
Ref – 473Replication FrameworkProgrammers Reference Manual

Replication Framework Reference

Replication Framework Class Organization

SOMObject

SOMR SOMRNameable

Denotes “is a subclass of”

 SOMRReplicbl

SOMRLinearizable

SOMR class

Ref – 474 Replication Framework SOMobjects Developer Toolkit

SOMR Class

Description
The SOMR class creates and initializes several manager objects required by the Replication
Framework. To use the Replication Framework, an application program must create a single
instance of the SOMR class at the beginning of the application.

File Stem
somr

Base Classes
SOMObject

Metaclass
SOMMSingleInstance

Ancestor Classes
SOMObject

New Methods
None.

Overriding Methods
somInit

SOMRLinearizable class

Ref – 475Replication FrameworkProgrammers Reference Manual

SOMRLinearizable Class

Description
The SOMRLinearizable class provides an interface for objects that are required to be copied.
Two methods are introduced: somrGetState and somrSetState. The somrGetState method
encodes the object into a byte string. The somrSetState method restores the value of the object
from the byte string. Currently, only an interface is provided by this class; thus, these methods
must be overridden.

File Stem
linear

Base Classes
SOMObject

Metaclass
SOMClass

Ancestor Classes
SOMObject

New Methods
somrGetState
somrSetState

Overriding Methods
somInit

SOMRLinearizable class

Ref – 476 Replication Framework SOMobjects Developer Toolkit

somrGetState Method

Purpose
Converts the internal state of an object into a byte string.

IDL Syntax
void somrGetState (

inout string buf);

Description
The somrGetState method converts the internal state of an object into a byte string and returns
a pointer to the string. (The length of the string is in the first sizeof(long) bytes of this string.
Although typed as a string, the data area following the length field may contain NULLs.) The
implementor must allocate the necessary memory for the string.

The somrGetState method must be overridden in a subclass.

The ownership of this string is transferred to the caller of this method.

Parameters
receiver A pointer to an object of class SOMRLinearizable.

ev A pointer to the Environment structure for the caller.

buf A pointer to a buffer where the outgoing byte string will be placed.

Return Values
None.

Examples
Suppose that a class MyObj has a single instance variable mydata, which is a pointer to a
string. Use an implementation such as the following to override the somrGetState method:

SOM_Scope void SOMLINK somrGetState(MyObj somSelf, Environment *Env, string *buf)
{
 long len;
 MyObjData *somThis = MyObjGetData(somSelf);
 *buf = SOMMalloc(len = strlen(_mydata) + 1 + sizeof(long));
 strcpy(*buf + sizeof(long), _mydata);
 (long)buf = len;
}

Original Class
SOMRLinearizable

Related Information
Methods: somrSetState, somrApplyUpdates

SOMRLinearizable class

Ref – 477Replication FrameworkProgrammers Reference Manual

somrSetState Method

Purpose
Converts a given linear byte string into its internal state.

IDL Syntax
void somrSetState (

in string buf);

Description
The somrSetState method is the reverse of somrGetState. The somrSetState method con-
verts the given byte string into its internal state. (The length of the string is in the first
sizeof(long) bytes of this string. Although typed as a string, the data area following the length
field may contain NULLs.)

This method must be overridden in a subclass.

Parameters
receiver A pointer to an object of class SOMRLinearizable.

ev A pointer to the Environment structure for the caller.

buf A pointer to the incoming byte string to be converted.

Return Values
None.

Examples
Suppose that a class MyObj has a single instance variable mydata, which is a pointer to a
string. Use an implementation such as the following to override the somrSetState method:

SOM_Scope void SOMLINK somrSetState(MyObj somSelf, Environment *Env, string buf)
{
MyObjData *somThis = MyObjGetData(somSelf);
 _mydata = strcpy(SOMMalloc(*(long*)buf), buf + sizeof(long));
}

Original Class
SOMRLinearizable

Related Information
Methods: somrGetState, somrApplyUpdates

SOMRNameable class

Ref – 478 Replication Framework SOMobjects Developer Toolkit

SOMRNameable Class

Description
The SOMRNameable class provides an interface for objects that require a string name. Two
methods are introduced: somrGetObjName and somrSetObjName. The somrGetObjName
method returns a pointer to the object’s name. The somrSetObjName method sets the object’s
name pointer to point to the given string.

File Stem
nameable

Base Classes
SOMObject

Metaclass
SOMClass

Ancestor Classes
SOMObject

New Methods
somrSetObjName
somrGetObjName

Overriding Methods
somInit
somUninit

SOMRNameable class

Ref – 479Replication FrameworkProgrammers Reference Manual

somrGetObjName Method

Purpose
Returns a pointer to an object’s name string.

IDL Syntax
string somrGetObjName ();

Description
The somrGetObjName method returns a pointer to an object’s name string.

Ownership of the string remains with the object.

Parameters
receiver A pointer to an object of class SOMRNameable.

ev A pointer to the Environment structure for the caller.

Return Values
A pointer to a string (which could be NULL if the object was not assigned a name).

Examples
if (!strcmp(_somrGetObjName(anObject, Env), ”Lassie”)) {

_bark(anObject); }

Original Class
SOMRNameable

Related Information
Methods: somrSetObjName

SOMRNameable class

Ref – 480 Replication Framework SOMobjects Developer Toolkit

somrSetObjName Method

Purpose
Sets the name of a nameable object.

IDL Syntax
void somrSetObjName (

in string name);

Description
The somrSetObjName method sets the internal pointer to name.

This method transfers ownership of the string to the receiving object.

Parameters
receiver A pointer to an object of class SOMRNameable.

ev A pointer to the Environment structure for the caller.

name A pointer to the name of the object.

Return Values
None.

Examples
_somrSetObjName(anObject, Env, ”Lassie”);

Original Class
SOMRNameable

Related Information
Methods: somrGetObjName

SOMRReplicbl class

Ref – 481Replication FrameworkProgrammers Reference Manual

SOMRReplicbl Class

Description
The SOMRReplicbl class provides a link to the replica management subsystem. Any class
derived from this class can have groups of instances that are replicas of each other. That is, the
group of instances act as if they are one object. Changes to one replica are propagated to others
in the group. All changes are applied in the same order to keep the replicas consistent.

To achieve replicability, the derived object must abide by the following rules [further derivations
and contained (constituent) subobjects must abide by these rules as well]:

1. It must obtain a replica lock before updating its data and must release the same after
the update. That is, the update methods must bracket their code with one of two possible
method pairs:

somrLock and somrReleaseNPropagateUpdate or
somrLockNLogOp and somrReleaseNPropagateOperation

2. After obtaining the replica lock, if the object decides to abort an update operation, it must
call the appropriate abort method:

somrReleaseLockNAbortUpdate or
somrReleaseLockNAbortOp

3. In case value logging is used, it must have an update language in which changes in the state
of the object can be described.

4. In case value logging is used, it must provide a method to receive and interpret update
messages propagated by other replicas. That is, it must implement the somrApplyUpdates
method. When there are subobjects, this implementation should call them to interpret the
updates appropriate to them.

5. It must have methods to get and set the complete state of the object (including any
subobjects). That is, it must provide implementations for somrGetState and somrSetState.

6. It should be able to receive and interpret data replication directives (such as,
LOST_CONNECTION, BECOME_STAND_ALONE, and so forth).

File Stem
replicbl

Base Classes
SOMRNameable, SOMRLinearizable

Metaclass
SOMClass

Ancestor Classes
SOMRNameable, SOMRLinearizable, SOMObject

New Methods
somrApplyUpdates
somrDoDirective
somrGetSecurityPolicy
somrLock
somrLockNlogOp

SOMRReplicbl class

Ref – 482 Replication Framework SOMobjects Developer Toolkit

somrPin
somrReleaseLockNAbortOp
somrReleaseLockNAbortUpdate
somrReleaseNPropagateUpdate
somrReleaseNPropagateOperation
somrRepInit
somrRepUninit
somrUnpin

Overriding Methods
somInit
somUninit

SOMRReplicbl class

Ref – 483Replication FrameworkProgrammers Reference Manual

somrApplyUpdates Method

Purpose
Interprets the buffer received as an update to its state.

IDL Syntax
void somrApplyUpdates (

string buffer,
int bufferLen,
int objIntId);

Description
When doing value logging, the somrApplyUpdates method interprets the contents of the
buffer received as an update to its state. The format of this update is exactly the same
as the one used by the subclass implementor for the update buffer passed to the
somrReleaseNPropagateUpdate method. (The length of the buffer is in the first sizeof(long)
bytes of this string. Although typed as a string, the data area following the length field may
contain NULLs.)

The somrApplyUpdates method is an obligation for a replicable object when value logging is
being done. In this case, somrApplyUpdates must be overridden in a derived class.

Parameters
receiver A pointer to an object of class SOMRReplicbl.

ev A pointer to the Environment structure for the caller.

buffer A pointer to a character buffer representing update information.

bufferLen The size of buffer.

objIntId This parameter is reserved for future use.

Return Values
None.

Examples
If somrGetState is used to fill the buffer in somrReleaseNPropagateUpdate, then the follow-
ing would be the implementation of somrApplyUpdates.

SOM_Scope void SOMLINK somrApplyUpdates(AnObject somSelf,
Environment *env, string buf,
int len, int objIntId)

{
 /* parse the byte string in buf and apply the state
 changes to the object. */
 . . .
}

Original Class
SOMRReplicbl

Related Information
Methods: somrReleaseNPropagateUpdate, somrSetState, somrGetState

SOMRReplicbl class

Ref – 484 Replication Framework SOMobjects Developer Toolkit

somrDoDirective Method

Purpose
Interprets a directive sent to a replica.

IDL Syntax
void somrDoDirective (

in string str);

Description
A directive is a message from the Replication Framework to a replica (actually to the application
that is using the replica). A directive indicates that some condition has arisen asynchronously
(not as a reaction to any request by the local replica). One handles directives by overriding the
somrDoDirective method.

The somrDoDirective method is an obligation for replicable objects. It must be overridden in a
derived class.

Parameters
receiver A pointer to an object of class SOMRReplicbl.

ev A pointer to the Environment structure for the caller.

str A string representing the directive.

Return Values
None.

Examples
Customize your method definition in the SOM-generated implementation file, where the ellipses
represent application dependent code:

SOM_Scope void SOMLINK somrDoDirective(AnObject somSelf,
 Environment *env, string str)

{
 AnObjectData *somThis = AnObjectGetData(somSelf);
 if (!strcmp(directive, ”BECOME_STAND_ALONE”) {

... }
 else if (!strcmp(directive, ”CONNECTION_LOST”) {

... }
 else if (!strcmp(directive, ”CONNECTION_REESTABLISHED”) {

... }

}

Original Class
SOMRReplicbl

Related Information
Methods: somrRepInit, somrRepUninit

SOMRReplicbl class

Ref – 485Replication FrameworkProgrammers Reference Manual

somrGetSecurityPolicy Method

Purpose
Returns the security policy for replicated objects.

IDL Syntax
long somrGetSecurityPolicy ();

Description
The somrGetSecurityPolicy method returns the security policy for replicated objects that
either are non-persistent or are persistent but haven’t been created yet. The returned value is
used as the mode parameter of open for creating the .scf file.

If the somrGetSecurityPolicy method is not overridden, the default is to open the .scf file with
read and write permission, as follows. On AIX, the default security policy is

S_IRUSR|S_IWUSR|S_IRGRP|S_IWGRP|S_IROTH

On OS/2 and Windows, the default security policy is

S_IREAD|S_IWRITE

Parameters
receiver A pointer to an object of class SOMRReplicbl.

ev A pointer to the Environment structure for the caller.

Return Values
The somrGetSecurityPolicy method returns an integer representing the security policy of the
receiving object.

Examples
For AIX, one might override the security policy as follows:

int somrGetSecurityPolicy (SOMRReplicbl receiver
 Environment *env);

{
return S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH ;

}

Original Class
SOMRReplicbl

SOMRReplicbl class

Ref – 486 Replication Framework SOMobjects Developer Toolkit

somrLock Method

Purpose
Gets a lock on the replica of the object when doing value logging.

IDL Syntax
void somrLock ();

Description
The somrLock method gets a lock on the current replica of the object. This method is used only
when the replicated object is initialized for value logging (see somrRepInit). The exception
raised indicates whether the lock was successfully obtained.

Parameters
receiver A pointer to an object of class SOMRReplicbl.

ev A pointer to the Environment structure for the caller.

Return Values
None. The somrLock method can raise the following exceptions: SOMR_DENIED, and
SOMR_TRYLATER.

