”dirED”);

/* Set the encoder/decoder class.
 This call sets for all objects of class ”dirEntry”
 –– */
 _sompSetClassLevelEncoderDecoderName (_somGetClass(name1), ev,
 ”entryED”);

/* Create the persistent Id.
 ––––––––––––––––––––––––– */
 pid = SOMPPersistentIdNew();
 _sompSetIOGroupName(pid, ev, ”./phoneDir”);
 if (ev–>_major != NO_EXCEPTION) exit(–1);
 _sompInitGivenId (mylist, ev, pid);
 _somFree (pid);
 if (ev–>_major != NO_EXCEPTION) exit(–1);

/* Get the object id used for storing the directory.
 ––– */
 pid = _sompGetPersistentId (mylist, ev);
 fp = _sompGetIOGroupName (pid, ev, idBuff);

8 – 50 SOMobjects Developer Toolkit Users Guide

/* Add entry 1.
 –––––––––––– */
 _mkEntry (name1, ”Roger”, ”555–5085”);
 _sompInitNearObject (name1, ev, mylist);
 if (ev–>_major != NO_EXCEPTION) exit(–1);
 _addEntry (mylist, name1);

/* Add entry 2.
 –––––––––––– */
 _mkEntry (name2, ”Robert”, ”555–8151”);
 _sompInitNearObject (name2, ev, mylist);
 if (ev–>_major != NO_EXCEPTION) exit(–1);
 _addEntry (mylist, name2);

/* Display phone directory.
 –––––––––––––––––––––––– */
 _printDirInfo(mylist);

/* Store the phone directory.
 –––––––––––––––––––––––––– */
 _sompStoreObject (psm, ev, mylist);
 if (ev–>_major != NO_EXCEPTION) {
 somPrintf (”\nBack from StoreObject – ERROR!\n”);
 } else {
 somPrintf (”\nBack from StoreObject – Ok\n”);
 somPrintf (”Group Name is %s\n”, idBuff);
 }
/* Finished.
 ––––––––– */
 _somFree (name2);
 _somFree (name1);
 _somFree (mylist);}

8 – 518. The Persistence Framework

8.7 Multi-thread Considerations
The Persistence Framework allows multi-threaded applications on OS/2. Applications can
safely have multiple threads, each doing stores or restores for different objects. The Persis-
tence Framework does not guarantee that persistent objects are multi-thread enabled. This is
the responsibility of the object implementor. In most cases, having more than a small number of
threads doing store/restore concurrently is less efficient than allowing the store/restores to
occur sequentially, since more time must be spent in physically seeking on the disk.

8.8 Error Handling
The Persistence Framework uses the CORBA specification for error handling. As specified by
the CORBA standard, a method may return zero or more “exceptions”. CORBA “exceptions” are
implemented by passing back error information after a method call, as opposed to the “catch/
throw” model, in which an exception is implemented by a long jump or signal. Each defined
exception has an error data structure whose value is accessible to the caller after calls to
methods that use that exception. (For additional information, consult the CORBA 1.1 specifica-
tion.)

All Persistence Framework methods that return errors do so by raising the sompException
exception. The exception is returned via the Environment parameter. To illustrate how error
handling is managed, we present a simple “animal” class that returns errors exactly like the
Persistence Framework. The animal.idl file looks like this:

#include <somobj.idl>
#include <somperrd.idl>
interface animalErr: SOMObject
{
 void makeNoise() raises (sompException);
 void getFood() raises (sompException) ;
 void printAnimal() raises (sompException);
};

The sompException is defined as follows:

exception sompException {
 long primary;
 long secondary;
};

As with any CORBA exception, the client checks for an exception after a method call by
examining the _major field of the Environment structure. This field is guaranteed to equal
NO_EXCEPTION if no error has occurred. In general, when a method returns an error via the
Environment structure, the _major field is set to either SYSTEM_EXCEPTION or
USER_EXCEPTION. When an error occurs in the Persistence Framework, _major is always set
to USER_EXCEPTION. A client program that makes use of the “animal” class is shown below:

8 – 52 SOMobjects Developer Toolkit Users Guide

main()
{ animalErr pooh = animalErrNew();
 dogErr snoopie = dogErrNew();
 Environment *myenv = SOM_CreateLocalEnvironment();
 void displayErr(Environment *ev);

 _makeNoise(pooh, myenv);
 if (myenv–>_major != NO_EXCEPTION) displayErr(myenv);

 _getFood(pooh, myenv);
 if (myenv–>_major!= NO_EXCEPTION) displayErr(myenv);

 _printAnimal(pooh, myenv);
 if (myenv–>_major!= NO_EXCEPTION) displayErr(myenv);

 _getFood(snoopie, myenv);
 if (myenv–>_major!= NO_EXCEPTION) displayErr(myenv);

 SOM_DestroyLocalEnvironment(myenv);
 return (int) 0;
}

Once the client determines that an exception has occurred, additional information can be
retrieved via the exception members. The Persistence Framework exception,
sompException, contains both a _primary and _secondary field, which further define the
exception. The following “displayErr” function demonstrates how to use these fields:

void displayErr(Environment *ev)
{
 sompException *params;
 switch(ev–>_major) {
 case SYSTEM_EXCEPTION:
 somPrintf(”System Exception Raised\n”);
 break;
 case USER_EXCEPTION:
 somPrintf(”User Exception Raised\n”);
 somPrintf(”ID of exception: %s\n”, somExceptionId(ev));
 params = somExceptionValue(ev);
 somPrintf(” primary: %d\n”, params–>primary);
 somPrintf(”secondary: %d\n”, params–>secondary);
 break;
 default:
 somPrintf(”Unknown Exception Raised\n”);
 break;
 }
}

In general, the value returned from somExceptionValue is not the same for all
USER_EXCEPTION errors. You must check the exception ID returned with somExceptionId.
However, to check specifically for Persistence Framework errors, you could simplify the above
function as shown:

8 – 538. The Persistence Framework

void displayErr(Environment *ev)
{
 sompException *params; /* Declare parameters */
 somPrintf(”User Exception Raised\n”); /* Print warning */
 params = somExceptionValue(ev); /* Get parameters */
 somPrintf(”primary: %d\n”, params–>primary);
 /* Display primary error */
 somPrintf(”secondary: %d\n”, params–>secondary);
 /* Display secondary error */
}

Another way to manage exceptions would be to place error management code in the client
program directly:

 _makeNoise(pooh, myenv);
 if (myenv–>_major != NO_EXCEPTION){
 /* Error handling code. */
 }

 _getFood(pooh, myenv);
 if (myenv–>_major!= NO_EXCEPTION){
 /* Error handling code. */
 }

 etc.

Error codes
The members of sompException, primary and secondary have a predefined set of possible
values. The primary field will contain either the value SOMPERROR_SYSTEM_ERROR or
SOMPERROR_FRAMEWORK_ERROR. The former is returned when the originating error comes
from the underlying C library. The latter is returned when the error was detected within the
Persistence Framework.

When the primary field is SOMPERROR_SYSTEM_ERROR, secondary will contain the actual
error returned from the C library (the value normally found in the C variable “errno”).

When the primary field is SOMPERROR_FRAMEWORK_ERROR, secondary will contain one of
the predefined errors, defined in “somperr.idl”.

For a listing and explanation of the Persistence Framework error codes, please refer to Appen-
dix A, “Customer Support and Error Codes,” which lists the error codes for all frameworks of the
SOMobjects Developer Toolkit.

8 – 54 SOMobjects Developer Toolkit Users Guide