Examples
The code template for a method that modifies the value of a ReplicatedDog might look as
follows:

dogMethod(ReplicatedDog somSelf, <parameters>) {
char *buf;
Environment *Env = SOM_CreateLocalEnvironment();
_somrLock(somSelf, Env);
if (Env–>_major == NO_EXCEPTION) {

parent_dogMethod(somSelf, <parameters>)
buf = <some algorithm to capture the change

in the state of the object>;
_somrReleaseNPropagateUpdate(somSelf, Env

”ReplicatedDog”,
buf,
<buf length in bytes>,
0);

}
else {

/* code to handle failure to obtain a lock */
switch (somriGetErrorCode(Env)){
case SOMR_MASTERUNREACHABLE: ...
case SOMR_UNAUTHORIZED: ...
case SOMR_TIMEOUT: ...
case SOMR_TRYLATER ...
default: ...
}

}

Original Class
SOMRReplicbl

Related Information
Methods: somrPin, somrReleaseLockNAbortUpdate, somrReleaseNPropagateUpdate

SOMRReplicbl class

Ref – 487Replication FrameworkProgrammers Reference Manual

somrLockNlogOp Method
Purpose

Gets a lock on the replica of the object and logs the method.

IDL Syntax
void somrLockNlogOp (

in string classname,
in string methodname,
in va_list *ap);

Description
The somrLockNlogOp method gets a lock on the current replica of the object. This method is
used only when the replicated object is initialized for operation logging (see somrRepInit). This
method is the same as somrLock, but has the additional responsibility of logging the method
that is requesting the lock.

Parameters
receiver A pointer to an object of class SOMRReplicbl.

ev A pointer to the Environment structure for the caller.

classname The name of the class of the object.

methodname The name of the method to be logged.

ap A pointer to a va_list that specifies the arguments with which methodName is
called. If the callstyle of the method is IDL, then the first argument must be a
pointer to the Environment structure.

Return Values
None. The somrLockNlogOp method can raise the exceptions SOMR_DENIED, and
SOMR_TRYLATER.

Examples
#include <somrerrd.h>

dogMethod(ReplicatedDog somSelf, <parameters>) {
ReplicatedDogData *somThis = ReplicatedDogGetData(somSelf);
Environment *Env = SOM_CreateLocalEnvironment();
_somrLockNlogOp(somSelf,

 Env,
 ”ReplicatedDog”,
 ”dogMethod”,
 <parameters>);

if (Env–>_major == NO_EXCEPTION) {
parent_dogMethod(somSelf, <parameters>);
... <any other additional code> ...
_somrReleaseNPropagateOperation(somSelf, Env);
}

else {
/* code to handle failure to obtain a lock */

 }

Original Class
SOMRReplicbl

Related Information
Methods: somrPin, somrReleaseLockNAbortOp, somrReleaseNPropagateOperation

SOMRReplicbl class

Ref – 488 Replication Framework SOMobjects Developer Toolkit

somrPin Method

Purpose
Pins the lock to this replica until somrUnPin is called.

IDL Syntax
void somrPin ();

Description
The lock obtained by this replica stays with it until a call to somrUnPin is made. That is, it makes
the replica lock un-preemptible.

Parameters
receiver A pointer to an object of class SOMRReplicbl.

ev A pointer to the Environment structure for the caller.

Return Values
None. If the lock is denied, the exception SOMR_DENIED is raised.

Examples
Below is a projection of a sequence of requests to the Replication Framework that are spread
over two update methods of a replicated object. Because of the pinning of the lock, the user is
assured that the lock will not be lost between the two methods.

somrLock(somself, ev);
somrPin(somSelf, ev);
...
somrReleaseNPropagateUpdate(somself,ev,clsnm,buf,len ,objId);

somrLock(somself, ev);
...
somrReleaseNPropagateUpdate(somself,ev,clsnm,buf,len,objId);
somrUnPin(somself, ev);

first
method

second
method

Original Class
SOMRReplicbl

Related Information
Methods: somrLock, somrLockNlogOp, somrUnPin

SOMRReplicbl class

Ref – 489Replication FrameworkProgrammers Reference Manual

somrReleaseLockNAbortOp Method

Purpose
Aborts the operation begun by calling the somrLockNLogOp method.

IDL Syntax
void somrReleaseLockNAbortOp ();

Description
With operation logging, once a lock is obtained, either the somrReleaseLockNAbortOp meth-
od or the somrReleaseNPropagateOperation method must be called.

The somrReleaseLockNAbortOp method informs the Replication Framework that the user
decided to abort an operation begun by calling the somrLockNLogOp method.

Parameters
receiver A pointer to an object of class SOMRReplicbl.

ev A pointer to the Environment structure for the caller.

Return Values
None.

Examples
#include <somrerrd.h>

dogMethod(ReplicatedDog somSelf, <parameters>) {
ReplicatedDogData *somThis = ReplicatedDogGetData(somSelf);
Environment *Env = SOM_CreateLocalEnvironment();
_somrLockNlogOp(somSelf,

 Env,
 ”ReplicatedDog”,
 ”dogMethod”,
 <parameters>);

if (Env–>_major == NO_EXCEPTION) {
parent_dogMethod(somSelf, <parameters>);
... <User now decides to abort> ...
_somrReleaseLockNAbortOp(somSelf, Env);
}

else {
/* code to handle failure to obtain a lock */

 }

Original Class
SOMRReplicbl

Related Information
Methods: somrReleaseNPropagateOperation, somrLockNlogOp

SOMRReplicbl class

Ref – 490 Replication Framework SOMobjects Developer Toolkit

somrReleaseLockNAbortUpdate Method

Purpose
Aborts the operation begun by calling somrLock.

IDL Syntax
void somrReleaseLockNAbortUpdate ();

Description
When doing value logging, once a lock is obtained, one of the following two methods must be
called: either somrReleaseLockNAbortUpdate or somrReleaseNPropagateUpdate.

The somrReleaseLockNAbortUpdate method lets the Replication Framework know that the
user decided to abort the operation begun by calling somrLock.

Parameters
receiver A pointer to an object of class SOMRReplicbl.

ev A pointer to the Environment structure for the caller.

Return Values
None.

Examples
dogMethod(ReplicatedDog somSelf, <parameters>) {

char *buf;
Environment *Env = SOM_CreateLocalEnvironment();
_somrLock(somSelf, Env);
if (Env–>_major == NO_EXCEPTION) {

parent_dogMethod(somSelf, <parameters>)
 ...
/* User now decides to abort */
_somrReleaseLockNAbortUpdate(somSelf, Env,

”ReplicatedDog”,
buf,
<buf length in bytes>,
0);

}
else {

/* code to handle failure to obtain a lock */
 }

Original Class
SOMRReplicbl

Related Information
Methods: somrReleaseNPropagateUpdate, somrLock

SOMRReplicbl class

Ref – 491Replication FrameworkProgrammers Reference Manual

somrReleaseNPropagateOperation Method

Purpose
Releases the lock and propagates the operation log.

IDL Syntax
void somrReleaseNPropagateOperation ();

Description
When doing operation logging, the somrReleaseNPropagateOperation method request the
release of the lock and propagates the log of update operations to the other replicas.

Parameters
receiver A pointer to an object of class SOMRReplicbl.

ev A pointer to the Environment structure for the caller.

Return Values
None.

Examples
#include <somrerrd.h>

dogMethod(ReplicatedDog somSelf, <parameters>) {
ReplicatedDogData *somThis = ReplicatedDogGetData(somSelf);
Environment *Env = SOM_CreateLocalEnvironment();
_somrLockNlogOp(somSelf,

 Env,
 ”ReplicatedDog”,
 ”dogMethod”,
 <parameters>);

if (Env–>_major == NO_EXCEPTION) {
parent_dogMethod(somSelf, <parameters>);
... <any other additional code> ...
_somrReleaseNPropagateOperation(somSelf, Env);
}

else {
/* code to handle failure to obtain a lock */

 }

Original Class
SOMRReplicbl

Related Information
Methods: somrReleaseLockNAbortOp, somrLockNlogOp

SOMRReplicbl class

Ref – 492 Replication Framework SOMobjects Developer Toolkit

somrReleaseNPropagateUpdate Method

Purpose
Requests the release of the lock and propagates the value of the replica.

IDL Syntax
void somrReleaseNPropagateUpdate (

in string clsname,
in string buffer,
in int bufferlen,
in int intObjId);

Description
When doing value logging, the somrReleaseNPropagateUpdate method calls the local replica
manager to release a lock locally and to propagate local updates to the master and/or other
shadows. This propagates the “value log” of state changes.

Parameters
receiver A pointer to an object of class SOMRReplicbl.

ev A pointer to the Environment structure for the caller.

clsname A character string representing the name of the class to be logged.

buffer A character buffer for logged information. (The length of the string is in the first
sizeof(long) bytes of this string. Although typed as a string, the data area
following the length field may contain NULLs.)

bufferlen An integer representing the size of the buffer required.

intObjId This parameter is reserved for future use; it should always be set to 0.

Return Values
None.

Examples
The code template for a method that modifies the value of a ReplicatedDog might look as
follows:

dogMethod(ReplicatedDog somSelf, <parameters>) {
char *buf;
Environment *Env = SOM_CreateLocalEnvironment();
_somrLock(somSelf, Env);
if (Env–>_major == NO_EXCEPTION) {

parent_dogMethod(somSelf, <parameters>)
buf = <some algorithm to capture the change

in the state of the object>;
_somrReleaseNPropagateUpdate(somSelf, Env,

”ReplicatedDog”,
buf,
<buf length in bytes>,
0);

}
else {

/* code to handle failure to obtain a lock */
 }

SOMRReplicbl class

Ref – 493Replication FrameworkProgrammers Reference Manual

Original Class
SOMRReplicbl

Related Information
Methods: somrReleaseLockNAbortUpdate, somrLock

SOMRReplicbl class

Ref – 494 Replication Framework SOMobjects Developer Toolkit

somrRepInit Method

Purpose
Makes the object ready for replication.

IDL Syntax
long somrRepInit (

in char lType,
in char mode);

Description
The somrRepInit method prepares the object for replication. A derived object must call this
method for activating replica control.

The lType parameter indicates the type of logging used. If lType is v, then value logging is used. If
lType is o, then operation logging is used.

The parameter mode indicates whether the object is opened for reading (r) or writing (w).

Parameters
receiver A pointer to an object of class SOMRReplicbl.

ev A pointer to the Environment structure for the caller.

lType A char indicating the type of logging used: v indicates value logging; o indi-
cates operation logging.

mode A char indicating whether the object is open for reading (r) or writing (w).

Return Values
The somrRepInit method returns1 to indicate that this is the first replica to be activated (the
master), or 0 indicates it is a shadow. If an error occurs, one of the following exceptions can be
raised: SOMR_MASTER_UNREACHABLE and SOMR_UNAUTHORIZED. It is also possible to ob-
tain SOMR_TRYLATER.

Examples
#include <somrerrd.h>

Environment *Env;
int rc;
ReplicatedDog dog = ReplicatedDogNew();
Env = SOM_CreateLocalEnvironment();

 _somrSetObjName (dog, Env, ”Lassie”);
 rc = _somrRepInit(dog, Env, ’o’, ’w’);
 if (Env–>_major == NO_EXCEPTION) {
 somPrintf(
 ”Successfully initialized for replication. rc = %d\n”,
 rc);
 ...
 }
 else {
 somPrintf(”Initialization for replication failed\n”);
 switch(somriGetErrorCode(Env)) {
 case SOMR_MASTERUNREACHABLE: ...
 case SOMR_UNAUTHORIZED: ...
 case SOMR_TRYLATER: ...
 default: ...
 }

SOMRReplicbl class

Ref – 495Replication FrameworkProgrammers Reference Manual

Original Class
SOMRReplicbl

Related Information
Methods: somrRepUninit

SOMRReplicbl class

Ref – 496 Replication Framework SOMobjects Developer Toolkit

somrRepUninit Method

Purpose
Destroys the setup for replication.

IDL Syntax
void somrRepUninit ();

Description
The somrRepUninit method destroys the setup for replication.

Parameters
receiver A pointer to an object of class SOMRReplicbl.

ev A pointer to the Environment structure for the caller.

Return Values
None.

Examples
_somrRepUninit(somSelf, Env);

Original Class
SOMRReplicbl

Related Information
Methods: somrRepInit

SOMRReplicbl class

Ref – 497Replication FrameworkProgrammers Reference Manual

somrUnPin Method

Purpose
Unpins the lock so that it can be obtained by another replica.

IDL Syntax
void somrUnPin ();

Description
The lock obtained by either somrLock or somrLockNlogOp can be pinned to the replica by
somrPin. This means that the lock is not released until somrUnPin is executed by the pinning
replica.

Parameters
receiver A pointer to an object of class SOMRReplicbl.

ev A pointer to the Environment structure for the caller.

Return Values
None.

Examples
The somrUnPin and somrReleaseNPropagateOperation methods can be done in either
order.

somrReleaseNPropagateOperation(somSelf, Env);
somrUnPin(somSelf, Env);

is equivalent to

somrUnPin(somSelf, Env);
somrReleaseNPropagateOperation(somSelf, Env);

Below is a projection of a sequence of requests to the Replication Framework that are spread
over two update methods of a replicated object. Because of the pinning of the lock, the user is
assured that the lock will not be lost between the two methods.

somrLock(somself, ev);
somrPin(somSelf, ev);
...
somrReleaseNPropagateUpdate(somself,ev,clsnm,buf,len,objId);

somrLock(somself, ev);
...
somrReleaseNPropagateUpdate(somself,ev,clsnm,buf,len,objId);
somrUnPin(somself, ev);

first
method

second
method

Original Class
SOMRReplicbl

Related Information
Methods: somrPin, somrLock, somrLockNlogOp

Ref – 498 Replication Framework SOMobjects Developer Toolkit

Ref – 499Metaclass FrameworkProgrammers Reference Manual

Metaclass Framework Reference

Metaclass class organization

Legend:
subclass–ofinstance–of

metaclass class ordinary object

SOMClass

SOMMSingleInstanceSOMMBeforeAfter

SOMMTraced SOMRReplicable

SOMRReplicableObject

SOMRReplicbl

SOMMBeforeAfter metaclass

Ref – 500 Metaclass Framework SOMobjects Developer Toolkit

SOMMBeforeAfter Metaclass

Description
SOMMBeforeAfter is a metaclass that defines two methods (sommBeforeMethod and
sommAfterMethod) which are invoked before and after each invocation of every instance
method. SOMMBeforeAfter is designed to be subclassed. Within the subclass, each of the two
methods should be overridden with a method procedure appropriate to the particular applica-
tion. The before and after methods are invoked on instances (ordinary objects) of a class whose
metaclass is the subclass (or child) of SOMMBeforeAfter, whenever any method (inherited or
introduced) of the class is invoked.

Caution: The somDefaultInit and somFree methods are among the methods that get before/
after behavior. This implies that the following two obligations are imposed on the programmer
of a SOMMBeforeAfter class. First, your implementation must guard against calling the
sommBeforeMethod before somDefaultInit has executed, when the object is not yet fully
initialized. Second, the implementation must guard against calling sommAfterMethod after
somFree, at which time the object no longer exists.

SOMMBeforeAfter is thread-safe.

File Stem
sombacls

New Methods
None.

Overriding Methods
somDefaultInit

SOMMBeforeAfter metaclass

Ref – 501Metaclass FrameworkProgrammers Reference Manual

sommAfterMethod Method

Purpose
Specifies a method that is automatically called after execution of each client method.

IDL Syntax
void sommAfterMethod (

in SOMObject object,
in somId methodId,
in void *returnedvalue,
in va_list ap);

Description
The sommAfterMethod specifies a method that is automatically called after execution of each
client method. The sommAfterMethod method is introduced in the SOMMBeforeAfter meta-
class. The default implementation does nothing until it is overridden. The sommAfterMethod
method is not called directly by the user. To define the desired “after” method,
sommAfterMethod must be overridden in a metaclass that is a subclass (child) of the
SOMMBeforeAfter metaclass.

Caution: somFree is among the methods that get before/after behavior, which implies that the
following obligation is imposed on the programmer of a sommAfterMethod. Specifically, care
must be taken to guard against sommAfterMethod being called after somFree, at which time
the object no longer exists.

Parameters
Refer to the Example’s diagram for further clarification of these arguments.

receiver A pointer to an object (class) of metaclass SOMMBeforeAfter representing
the class object that supports the method (such as, “myMethod”) for which the
“after” method will apply.

ev A pointer where the method can return exception information if an error is
encountered. The dispatch method of SOMMBeforeAfter sets this parameter
to NULL before dispatching the first sommBeforeMethod.

object A pointer to the instance of the receiver on which the method is invoked.

methodId The SOM ID of the method (such as, “myMethod”) that was invoked.

returnedvalue A pointer to the value returned by invoking the method (“myMethod”) on an
object.

ap The list of input arguments to the method (“myMethod”).

Return Value
None.

Example
The following figure shows an invocation of “myMethod” on “myObject”. Because “myObject” is
an instance of a class whose metaclass is a subclass of SOMMBeforeAfter, “myMethod” is
followed by an invocation of sommAfterMethod (which is shown in smaller type to denote that
the user does not actually code the method). The adjacent figure illustrates the meaning of the
parameters to sommAfterMethod.

SOMMBeforeAfter metaclass

Ref – 502 Metaclass Framework SOMobjects Developer Toolkit

An Example of using sommAfterMethod

Legend:
subclass–ofinstance–of

metaclass class ordinary object

SOMMBeforeAfter

sommAfterMethod(receiver, ev, myObject, ...)

myMethod(myObject,...)

“myObject”

�

�

�

“receiver”

aMetaclass

�

�

�

Original Class
SOMMBeforeAfter

Related Information
Methods: sommBeforeMethod

SOMMBeforeAfter metaclass

Ref – 503Metaclass FrameworkProgrammers Reference Manual

sommBeforeMethod Method

Purpose
Specifies a method that is automatically called before execution of each client method.

IDL Syntax
boolean sommBeforeMethod (

in SOMObject object,
in somId methodId,
in va_list ap);

Description
The sommBeforeMethod specifies a method that is automatically called before execution of
each client method. The sommBeforeMethod method is not called directly by the user. To
define the desired “before” method, sommBeforeMethod must be overridden in a metaclass
that is a subclass (child) of SOMMBeforeAfter. The default implementation does nothing until it
is overridden.

Caution: somDefaultInit is among the methods that get before/after behavior, which implies
that the following obligation is imposed on the programmer of a sommBeforeMethod. Specifi-
cally, care must be taken to guard against sommBeforeMethod being called before the
somDefaultInit method has executed and the object is not yet fully initialized.

Parameters
Refer to the Example’s diagram for further clarification of these arguments.

receiver A pointer to an object (class) of metaclass SOMMBeforeAfter representing
the class object that supports the method (such as, “myMethod”) for which the
“before” method will apply.

ev A pointer where the method can return exception information if an error is
encountered. The dispatch method of SOMMBeforeAfter sets this parameter
to NULL before dispatching the first sommBeforeMethod.

object A pointer to the instance of the receiver on which the method is invoked.

methodId The SOM ID of the method (such as, “myMethod”) that was invoked.

ap The list of input arguments to the method (“myMethod”).

Return Value
A boolean that indicates whether or not before/after dispatching should continue. If the value is
TRUE, normal before/after dispatching continues. If the value is FALSE, the dispatching skips to
the sommAfterMethod associated with the preceding sommBeforeMethod. This implies that
the sommBeforeMethod must do any post-processing that might otherwise be done by the
sommAfterMethod. Because before/after methods are paired within a SOMMBeforeAfter
metaclass, this design eliminates the complexity of communicating to the sommAfterMethod
that the sommBeforeMethod returned FALSE.

Example
The following figure shows an invocation of “myMethod” on “myObject”. Because “myObject” is
an instance of a class whose metaclass is a subclass of SOMMBeforeAfter, “myMethod” is
preceded by an invocation of sommBeforeMethod (which is shown in smaller type to denote
that the user does not actually code the method). The adjacent figure illustrates the meaning of
the parameters to sommBeforeMethod

SOMMBeforeAfter metaclass

Ref – 504 Metaclass Framework SOMobjects Developer Toolkit

An Example of using sommBeforeMethod

Legend:
subclass–ofinstance–of

metaclass class ordinary object

SOMMBeforeAfter

sommBeforeMethod(receiver, ev, myObject, ...)

myMethod(myObject,...)

“myObject”

“receiver”

aMetaclass

�

�

�

�

�

�

Original Class
SOMMBeforeAfter

Related Information
Methods: sommAfterMethod

SOMMSingleInstance metaclass

Ref – 505Metaclass FrameworkProgrammers Reference Manual

SOMMSingleInstance Metaclass

Description
SOMMSingleInstance can be specified as the metaclass when a class implementor is defining
a class for which only one instance can ever be created. The first call to <className>New in C,
the new operator in C++, or the somNew method creates the one possible instance of the class.
Thereafter, any subsequent “new” calls return the first (and only) instance.

Alternatively, the method sommGetSingleInstance can be used to accomplish the same
purpose. The method offers an advantage in that the call site explicitly shows that something
special is occurring and that a new object is not necessarily being created.

SOMMSingleInstance is thread-safe.

File Stem
snglicls

Base Class
SOMClass

Metaclass
SOMClass

Ancestor Classes
SOMClass, SOMObject

New Methods
sommGetSingleInstance

Overriding Methods
somInit
somNew

SOMMSingleInstance metaclass

Ref – 506 Metaclass Framework SOMobjects Developer Toolkit

sommGetSingleInstance Method

Purpose
Gets the one instance of a specified class for which only a single instance can exist.

IDL Syntax
SOMObject sommGetSingleInstance ();

Description
The sommGetSingleInstance method gets a pointer to the one instance of a class for which
only a single instance can exist. A class can have only a single instance when its metaclass is
the SOMMSingleInstance metaclass (or is a subclass of it).

The first call to <className>New in C, the new operator in C++, or the somNew method creates
the one possible instance of the class. Thereafter, any subsequent “new” calls return the first
(and only) instance. Using the sommGetSingleInstance method offers an advantage, how-
ever, in that the call site explicitly shows that something special is occurring and that a new
object is not necessarily being created. (That is, the sommGetSingleInstance method creates
the single instance if it does not already exist.)

Parameters
receiver A pointer to a class object whose metaclass is SOMMSingleInstance (or is a

subclass of it).

ev A pointer where the method can return exception information if an error is
encountered.

Return Value
The sommGetSingleInstance method returns a pointer to the single instance of the specified
class.

Example
Suppose the class “XXX” is an instance of SOMMSingleInstance; then the following C code
fragment passes the assertions.

x1 = XXXNew();
x2 = XXXNew();
assert(x1 == x2);
x3 = _sommGetSingleInstance(_somGetClass(x1), env);
assert(x2 == x3);

Note that the method sommGetSingleInstance is invoked on the class object, because
sommGetSingleInstance is a method introduced by the metaclass SOMMSingleInstance.

Original Class
SOMMSingleInstance

SOMMTraced metaclass

Ref – 507Metaclass FrameworkProgrammers Reference Manual

SOMMTraced Metaclass

Description
SOMMTraced is a metaclass that facilitates tracing of method invocations. Whenever a method
(inherited or introduced) is invoked on an instance (simple object) of a class whose metaclass is
SOMMTraced, a message prints to standard output giving the method parameters; then, after
completion, a second message prints giving the returned value.

There is one more step for using SOMMTraced: nothing prints unless the environment variable
SOMM_TRACED is set. If it is set to the empty string, all traced classes print. If the environment
variable SOMM_TRACED is not the empty string, it should be set to the list of names of classes
that should be traced. For example, for csh users, the following command turns on printing of the
trace for “Collie” and “Chihuahua”, but not for any other traced class:

setenv SOMM_TRACED ”Collie Chihuahua”

SOMMTraced is thread-safe.

File Stem
somtrcls

Base Class
SOMMBeforeAfter

Ancestor Classes
SOMMBeforeAfter, SOMClass, SOMObject

Attributes
boolean sommTraceIsOn

This attribute indicates whether or not tracing is turned on for a class.
This gives dynamic control over the trace facility.

New Methods
None.

Overriding Methods
sommBeforeMethod
sommAfterMethod

SOMRReplicable metaclass

Ref – 508 Metaclass Framework SOMobjects Developer Toolkit

SOMRReplicable Metaclass

Description
SOMRReplicable is the metaclass for SOMRReplicableObject. These two illustrate a second
way to use a metaclass to impart properties. Here, the metaclass is not intended to have any
other instance than SOMRReplicableObject, which imparts the desired property to ordinary
objects.

The need for this combination arises from a requirement for replicable classes to support the
somrReplicableExemptMethod method. Although this method could be introduced by
SOMRReplicable, each class must override it. To override a method in IDL, however, the
method must be introduced by a parent. Thus, the best design (with respect to usability) has
somrReplicableExemptMethod introduced by SOMRReplicableObject so that the method is
easily overridden.

File Stem
somrmcls

Base Class
SOMMBeforeAfter

Ancestor Classes
SOMMBeforeAfter, . . ., SOMClass

New Methods
None.

Overriding Methods
sommBeforeMethod, sommAfterMethod

SOMRReplicableObject class

Ref – 509Metaclass FrameworkProgrammers Reference Manual

SOMRReplicableObject Class

Description
This base class makes the Replication Framework easy to use. The only obligations of an
application programmer are to:

Override somrDoDirective, somrGetState, and somrSetState, and
Invoke somrSetObjName and somrRepInit on instances of SOMRReplicableObject.

File Stem
somrcls

Base Class
SOMRReplicbl

Metaclass
SOMRReplicable

Ancestor Classes
SOMRReplicbl, SOMRNameable, SOMRLinearizable, SOMObject

New Methods
somrLoggingType
somrReplicableExemptMethod

Overriding Methods
somrRepInit
somrApplyUpdates

SOMRReplicableObject class

Ref – 510 Metaclass Framework SOMobjects Developer Toolkit

somrLoggingType Method

Purpose
Enables querying of the logging type for a replicable object.

IDL Syntax
char somrLoggingType ();

Description
The somrLoggingType method allows one to query a replicable object for its logging type.
The method is used by the overrides of sommBeforeMethod and sommAfterMethod in the
SOMRReplicable metaclass.

Parameters
receiver A pointer to an object that is a SOMRReplicableObject.

ev A pointer to the Environment structure for the calling method.

Return Value
Either ‘o’ or ‘v’ depending on the logging type that was set by somrRepInit. (If somrRepInit has
not been invoked, the result is unspecified.)

Example
RepObject x;
x = RepObjectNew();
_somrSetObjName(x,ev,”aRepObject”);
_somrRepInit(x,ev,’o’,’w’);
if (’o’ == _somrLoggingType(x,ev))

somPrintf(”This will print”);

Original Class
SOMRReplicableObject

Related Information
Methods: somrRepInit

SOMRReplicableObject class

Ref – 511Metaclass FrameworkProgrammers Reference Manual

somrReplicableExemptMethod Method

Purpose
Indicates which methods are exempt from the before/after methods in SOMRReplicable.

IDL Syntax
boolean somrReplicableExemptMethod (in somId methodId);

Description
Methods that do not update a replicated object need not have their effects propagated to all
replicas (as a matter of fact, it is quite inefficient). One can indicate which methods of a replica-
ble class are read-only by having somrReplicableExemptMethod return TRUE for those
methods.

Note that methods supported by SOMRReplicableObject are automatically exempted. This
includes all methods introduced by SOMObject, SOMRReplicbl, SOMRNameable, and
SOMRLinearizable.

Parameters
receiver A pointer to an object that is a SOMRReplicableObject.

ev A pointer to the Environment structure for the calling method.

methodId The SOM ID of the method that was invoked.

Return Value
Returns TRUE if the sommBeforeMethod and sommAfterMethod (in SOMRReplicable)
should do nothing for the methodId. If FALSE is returned, the effect of the method is propagated
to all replicas.

Example
By overriding somrReplicableExemptMethod as follows, you can assure that the effect of the
method named “foo” is not propagated to replicas.

boolean somrReplicableExemptMethod(somId methodId) {
if (somCompareIds(methodId, somIdFromString(”foo”)))

return TRUE;
else

return FALSE;
}

Original Class
SOMRReplicableObject

Ref – 512 Metaclass Framework SOMobjects Developer Toolkit

Ref – 513Event Management FrameworkProgrammers Reference Manual

Event Management Framework Reference

Event Management Framework Class Organization

SOMObject

SOMEEMan SOMEEMRegisterData

Denotes “is a subclass of”

SOMEEvent

SOMEClientEvent SOMESinkEvent SOMEWorkProcEventSOMETimerEvent

SOMEClientEvent class

Ref – 514 Event Management Framework SOMobjects Developer Toolkit

SOMEClientEvent Class

Description
This class describes generic client events within the Event Manager. Client Events are defined,
created, processed and destroyed entirely by the application. The application can queue
several types of client events with EMan. When a client event occurs, EMan passes an instance
of this class to the callback routine. The callback can query this object about its type and obtain
any event-specific information.

File Stem
clientev

Base
SOMEEvent

Metaclass
SOMClass

Ancestor Classes
SOMEEvent SOMObject

New Methods
somevGetEventClientData
somevGetEventClientType
somevSetEventClientData
somevSetEventClientType

Overriding Methods
somInit

SOMEClientEvent class

Ref – 515Event Management FrameworkProgrammers Reference Manual

somevGetEventClientData Method

Purpose
Returns the user-defined data associated with a client event.

IDL Syntax
void* somevGetEventClientData ();

Description
This method returns the user-defined data (if any) associated with the Client Event object. This
associated data for a given client event type is passed to EMan at the time of registration.

Parameters
receiver A pointer to an object of class SOMEClientEvent.

ev A pointer to the Environment structure for the calling method.

Return Value
A pointer to user-defined client event data.

Original Class
SOMEClientEvent

Related Information
Methods: somevSetEventClientData

SOMEClientEvent class

Ref – 516 Event Management Framework SOMobjects Developer Toolkit

somevGetEventClientType Method

Purpose
Returns the type name of a client event.

IDL Syntax
string somevGetEventClientType ();

Description
This method returns the client event type of the Client Event object. Client event type is a string
name assigned to the event by the application at the time of registering the event.

Parameters
receiver A pointer to an object of class SOMEClientEvent.

ev A pointer to the Environment structure for the calling method.

Return Value
A null terminated string identifying the client event type.

Original Class
SOMEClientEvent

Related Information
Methods: somevSetEventClientType

SOMEClientEvent class

Ref – 517Event Management FrameworkProgrammers Reference Manual

somevSetEventClientData Method

Purpose
Sets the user-defined data of a client event.

IDL Syntax
void somevSetEventClientData (

in void* clientData);

Description
This method sets the user-defined event data (if any) of the Client Event object. This associated
data for a given client event type is passed to EMan at the time of registration.

Parameters
receiver A pointer to an object of class SOMEClientEvent.

ev A pointer to the Environment structure for the calling method.

clientData A pointer to user-defined data for this client event.

Return Value
None.

Original Class
SOMEClientEvent

Related Information
Methods: somevGetEventClientData

SOMEClientEvent class

Ref – 518 Event Management Framework SOMobjects Developer Toolkit

somevSetEventClientType Method

Purpose
Sets the type name of a client event.

IDL Syntax
void somevSetEventClientType (

in string clientType);

Description
This method sets the client event type field of the Client Event object. Client event type is a string
name assigned to the event by the application at the time of registering the event.

Parameters
receiver A pointer to an object of class SOMEClientEvent.

ev A pointer to the Environment structure for the calling method.

clientType A null terminated character string identifying the client event type. The contents
of this string are entirely up to the user. However, while using class libraries that
also use client events one must make sure that there are no name collisions.

Return Value
None.

Original Class
SOMEClientEvent

Related Information
Methods: somevGetEventClientType

SOMEEMan class

Ref – 519Event Management FrameworkProgrammers Reference Manual

SOMEEMan Class

Description
The Event Manager class (EMan for short) is used to handle several input events. The main
purpose of this class is to provide a service that can do a blocked (or timed) wait on several event
sources concurrently. Typically, in a main program, one registers an interest in an event type
with EMan and specifies a callback (a procedure or a method) to be invoked when the event of
interest occurs. After all the necessary registrations are complete, the main program ends with
a call to someProcessEvents in EMan. This call is non-returning. Eman then waits on all
registered event sources. The application is completely event driven at this point (that is, it does
something only when an event occurs). The control returns to EMan after processing each
event. Further registrations can be done from within the callback routines. Unregistrations can
also be done from within the callback routines.

For applications that want to have their own main loop, EMan provides a non-blocking call (the
someProcessEvent method), which processes just one event (if any) and returns to the main
loop immediately. Note that when this call is the only one in the application’s main loop, CPU
cycles are wasted in constantly polling for events. In this situation, the non-returning form of the
someProcessEvents call is preferable.

AIX Specifics:
On AIX this event manager supports Timer, Sink (any file, pipe, socket, or Message Queue),
Client and WorkProc events.

OS/2 and Windows Specifics:
On OS/2 and Windows, this event manager supports Timer, Sink (sockets only), Client, and
WorkProc events.

Thread Safety:
To cope with multi-threaded applications on OS/2, the event-manager methods are mutually
exclusive (that is, at any time only one thread can be executing inside of EMan). If an application
thread needs to stop EMan from running (that is, to achieve mutual exclusion with EMan), it can
use the two methods someGetEManSem and someReleaseEManSem to acquire and release
EMan semaphore(s). On AIX or Windows, since threads are not supported (at present), calling
these two methods has no effect.

File Stem
eman

Base Class
SOMObject

Metaclass
SOMMSingleInstance

Ancestor Classes
SOMObject

New Methods
someGetEManSem
someReleaseEManSem
someChangeRegData
someProcessEvent

SOMEEMan class

Ref – 520 Event Management Framework SOMobjects Developer Toolkit

someProcessEvents
someQueueEvent
someRegister
someRegisterEv
someRegisterProc
someShutdown
someUnRegister

Overriding Methods
somInit
somUninit

SOMEEMan class

Ref – 521Event Management FrameworkProgrammers Reference Manual

someChangeRegData Method

Purpose
Changes the registration data associated with a specified registration ID.

IDL Syntax
void someChangeRegData (

in long registrationId,
in SOMEEMRegisterData registerData);

Description
This method is called to change the registration data associated with an existing registration of
EMan. The existing registration is identified by the registrationId parameter. This ID must be the
one returned by EMan when the event interest was originally registered with EMan. Further, the
registration must be active (that is, it must not have been unregistered). The result of providing a
non-existent or invalid registration ID is a “no op”.

Parameters
receiver A pointer to an object of class SOMEEMan.

ev A pointer to the Environment structure for the calling method.

registrationId The registration ID of the event interest whose data is being changed.

registerData A pointer to the registration data object whose contents will replace the existing
registration information with EMan.

Return Value
None.

Example
#include <eman.h>
SOMEEMan *EManPtr;
SOMEEMRegisterData *data;
Environment *Ev;
long RegId;

 ...
_someChangeRegData(EManPtr, Ev, RegId, data);

Original Class
SOMEEMan

Related Information
Methods: someRegister, someRegisterEv, someRegisterProc

SOMEEMan class

Ref – 522 Event Management Framework SOMobjects Developer Toolkit

someGetEManSem Method

Purpose
Acquires EMan semaphore(s) to achieve mutual exclusion with EMan’s activity.

IDL Syntax
void someGetEManSem ();

Description
When EMan is used on OS/2, multiple threads can invoke methods on EMan concurrently.
EMan protects its internal data by acquiring SOM toolkit semaphore(s). The same sema-
phore(s) are made available to users of EMan through the methods someGetEManSem and
someReleaseEManSem. If an application desires to prevent EMan event processing from
interfering with its own activity (in another thread, of course), then it can call the
someGetEManSem method and acquire EMan semaphore(s). EMan activity will resume when
the application thread releases the same semaphore(s) by calling someReleaseEManSem.

Callers should not hold this semaphore for too long, since it essentially stops EMan activity for
that duration and may cause EMan to miss some important event processing. The maximum
duration for which one can hold this semaphore depends on how frequently EMan must process
events.

On AIX or Windows, calling this method has no effect.

Parameters
receiver A pointer to an object of class SOMEEMan.

ev A pointer to the Environment structure for the calling method.

Return Value
None.

Example
#include <eman.h>
SOMEEMan *EManPtr;
Environment *Ev;

 ...
_someGetEManSem(EManPtr, Ev);
 /* Do the work that needs mutual exclusion with EMan */
_someReleaseEManSem(EManPtr, Ev);

Original Class
SOMEEMan

Related Information
Methods: someReleaseEManSem

SOMEEMan class

Ref – 523Event Management FrameworkProgrammers Reference Manual

someProcessEvent Method

Purpose
Processes one event.

IDL Syntax
void someProcessEvent (

in unsigned long mask);

Description
Processes one event. This call is non-blocking. If there are no events to process it returns
immediately. The mask specifies which events to process. The mask is formed by OR’ing the bit
constants specified in “eventmsk.h”.

Parameters
receiver A pointer to an object of class SOMEEMan.

ev A pointer to the Environment structure for the calling method.

mask A bit mask indicating the types of events to look for and process.

Return Value
None.

Example
#include <eman.h>

main()
{
Environment *testEnv = somGetGlobalEnvironment();
SOMEEMan *some_gEMan = SOMEEManNew();
 /* Do some registrations */
 ...
while (1) {

_someProcessEvent(some_gEMan, testEnv,
EMProcessTimerEvent |
EMProcessSinkEvent |
EMProcessClientEvent);

 /*** Do other main loop work, if needed. ***/
}
} /* end of main */

Original Class
SOMEEMan

Related Information
Methods: someProcessEvents, someRegister, someRegisterProc, someRegisterEv

SOMEEMan class

Ref – 524 Event Management Framework SOMobjects Developer Toolkit

someProcessEvents Method

Purpose
Processes infinite events.

IDL Syntax
void someProcessEvents ();

Description
This call loops forever waiting for events and dispatching them. The only way this can be broken
is by calling someShutdown in a callback routine. It is a programming error to call this method
without having registered interest in any events with EMan. Typically, a call to this method is the
last statement in an application’s main program.

Parameters
receiver A pointer to an object of class SOMEEMan.

ev A pointer to the Environment structure for the calling method.

Return Value
None.

Example
#include <eman.h>

main()
{
Environment *testEnv = somGetGlobalEnvironment();
SOMEEMan *some_gEMan = SOMEEManNew();
 /* Do some registrations */
 ...
_someProcessEvents(some_gEMan, testEnv);
} /* end of main */

Original Class
SOMEEMan

Related Information
Methods: someProcessEvent, someRegister, someRegisterProc, someRegisterEv

SOMEEMan class

Ref – 525Event Management FrameworkProgrammers Reference Manual

someQueueEvent Method

Purpose
Enqueues the specified client event.

IDL Syntax
void someQueueEvent (

in SOMEClientEvent event);

Description
Client events are defined, created, processed and destroyed by the application. EMan simply
provides a means to enqueue and dequeue client events. Client events can be used in several
ways. For example, if an application component wants to handle an input message arriving on a
socket at a later time than when it arrives, it can receive the message in the socket callback
routine, create a client event out of it, and queue it with EMan. EMan can be asked for the client
event at a later time when the application is ready to handle it. Client events can also be useful to
hide the origin of event sources (that is, the original event handlers receive the events and
create client events in their place).

Dequeue is not a user-visible operation. Once a client event is queued, only EMan can dequeue
it.

Parameters
receiver A pointer to an object of class SOMEEMan.

ev A pointer to the Environment structure for the calling method.

event A pointer to the SOMEClientEvent object.

Return Value
None.

Example
#include <eman.h>
SOMEClientEvent *clientEvent1;

clientEvent1 = SOMEClientEventNew();
/* create a client event of type ”ClientType1” */
_somevSetEventClientType(clientEvent1, testEnv, ”ClientType1”);
_somevSetEventClientData(clientEvent1, testEnv, ”Test Msg”);
 ...

/* whenever it is desired to cause this client event to happen,
 call someQueueEvent Method with this clientEvent */
_someQueueEvent(some_gEMan, env, clientEvent1);

Original Class
SOMEEMan

SOMEEMan class

Ref – 526 Event Management Framework SOMobjects Developer Toolkit

someRegister Method

Purpose
Registers an object/method pair with EMan, given a specified registerData object.

IDL Syntax
long someRegister (

in SOMEEMRegisterData registerData,
in SOMObject targetObject,
in string targetMethod,
in void *targetData);

Description
This method allows for registering an event of interest with EMan, with an object method as the
callback. It is assumed that the target method has been declared as using OIDL callstyle. The
event of interest and its details are filled in a registration data object registerData. The informa-
tion about the callback routine is indicated by targetObject and targetMethod.

A mismatch between the target method’s callstyle and the registration method used (that is,
someRegister vs. someRegisterEv) can result in unpredictable results.

Note: The target method is called using name-lookup method resolution.

Parameters
receiver A pointer to an object of class SOMEEMan.

ev A pointer to the Environment structure for the calling method.

registerData A pointer to the registration data object that contains all the necessary
information about the event for which an interest is being registered with EMan.

targetObject A pointer to the object that is the target of the callback method.

targetMethod The name of the callback method.

targetData A pointer to a data structure to be passed to the callback method when the
event occurs.

Return Value
The registration ID.

Example
#include <eman.h>
#include <emobj.h>

Environment *testEnv = somGetGlobalEnvironment();
some_gEMan = SOMEEManNew(); /* create an EMan object */
data = SOMEEMRegisterDataNew(); /* create a reg data object */
target = EMObjectNew(); /* create a target object */

/* reRegister a timer event */
_someClearRegData(data, env);
_someSetRegDataEventMask(data, env, EMTimerEvent, NULL);
_someSetRegDataTimerInterval(data, env, 100);
regId1 = _someRegister(some_gEMan, env, data, target,

”eventMethod”, ”Timer 100”);

SOMEEMan class

Ref – 527Event Management FrameworkProgrammers Reference Manual

Original Class
SOMEEMan

Related Information
Methods: someRegisterEv, someRegisterProc, someUnRegister

Also see the callstyle modifier of the SOM Interface Definition Language described in Chapter
4, “SOM IDL and the SOM Compiler” in the SOM Toolkit User’s Guide.

SOMEEMan class

Ref – 528 Event Management Framework SOMobjects Developer Toolkit

someRegisterEv Method

Purpose
Registers the (object, method, Environment parameter) combination of a callback with EMan,
given a specified registerData object.

IDL Syntax
long someRegisterEv (

in SOMEEMRegisterData registerData,
in SOMObject targetObject,
inout Environment callbackEv,
in string targetMethod,
in void *targetData);

Description
This method allows for registering an event interest with EMan with an object method as
callback. The callbackEv is used as the environment pointer when EMan makes the callback. It
is assumed that the target method has been declared as using IDL callstyle. The event of
interest and its details are filled in a registration data object registerData. The information about
the callback routine is indicated by targetObject and targetMethod.

A mismatch in the target method’s callstyle and the registration method called (someRegister
vs. someRegisterEv) can result in unpredictable results.

Note: The target method is called using name-lookup method resolution.

Parameters
receiver A pointer to an object of class SOMEEMan.

ev A pointer to the Environment structure for the calling method.

registerData A pointer to registration data object that contains all the necessary information
about the event for which an interest is being registered with EMan.

targetObject A pointer to the object which is the target of the callback method

callbackEv A pointer to the Environment structure to be passed to the callback method

targetMethod The name of the callback method.

targetData A pointer to a data structure to be passed to the callback method when the
event occurs.

Return Value
The registration ID.

SOMEEMan class

Ref – 529Event Management FrameworkProgrammers Reference Manual

Example
#include <eman.h>
#include <emobj.h>

Environment *testEnv = somGetGlobalEnvironment();
Environment *targetEv = somGetGlobalEnvironment();
some_gEMan = SOMEEManNew(); /* create an EMan object */
data = SOMEEMRegisterDataNew(); /* create a reg data object */
target = EMObjectNew(); /* create a target object */

/* reRegister a timer event */
_someClearRegData(data, env);
_someSetRegDataEventMask(data, env, EMTimerEvent, NULL);
_someSetRegDataTimerInterval(data, env, 100);
regId1 = _someRegisterEv(some_gEMan,env, data, target,targetEv,

”eventMethod”, ”Timer 100”);
 /* eventMethod of target is assumed to use callstyle=idl */

Original Class
SOMEEMan

Related Information
Methods: someRegister, someRegisterProc, someUnRegister

Also see the callstyle modifier in the SOM Interface Definition Language described in Chapter
4, “SOM IDL and the SOM Compiler” in the SOM Toolkit User’s Guide.

SOMEEMan class

Ref – 530 Event Management Framework SOMobjects Developer Toolkit

someRegisterProc Method

Purpose
Register the procedure with EMan given the specified registerData.

IDL Syntax
long someRegisterProc (

in SOMEEMRegisterData registerData,
in EMRegProc *targetProcedure,
in void *targetData);

Description
The someRegisterProc method allows for registering an event of interest with EMan, with a
specified procedure as the callback. The event of interest and its details are provided through a
registration data object registerData. The information about the callback procedure is indicated
by targetProcedure.

Parameters
receiver A pointer to an object of class SOMEEMan.

ev A pointer to the Environment structure for the calling method.

registerData A pointer to registration data object that contains all the necessary information
about the event for which an interest is being registered with EMan.

targetProcedure
A pointer to the procedure (callback) that is called when the registered event
occurs.

targetData A pointer to a data structure to be passed to the callback procedure when the
event occurs.

Return Value
The registration ID.

Example
#include <eman.h>

void MyCallBack(SOMEEvent *event, void *somedata){
 ...
}

Environment *testEnv = somGetGlobalEnvironment();
some_gEMan = SOMEEManNew(); /* create an EMan object */
data = SOMEEMRegisterDataNew(); /* create a reg data object */

/* reRegister a timer event */
_someClearRegData(data, env);
_someSetRegDataEventMask(data, env, EMTimerEvent, NULL);
_someSetRegDataTimerInterval(data, env, 100);
regId1 = _someRegisterProc(some_gEMan, env, data,

MyCallBack, ”Timer 100”);

Original Class
SOMEEMan

Related Information
Methods: someRegister, someRegisterEv, someUnRegister

SOMEEMan class

Ref – 531Event Management FrameworkProgrammers Reference Manual

someReleaseEManSem Method

Purpose
Releases the semaphore obtained by the someGetEManSem method.

IDL Syntax
void someReleaseEManSem ();

Description
When EMan is used on OS/2, multiple threads can invoke methods on EMan concurrently.
EMan protects its internal data by acquiring SOM toolkit semaphore(s). The same sema-
phore(s) are made available to users of EMan through the methods someGetEManSem and
someReleaseEManSem. If an application desires to prevent EMan’s event processing from
interfering with its own activity (in another thread, of course), then it can call the
someGetEManSem method and acquire EMan semaphore(s). EMan activity will resume when
the application thread releases the same semaphore(s) by calling someReleaseEManSem.

Callers should not hold this semaphore for too long, since it essentially stops EMan activity for
that duration and may cause EMan to miss some important event processing. The maximum
duration for which one can hold this semaphore depends on how frequently EMan must process
events.

On AIX or Windows, calling this method has no effect.

Parameters
receiver A pointer to an object of class SOMEEMan.

ev A pointer to the Environment structure for the calling method.

Return Value
None.

Example
#include <eman.h>
SOMEEMan *EManPtr;
Environment *Ev;

 ...
_someGetEManSem(EManPtr, Ev);
 /* Do the work that needs mutual exclusion with EMan */
_someReleaseEManSem(EManPtr, Ev);

Original Class
SOMEEMan

Related Information
Methods: someGetEManSem

SOMEEMan class

Ref – 532 Event Management Framework SOMobjects Developer Toolkit

someShutdown Method

Purpose
Shuts down an EMan event loop. (That is, this makes the someProcessEvents return!)

IDL Syntax
void someShutdown ();

Description
This can be called from a callback routine to break the someProcessEvents loop.

Parameters
receiver A pointer to an object of class SOMEEMan.

ev A pointer to the Environment structure for the calling method.

Return Value
None.

Example
#include <eman.h>
SOMEEMan *some_gEMan;

void MyCallBack(SOMEEvent *event, void *somedata){
 ...
 _someShutdown(some_gEMan, env);
}
main()
{
Environment *testEnv = somGetGlobalEnvironment();
SOMEEMan *some_gEMan = SOMEEManNew();
 /* Do some registrations. At least one involving MyCallBack */
 ...
_someProcessEvents(some_gEMan, testEnv);
}

Original Class
SOMEEMan

Related Information
Methods: someProcessEvents

SOMEEMan class

Ref – 533Event Management FrameworkProgrammers Reference Manual

someUnRegister Method

Purpose
Unregisters the event interest associated with a specified registrationId within EMan.

IDL Syntax
void someUnRegister (

in long registrationId);

Description
When an application is no longer interested in a given event, it can unregister the event interest
from EMan. EMan will stop making callbacks on this event, even if the event source continues to
be active and generates events.

Parameters
receiver A pointer to an object of class SOMEEMan.

ev A pointer to the Environment structure for the calling method.

registrationId The registration ID of the event that needs to be unregistered.

Return Value
None.

Example
#include <eman.h>
long regId1;

 ...
/* Register a timer */
regId1 = _someRegisterEv(some_gEMan,env, data, target,targetEv,

”eventMethod”, ”Timer 100”);

/* Unregister the timer */
_someUnRegister(some_gEMan, env, regId1);

Original Class
SOMEEMan

Related Information
Methods: someRegister, someRegisterEv, someRegisterProc

SOMEEMRegisterData class

Ref – 534 Event Management Framework SOMobjects Developer Toolkit

SOMEEMRegisterData Class

Description
This class is used for holding registration information for event types to be registered with EMan.
EMan extracts all needed information from this object and saves the information in its internal
data structures. An instance of this class must be created, properly initialized, and passed to the
registration methods of EMan for registering interest in any kind of event.

File Stem
emregdat

Base
SOMObject

Metaclass
SOMClass

Ancestor Classes
SOMObject

New Methods
someClearRegData
someSetRegDataClientType
someSetRegDataEventMask
someSetRegDataSink
someSetRegDataSinkMask
someSetRegDataTimerCount
someSetRegDataTimerInterval

Overriding Methods
somInit
somUnInit

SOMEEMRegisterData class

Ref – 535Event Management FrameworkProgrammers Reference Manual

someClearRegData Method

Purpose
Clears the registration data.

IDL Syntax
void someClearRegData ();

Description
This method initializes all fields of a RegData object to their default values.

Parameters
receiver A pointer to an object of class SOMEEMRegisterData.

ev A pointer to the Environment structure for the calling method.

Return Value
None.

Original Class
SOMEEMRegisterData

SOMEEMRegisterData class

Ref – 536 Event Management Framework SOMobjects Developer Toolkit

someSetRegDataClientType Method

Purpose
Sets the type name for a client event.

IDL Syntax
void someSetRegDataClientType (

in string clientType);

Description
Client events are defined, created, processed, and destroyed entirely by the application. The
application can queue several types of client events with EMan. This method sets the client
event type field of the registration data object. Thus, this information is communicated to EMan,
helping it deal with enqueueing and dequeing the different client events.

Parameters
receiver A pointer to an object of class SOMEEMRegisterData.

ev A pointer to the Environment structure for the calling method.

clientType A null-terminated character string identifying the client event type. The con-
tents of this string are entirely up to the user. However, while using class
libraries that also use client events, one must make sure that there are no name
collisions.

Return Value
None.

Original Class
SOMEEMRegisterData

Related Information
Methods: someClearRegData

SOMEEMRegisterData class

Ref – 537Event Management FrameworkProgrammers Reference Manual

someSetRegDataEventMask Method

Purpose
Sets the generic event mask within the registration data using NULL terminated event type list.

IDL Syntax
void someSetRegDataEventMask (

in long eventType,
in va_list ap);

Description
This allows setting the event mask within the registration data object. Essentially, this tells EMan
what kind of event is being registered with it. The event type list is a series of constants defined
in eventmsk.h. Although the current interface supports a NULL terminated list of event types,
currently each registration with EMan names only one event type. Thus, one usually gives only
one named constant as the event type and follows it with a NULL parameter (see example
below).

Parameters
receiver A pointer to an object of class SOMEEMRegisterData.

ev A pointer to the Environment structure for the calling method.

eventType A bit constant indicating the type of event being registered with EMan.

ap Additional event types (usually NULL).

Return Value
None.

Example
#include <eman.h>
long regId1;
int msgsock;

 ...
/* Register msgsock socket with EMan for further communication */
_someClearRegData(data, env);
_someSetRegDataEventMask(data, env, EMSinkEvent, NULL);
/* The above call enables EMan to know (during registration) that
we are talking about a Sink Event */
_someSetRegDataSink(data, env, msgsock);
_someSetRegDataSinkMask(data, env, EMInputReadMask);

regId = _someRegisterProc(some_gEMan, env, data,
ReadSocketAndPrint, ”READMSG”);

Original Class
SOMEEMRegisterData

Related Information
Methods: someSetRegDataSink, someClearRegData

SOMEEMRegisterData class

Ref – 538 Event Management Framework SOMobjects Developer Toolkit

someSetRegDataSink Method

Purpose
Sets the file descriptor (or socket ID, or message queue ID) for the sink event.

IDL Syntax
void someSetRegDataSink (

in long sink);

Description
This method enables setting the true type of an event object. Typically, a subclass of Event calls
this method (or overrides this method) to set the event type to indicate its true class(type).

Parameters
receiver A pointer to an object of class SOMEEMRegisterData.

ev A pointer to the Environment structure for the calling method.

sink An integer value indicating the file descriptor for input/output. It can also be a
socket ID, pipe ID or a message queue ID.

Return Value
None.

Original Class
SOMEEMRegisterData

Related Information
Methods: someClearRegData

SOMEEMRegisterData class

Ref – 539Event Management FrameworkProgrammers Reference Manual

someSetRegDataSinkMask Method

Purpose
Sets the sink mask within the registration data object.

IDL Syntax
void someSetRegDataSinkMask (

in unsigned long sinkmask);

Description
The sink mask within the registration data allows one to express interest in different events of the
same event source. For example, using this mask one can express interest in being notified
when there is input for reading, when the resource is ready for writing output, or just when
exceptions occur.

Parameters
receiver A pointer to an object of class SOMEEMRegisterData.

ev A pointer to the Environment structure for the calling method.

sinkmask A bit mask indicating the types of events of interest on a given sink.

Return Value
None.

Example
#include <eman.h>
long regId1;
int msgsock;

 ...
/* Register msgsock socket with EMan for further communication */
_someClearRegData(data, env);
_someSetRegDataEventMask(data, env, EMSinkEvent, NULL);
_someSetRegDataSink(data, env, msgsock);
_someSetRegDataSinkMask(data, env,

 EMInputReadMask|EMInputExceptMask);
/* The above call expresses interest in knowing when there is
 input to be read from the socket and when there is an exception
condition associated with this socket. */
regId = _someRegisterProc(some_gEMan, env, data,

ReadSocketAndPrint, ”READMSG”);

Original Class
SOMEEMRegisterData

Related Information
Methods: someSetRegDataSink, someClearRegData

SOMEEMRegisterData class

Ref – 540 Event Management Framework SOMobjects Developer Toolkit

someSetRegDataTimerCount Method

Purpose
Sets the number of times the timer will trigger, within the registration data.

IDL Syntax
void someSetRegDataTimerCount (

in long count);

Description
The someSetRegDataTimerCount method sets the number of times the timer will trigger,
within the registration data. The default behavior is for the timer to trigger indefinitely.

Parameters
receiver A pointer to an object of class SOMEEMRegisterData.

ev A pointer to the Environment structure for the calling method.

count An integer indicating the number of times the timer event has to occur.

Return Value
None.

Example
#include <eman.h>
long regId1;

 ...
/* Register a timer */
_someClearRegData(data, env);
_someSetRegDataEventMask(data, env, EMTimerEvent, NULL);
_someSetRegDataTimerInterval(data, env, 100);
_someSetRegDataTimerCount(data, env, 1);
/* make this a one time timer event */
regId1 = _someRegister(some_gEMan,env, data, target,

”eventMethod”, ”Timer 100”);

Original Class
SOMEEMRegisterData

Related Information
Methods: someClearRegData

SOMEEMRegisterData class

Ref – 541Event Management FrameworkProgrammers Reference Manual

someSetRegDataTimerInterval Method

Purpose
Sets the timer interval within the registration data.

IDL Syntax
void someSetRegDataTimerInterval (

in long interval);

Description
This call allows setting the timer interval (in milliseconds) within the registration data object.

Parameters
receiver A pointer to an object of class SOMEEMRegisterData.

ev A pointer to the Environment structure for the calling method.

interval An integer indicating the timer interval in milliseconds.

Return Value
None.

Example
#include <eman.h>
long regId1;

 ...
/* Register a timer */
_someClearRegData(data, env);
_someSetRegDataEventMask(data, env, EMTimerEvent, NULL);
_someSetRegDataTimerInterval(data, env, 100);
/* Sets the timer interval to 100 milliseconds */
regId1 = _someRegister(some_gEMan,env, data, target,

”eventMethod”, ”Timer 100”);

Original Class
SOMEEMRegisterData

Related Information
Methods: someClearRegData

SOMEEvent class

Ref – 542 Event Management Framework SOMobjects Developer Toolkit

SOMEEvent Class

Description
This is the base class for all generic events within the Event Manager. It simply timestamps an
event before it is passed to a callback routine. The event type is set to the true type by a
subclass. The types currently used by the Event Management Framework are defined in
eventmsk.h. Any subclass of this class must avoid name and value collisions with eventmsk.h.

File Stem
event

Base
SOMObject

Metaclass
SOMClass

Ancestor Classes
SOMObject

New Methods
somevGetEventTime
somevGetEventType
somevSetEventTime
somevSetEventType

Overriding Methods
somInit

SOMEEvent class

Ref – 543Event Management FrameworkProgrammers Reference Manual

somevGetEventTime Method

Purpose
Returns the time of the generic event in milliseconds.

IDL Syntax
unsigned long somevGetEventTime ();

Description
Eman timestamps every event before dispatching it. The current time is obtained from the
operating system (for example, using a ‘gettimeofday’ call), is converted to milliseconds, and is
given as the value of the timestamp. When this function is called, the event timestamp is
returned.

Parameters
receiver A pointer to an object of class SOMEEvent.

ev A pointer to the Environment structure for the calling method.

Return Value
An event timestamp in milliseconds.

Original Class
SOMEEvent

Related Information
Methods: somevSetEventTime

SOMEEvent class

Ref – 544 Event Management Framework SOMobjects Developer Toolkit

somevGetEventType Method

Purpose
Returns the type of the generic event.

IDL Syntax
unsigned long somevGetEventType ();

Description
This method returns the true type of a given event object (for example, to identify the particular
subclass of the event object). The type is an integer valued constant defined in eventmsk.h.

Parameters
receiver A pointer to an object of class SOMEEvent.

ev A pointer to the Environment structure for the calling method.

Return Value
A type value (an integer constant defined in eventmsk.h).

Original Class
SOMEEvent

Related Information
Methods: somevSetEventType

SOMEEvent class

Ref – 545Event Management FrameworkProgrammers Reference Manual

somevSetEventTime Method

Purpose
Sets the time of the generic event (time is in milliseconds).

IDL Syntax
void somevSetEventTime (

in unsigned long time);

Description
EMan timestamps every event before dispatching it. The current time is obtained from the
operating system (for example, using a ‘gettimeofday’ call), converted to milliseconds, and is
given as the value of the timestamp. When an event occurs, EMan sets the timestamp of the
event by calling this method.

Parameters
receiver A pointer to an object of class SOMEEvent.

ev A pointer to the Environment structure for the calling method.

time The time of day expressed in milliseconds.

Return Value
None.

Original Class
SOMEEvent

Related Information
Methods: somevGetEventTime

SOMEEvent class

Ref – 546 Event Management Framework SOMobjects Developer Toolkit

somevSetEventType Method

Purpose
Sets the type of the generic event.

IDL Syntax
void somevSetEventType (

in unsigned long type);

Description
This method enables setting the true type of an event object. Typically, a subclass of
SOMEEvent calls this method (or overrides this method) to set the event type to indicate its true
type.

Parameters
receiver A pointer to an object of class SOMEEvent.

ev A pointer to the Environment structure for the calling method.

type An integer value indicating the type of the event (a constant defined in
eventmsk.h).

Return Value
None.

Original Class
SOMEEvent

Related Information
Methods: somevGetEventType

SOMESinkEvent class

Ref – 547Event Management FrameworkProgrammers Reference Manual

SOMESinkEvent Class

Description
This class describes a sink event that is generated by EMan when it notices activity on a
registered sink. On AIX, a sink refers to any file descriptor (file open for reading or writing), any
pipe descriptor, a socket ID or a message queue ID. On OS/2 or Windows, a sink refers to a
socket ID. One can register for three types of interest in a sink: Read interest, Write interest, and
Exception interest. (See eventmsk.h file to determine the appropriate bit constants and see
method someSetRegDataSinkMask for their use.)

EMan passes an instance of this class as a parameter to the callback registered for Sink Events.
The callback can query the instance for some information on the sink.

File Stem
sinkev

Base
SOMEEvent

Metaclass
SOMClass

Ancestor Classes
SOMEEvent, SOMObject

New Methods
somevGetEventSink
somevSetEventSink

Overriding Methods
somInit

SOMESinkEvent class

Ref – 548 Event Management Framework SOMobjects Developer Toolkit

somevGetEventSink Method

Purpose
Returns the sink, or source of I/O, of the generic sink event.

IDL Syntax
long somevGetEventSink ();

Description
The sink ID in the SinkEvent is returned. For message queues it is the queue ID, for files it is the
file descriptor, for sockets it is the socket ID, and for pipes it is the pipe descriptor.

Parameters
receiver A pointer to an object of class SOMESinkEvent.

ev A pointer to the Environment structure for the calling method.

Return Value
An integer value indicating the file descriptor for input/output. It can also be a socket ID, pipe ID
or a message queue ID.

Original Class
SOMESinkEvent

Related Information
Methods: somevSetEventSink

SOMESinkEvent class

Ref – 549Event Management FrameworkProgrammers Reference Manual

somevSetEventSink Method

Purpose
Sets the sink, or source of I/O, of the generic sink event.

IDL Syntax
void somevSetEventSink (

in long sink);

Description
The sink ID in the SinkEvent is set. For message queues, it is the queue ID; for files it is the file
descriptor; for sockets it is the socket ID; and for pipes it is the pipe descriptor.

Parameters
receiver A pointer to an object of class SOMESinkEvent.

ev A pointer to the Environment structure for the calling method.

sink An integer value indicating the file descriptor for input/output. It can also be a
socket ID, pipe ID, or a message queue ID.

Return Value
None.

Original Class
SOMESinkEvent

Related Information
Methods: somevGetEventSink

SOMETimerEvent class

Ref – 550 Event Management Framework SOMobjects Developer Toolkit

SOMETimerEvent Class

Description
This class describes a timer event that is generated by EMan when any of its registered timers
pops.

EMan passes an instance of this class as a parameter to the callbacks registered for Timer
Events. The callback can query the instance for information on the timer interval and on any
generic event properties.

File Stem
timerev

Base
SOMEEvent

Metaclass
SOMClass

Ancestor Classes
SOMEEvent, SOMObject

New Methods
somevGetEventInterval
somevSetEventInterval

Overriding Methods
somInit

SOMETimerEvent class

Ref – 551Event Management FrameworkProgrammers Reference Manual

somevGetEventInterval Method

Purpose
Returns the interval of the generic timer event (time in milliseconds).

IDL Syntax
void somevGetEventInterval ();

Description
The somevGetEventInterval method returns the interval of the generic timer event (time in
milliseconds).

Parameters
receiver A pointer to an object of class SOMETimerEvent.

ev A pointer to the Environment structure for the calling method.

Return Value
The interval time in milliseconds.

Original Class
SOMETimerEvent

Related Information
Methods: somevSetEventInterval

SOMETimerEvent class

Ref – 552 Event Management Framework SOMobjects Developer Toolkit

somevSetEventInterval Method

Purpose
Sets the interval of the generic timer event (in milliseconds).

IDL Syntax
void somevSetEventInterval (

in long interval);

Description
The somevSetEventInterval method sets the interval of the generic timer event (in milli-
seconds).

Parameters
receiver A pointer to an object of class SOMETimerEvent.

ev A pointer to the Environment structure for the calling method.

interval The timer interval in milliseconds.

Return Value
None.

Original Class
SOMETimerEvent

Related Information
Methods: somevGetEventInterval

SOMEWorkProcEvent class

Ref – 553Event Management FrameworkProgrammers Reference Manual

SOMEWorkProcEvent Class

Description
This class describes a work procedure event object. It currently has no methods of its own.
However, it sets the event type in its super class to say “EMWorkProcEvent” to help identify
itself. These events are created and dispatched by EMan when a work procedure (something
that the application wants to run when no other events are happening) is registered with EMan.

EMan passes an instance of this class as a parameter to the callback registered for WorkProc
Events.

File Stem
workprev

Base
SOMEEvent

Metaclass
SOMClass

Ancestor Classes
SOMEEvent, SOMObject

New Methods
None.

Overriding Methods
somInit

Ref – 554 Event Management Framework SOMobjects Developer Toolkit

Ref – 555Programmers Reference Manual

�����

�
activate_impl_failed method, Ref–288

add_arg method, Ref–233

add_class_to_impldef method, Ref–197

add_impldef method, Ref–198

add_item method, Ref–209

AttributeDef class, Ref–298
See also “Interface Repository Framework”

�
base_interfaces attribute, Ref–315

Before/After methods. See “Metaclass Framework,
SOMMBeforeAfter metaclass”

BOA class, Ref–174
See also “DSOM Framework”

	
change_id method, Ref–289

change_implementation method, Ref–175

ConstantDef class, Ref–299
See also “Interface Repository Framework”

Contained class, Ref–300
See also “Interface Repository Framework”

Container class, Ref–306
See also “Interface Repository Framework”

contents method, Ref–307

Context class, Ref–186
See also “DSOM Framework”

Context_delete macro, Ref–171

contexts attribute, Ref–320

create method, Ref–176

create_child method, Ref–187

create_constant method, Ref–290

create_list method, Ref–226

create_operation_list method, Ref–227

create_request method, Ref–253

create_request_args method, Ref–256

create_SOM_ref method, Ref–292

deactivate_impl method, Ref–178

deactivate_obj method, Ref–179

defined_in attribute, Ref–300

delete_impldef method, Ref–199

delete_values method, Ref–188

describe method, Ref–302

describe_contents method, Ref–309

describe_interface method, Ref–316

destroy method (Context object), Ref–189

destroy method (Request object), Ref–235

dispose method, Ref–180

DSOM Framework, Ref–159
BOA class, Ref–174

change_implementation method, Ref–175
create method, Ref–176
deactivate_impl method, Ref–178
deactivate_obj method, Ref–179
dispose method, Ref–180
get_id method, Ref–181
get_principal method, Ref–182
impl_is_ready method, Ref–183
obj_is_ready method, Ref–184
set_exception method, Ref–185

Context class, Ref–186
create_child method, Ref–187
delete_values method, Ref–188
destroy method (Context object), Ref–189
get_values method, Ref–190
set_one_value method, Ref–192
set_values method, Ref–193

Functions
get_next_response function, Ref–161
ORBfree function, Ref–162
send_multiple_requests function, Ref–163
somdExceptionFree function, Ref–165
SOMD_Init function, Ref–166
SOMD_NoORBfree function, Ref–167
SOMD_RegisterCallback function, Ref–168
SOMD_Uninit function, Ref–170

ImplementationDef class, Ref–194
impl_alias attribute, Ref–194
impl_flags attribute, Ref–194
impl_hostname attribute, Ref–195
impl_id attribute, Ref–194
impl_program attribute, Ref–194
impl_refdata_bkup attribute, Ref–195
impl_refdata_file attribute, Ref–195
impl_server_class attribute, Ref–195

ImplRepository class, Ref–196
add_class_to_impldef method, Ref–197
add_impldef method, Ref–198
delete_impldef method, Ref–199
find_all_impldefs method, Ref–200
find_classes_by_impldef method, Ref–201
find_impldef method, Ref–202
find_impldef_by_alias method, Ref–203
find_impldef_by_class method, Ref–204
remove_class_from_all method, Ref–205
remove_class_from_impldef method, Ref–206
update_impldef method, Ref–207

Macros
Context_delete macro, Ref–171
Request_delete macro, Ref–172

NVList class, Ref–208
add_item method, Ref–209
free method, Ref–211
free_memory method, Ref–212
get_count method, Ref–214
get_item method, Ref–215
set_item method, Ref–217

Ref – 556 SOMobjects Developer Toolkit

DSOM Framework (cont’d.)
ObjectMgr class, Ref–219

somdDestroyObject method, Ref–220
somdGetIdFromObject method, Ref–221
somdGetObjectFromId method, Ref–222
somdNewObject method, Ref–223
somdReleaseObject method, Ref–224

ORB class, Ref–225
create_list method, Ref–226
create_operation_list method, Ref–227
get_default_context method, Ref–228
object_to_string method, Ref–229
string_to_object method, Ref–230

Principal class, Ref–231
hostName attribute, Ref–231
userName attribute, Ref–231

Request class, Ref–232
add_arg method, Ref–233
destroy method (Request object), Ref–235
get_response method, Ref–237
invoke method, Ref–239
send method, Ref–241

SOMDClientProxy class, Ref–243
somdProxyFree method, Ref–244
somdProxyGetClass method, Ref–245
somdProxyGetClassName method, Ref–246
somdReleaseResources method, Ref–247
somdTargetFree method, Ref–249
somdTargetGetClass method, Ref–250
somdTargetGetClassName method, Ref–251

SOMDObject class, Ref–252
create_request method, Ref–253
create_request_args method, Ref–256
duplicate method, Ref–258
get_implementation method, Ref–259
get_interface method, Ref–260
is_constant method, Ref–261
is_nil method, Ref–262
is_proxy method, Ref–263
is_SOM_ref method, Ref–264
release method, Ref–265

SOMDObjectMgr class, Ref–266
somd21somFree attribute, Ref–266
somdFindAnyServerByClass method, Ref–267
somdFindServer method, Ref–268
somdFindServerByName method, Ref–269
somdFindServersByClass method, Ref–270

SOMDServer class, Ref–271
somdCreateObj method, Ref–272
somdDeleteObj method, Ref–273
somdDispatchMethod method, Ref–274
somdGetClassObj method, Ref–275
somdObjReferencesCached method, Ref–276
somdRefFromSOMObj method, Ref–277
somdSOMObjFromRef method, Ref–278

SOMDServerMgr class, Ref–279
somdDisableServer method, Ref–280
somdEnableServer method, Ref–281
somdIsServerEnabled method, Ref–282
somdListServer method, Ref–283
somdRestartServer method, Ref–284
somdShutdownServer method, Ref–285
somdStartServer method, Ref–286

DSOM Framework (cont’d.)
SOMOA class, Ref–287

activate_impl_failed method, Ref–288
change_id method, Ref–289
create_constant method, Ref–290
create_SOM_ref method, Ref–292
execute_next_request method, Ref–293
execute_request_loop method, Ref–294
get_SOM_object method, Ref–296

duplicate method, Ref–258

�
EMan, Ref–513

See also “Event Management Framework”
Event Management Framework, Ref–513

SOMEClientEvent class, Ref–514
somevGetEventClientData method, Ref–515
somevGetEventClientType method, Ref–516
somevSetEventClientData method, Ref–517
somevSetEventClientType method, Ref–518

SOMEEMan class, Ref–519
someChangeRegData method, Ref–521
someGetEManSem method, Ref–522
someProcessEvent method, Ref–523
someProcessEvents method, Ref–524
someQueueEvent method, Ref–525
someRegister method, Ref–526
someRegisterEv method, Ref–528
someRegisterProc method, Ref–530
someReleaseEManSem method, Ref–531
someShutdown method, Ref–532
someUnRegister method, Ref–533

SOMEEMRegisterData class, Ref–534
someClearRegData method, Ref–535
someSetRegDataClientType method, Ref–536
someSetRegDataEventMask method, Ref–537
someSetRegDataSink method, Ref–538
someSetRegDataSinkMask method, Ref–539
someSetRegDataTimerCount method, Ref–540
someSetRegDataTimerInterval method, Ref–541

SOMEEvent class, Ref–542
somevGetEventTime method, Ref–543
somevGetEventType method, Ref–544
somevSetEventTime method, Ref–545
somevSetEventType method, Ref–546

SOMESinkEvent class, Ref–547
somevGetEventSink method, Ref–548
somevSetEventSink method, Ref–549

SOMETimerEvent class, Ref–550
somevGetEventInterval method, Ref–551
somevSetEventInterval method, Ref–552

SOMEWorkProcEvent class, Ref–553
ExceptionDef class, Ref–313

See also “Interface Repository Framework”
execute_next_request method, Ref–293
execute_request_loop method, Ref–294

�
find_all_impldefs method, Ref–200
find_classes_by_impldef method, Ref–201
find_impldef method, Ref–202

Ref – 557Programmers Reference Manual

find_impldef_by_alias method, Ref–203

find_impldef_by_class method, Ref–204

free method, Ref–211

free_memory method, Ref–212

get_count method, Ref–214

get_default_context method, Ref–228

get_id method, Ref–181

get_implementation method, Ref–259

get_interface method, Ref–260

get_item method, Ref–215

get_next_response function, Ref–161

get_principal method, Ref–182

get_response method, Ref–237

get_SOM_object method, Ref–296

get_values method, Ref–190

�

hostName attribute, Ref–231

�

id attribute, Ref–300

impl_alias attribute, Ref–194

impl_flags attribute, Ref–194

impl_hostname attribute, Ref–195

impl_id attribute, Ref–194

impl_program attribute, Ref–194

impl_refdata_bkup attribute, Ref–195

impl_refdata_file attribute, Ref–195

impl_server_class attribute, Ref–195

ImplementationDef class, Ref–194
See also “DSOM Framework”

impl_is_ready method, Ref–183

ImplRepository class, Ref–196
See also “DSOM Framework”

instanceData attribute, Ref–315

Interface Repository Framework, Ref–297
AttributeDef class, Ref–298

mode attribute, Ref–298
type attribute, Ref–298

ConstantDef class, Ref–299
type attribute, Ref–299
value attribute, Ref–299

Contained class, Ref–300
defined_in attribute, Ref–300
describe method, Ref–302
id attribute, Ref–300
name attribute, Ref–300
somModifiers attribute, Ref–300
within method, Ref–304

Interface Repository Framework (cont’d.)
Container class, Ref–306

contents method, Ref–307
describe_contents method, Ref–309
lookup_name method, Ref–311

ExceptionDef class, Ref–313
type attribute, Ref–313

Functions. See “Interface Repository Framework,
TypeCode... functions”

InterfaceDef class, Ref–314
base_interfaces attribute, Ref–315
describe_interface method, Ref–316
instanceData attribute, Ref–315

ModuleDef class, Ref–318
OperationDef class, Ref–319

contexts attribute, Ref–320
mode attribute, Ref–319
result attribute, Ref–319

ParameterDef class, Ref–321
mode attribute, Ref–321
type attribute, Ref–321

Repository class, Ref–322
lookup_id method, Ref–323
lookup_modifier method, Ref–324
release_cache method, Ref–326

TypeCode... functions
TypeCode_alignment function, Ref–328
TypeCode_copy function, Ref–329
TypeCode_equal function, Ref–330
TypeCode_free function, Ref–331
TypeCode_kind function, Ref–332
TypeCodeNew function, Ref–334
TypeCode_param_count function, Ref–336
TypeCode_parameter function, Ref–337
TypeCode_print function, Ref–339
TypeCode_setAlignment function, Ref–340
TypeCode_size function, Ref–341

TypeDef class, Ref–327
type attribute, Ref–327

InterfaceDef class, Ref–314
See also “Interface Repository Framework”

invoke method, Ref–239
is_constant method, Ref–261
is_nil method, Ref–262
is_proxy method, Ref–263
is_SOM_ref method, Ref–264

�
lookup_id method, Ref–323
lookup_modifier method, Ref–324
lookup_name method, Ref–311

�
M_SOMPPersistentObject class, Ref–344

See also “Persistence Framework”
Metaclass Framework, Ref–499

SOMMBeforeAfter metaclass, Ref–500
sommAfterMethod method, Ref–501
sommBeforeMethod method, Ref–503

SOMMSingleInstance metaclass, Ref–505
sommGetSingleInstance method, Ref–506

Ref – 558 SOMobjects Developer Toolkit

Metaclass Framework (cont’d.)
SOMMTraced metaclass, Ref–507

sommTraceIsOn attribute, Ref–507
SOMRReplicable metaclass, Ref–508
SOMRReplicableObject class, Ref–509

somrLoggingType method, Ref–510
somrReplicableExemptMethod method, Ref–511

mode attribute, Ref–298, Ref–319, Ref–321
ModuleDef class, Ref–318

See also “Interface Repository Framework”

�
name attribute, Ref–300

NVList class, Ref–208
See also “DSOM Framework”

�
ObjectMgr class, Ref–219

See also “DSOM Framework”
object_to_string method, Ref–229

obj_is_ready method, Ref–184
OperationDef class, Ref–319

See also “Interface Repository Framework”
ORB class, Ref–225

See also “DSOM Framework”

ORBfree function, Ref–162

�
ParameterDef class, Ref–321

See also “Interface Repository Framework”

Persistence Framework, Ref–343
M_SOMPPersistentObject class, Ref–344

sompGetClassLevelEncoderDecoderName method,
Ref–345

sompSetClassLevelEncoderDecoderName method,
Ref–346

SOMPAscii class, Ref–347
SOMPAsciiMediaInterface class, Ref–348

sompGetMediaName method, Ref–349
sompInitSpecific method, Ref–350
sompQueryBlockSize method, Ref–352
sompStat method, Ref–353

SOMPAttrEncoderDecoder class, Ref–354
SOMPBinary class, Ref–355
SOMPBinaryFileMedia class, Ref–356
SOMPEncoderDecoderAbstract class, Ref–357

sompEDRead method, Ref–358
sompEDWrite method, Ref–359

SOMPFileMediaAbstract class, Ref–360
sompGetOffset method, Ref–361
sompInitReadOnly method, Ref–362
sompInitReadWrite method, Ref–363
sompReadBytes method, Ref–364
sompReadCharacter method, Ref–365
sompReadDouble method, Ref–366
sompReadFloat method, Ref–367
sompRead<IntegralType> methods, Ref–368
sompReadLine method, Ref–369

Persistence Framework (cont’d.)
SOMPFileMediaAbstract class (cont’d.)

sompReadOctet method, Ref–370
sompReadSomobject method, Ref–371
sompReadString method, Ref–372
sompReadStringToBuffer method, Ref–373
sompReadTypeCode method, Ref–374
sompSeekPosition method, Ref–375
sompSeekPositionRel method, Ref–375
sompWriteBytes method, Ref–376
sompWriteCharacter method, Ref–377
sompWriteDouble method, Ref–378
sompWriteFloat method, Ref–379
sompWrite<IntegralType> methods, Ref–380
sompWriteLine method, Ref–381
sompWriteOctet method, Ref–382
sompWriteSomobject method, Ref–383
sompWriteString method, Ref–384
sompWriteTypeCode method, Ref–385

SOMPIdAssigner class, Ref–386
SOMPIdAssignerAbstract class, Ref–387

sompGetSystemAssignedId method, Ref–388
SOMPIOGroup class, Ref–389

sompAddToGroup method, Ref–390
sompCount method, Ref–392
sompFindByKey method, Ref–394
sompFirst method, Ref–396
sompFreeIterator method, Ref–398
sompNewIterator method, Ref–399
sompNextObjectInGroup method, Ref–400
sompRemoveFromGroup method, Ref–401

SOMPIOGroupMgrAbstract class, Ref–403
sompDeleteObjectFromGroup method, Ref–404
sompFreeMediaInterface method, Ref–405
sompGetMediaInterface method, Ref–406
sompGroupExists method, Ref–407
sompInstantiateMediaInterface method, Ref–408
sompMediaFormatOk method, Ref–409
sompNewMediaInterface method, Ref–410
sompObjectInGroup method, Ref–411
sompReadGroup method, Ref–412
sompReadObjectData method, Ref–413
sompWriteGroup method, Ref–414

SOMPMediaInterfaceAbstract class, Ref–415
sompClose method, Ref–416
sompOpen method, Ref–417

SOMPPersistentId class, Ref–418
sompEqualsIOGroupName method, Ref–419
sompGetGroupOffset method, Ref–420
sompGetIOGroupMgrClassName method, Ref–421
sompGetIOGroupMgrClassNameLen method,

Ref–422
sompGetIOGroupName method, Ref–423
sompGetIOGroupNameLen method, Ref–424
sompSetGroupOffset method, Ref–425
sompSetIOGroupMgrClassName method, Ref–426
sompSetIOGroupName method, Ref–427

SOMPPersistentObject class, Ref–428
sompActivated method, Ref–429
sompCheckState method, Ref–430
sompClearState method, Ref–431
sompEquals method, Ref–432
sompFreeEncoderDecoder method, Ref–433
sompGetDirty method, Ref–434
sompGetEncoderDecoder method, Ref–435

Ref – 559Programmers Reference Manual

Persistence Framework (cont’d.)
SOMPPersistentObject class (cont’d.)

sompGetEncoderDecoderName method, Ref–436
sompGetIOGroup method, Ref–437
sompGetPersistentId method, Ref–438
sompGetPersistentIdString method, Ref–439
sompGetRelativeIdString method, Ref–440
sompInitGivenId method, Ref–441
sompInitIOGroup method, Ref–442
sompInitNearObject method, Ref–443
sompInitNextAvail method, Ref–444
sompIsDirty method, Ref–445
sompMarkForCompaction method, Ref–446
sompPassivate method, Ref–447
sompSetDirty method, Ref–448
sompSetEncoderDecoderName method, Ref–449
sompSetState method, Ref–450

SOMPPersistentStorageMgr class, Ref–451
sompAddIdToReadSet method, Ref–452
sompAddObjectToWriteSet method, Ref–453
sompDeleteObject method, Ref–454
sompObjectExists method, Ref–455
sompRestoreObject method, Ref–456
sompRestoreObjectFromIdString method, Ref–457
sompRestoreObjectWithoutChildren method,

Ref–458
sompStoreObject method, Ref–459
sompStoreObjectWithoutChildren method, Ref–460

SOMUTId class, Ref–461
somutCompareId method, Ref–462
somutEqualsId method, Ref–463
somutHashId method, Ref–464
somutSetIdId method, Ref–465

SOMUTStringId class, Ref–466
somutCompareString method, Ref–467
somutEqualsString method, Ref–468
somutGetIdString method, Ref–469
somutGetIdStringLen method, Ref–470
somutSetIdString method, Ref–471

Principal class, Ref–231
See also “DSOM Framework”

�

release method, Ref–265

release_cache method, Ref–326

remove_class_from_all method, Ref–205

remove_class_from_impldef method, Ref–206

Replication Framework, Ref–473
SOMR class, Ref–474
SOMRLinearizable class, Ref–475

somrGetState method, Ref–476
somrSetState method, Ref–477

SOMRNameable class, Ref–478
somrGetObjName method, Ref–479
somrSetObjName method, Ref–480

SOMRReplicable metaclass, Ref–508
See also “Metaclass Framework, SOMR... classes

and methods”
SOMRReplicableObject class, Ref–509

Replication Framework (cont’d.)
SOMRReplicbl class, Ref–481

somrApplyUpdates method, Ref–483
somrDoDirective method, Ref–484
somrGetSecurityPolicy method, Ref–485
somrLock method, Ref–486
somrLockNlogOp method, Ref–487
somrPin method, Ref–488
somrReleaseLockNAbortOp method, Ref–489
somrReleaseLockNAbortUpdate method, Ref–490
somrReleaseNPropagateOperation method,

Ref–491
somrReleaseNPropagateUpdate method, Ref–492
somrRepInit method, Ref–494
somrRepUninit method, Ref–496
somrUnPin method, Ref–497

Repository class, Ref–322
See also “Interface Repository Framework”

Request class, Ref–232
See also “DSOM Framework”

Request_delete macro, Ref–172
result attribute, Ref–319

�
send method, Ref–241
send_multiple_requests function, Ref–163
set_exception method, Ref–185
set_item method, Ref–217
set_one_value method, Ref–192
set_values method, Ref–193
SOM kernel, Ref–1

Functions
somApply function, Ref–2
somBeginPersistentIds function, Ref–4
somBuiIdClass function, Ref–6
SOMCalloc function, Ref–40
somCheckId function, Ref–7
SOMClassInitFuncName function, Ref–41
somClassResolve function, Ref–8
somCompareIds function, Ref–10
somDataResolve function, Ref–11
SOMDeleteModule function, Ref–42
somEndPersistentIds function, Ref–12
somEnvironmentEnd function, Ref–13
somEnvironmentNew function, Ref–14
SOMError function, Ref–43
somExceptionFree function, Ref–15
somExceptionId function, Ref–16
somExceptionValue function, Ref–17
SOMFree function, Ref–44
somGetGlobalEnvironment function, Ref–18
somIdFromString function, Ref–19
SOMInitModule function, Ref–45
somIsObj function, Ref–20
SOMLoadModule function, Ref–47
somLPrintf function, Ref–21
somMainProgram function, Ref–22
SOMMalloc function, Ref–48
SOMOutCharRoutine function, Ref–49
somParentNumResolve function, Ref–23
somParentResolve function, Ref–25
somPrefixLevel function, Ref–26

Ref – 560 SOMobjects Developer Toolkit

SOM kernel (cont’d.)

Functions (cont’d.)
somPrintf function, Ref–27
SOMRealloc function, Ref–50
somRegisterId function, Ref–28
somResolve function, Ref–29
somResolveByName function, Ref–31
somSetException function, Ref–32
somSetExpectedIds function, Ref–34
somSetOutChar function, Ref–35
somStringFromId function, Ref–36
somTotalRegIds function, Ref–37
somUniqueKey function, Ref–38
somVprintf function, Ref–39

Macros
SOM_Assert macro, Ref–51
SOM_ClassLibrary macro, Ref–52
SOM_CreateLocalEnvironment macro, Ref–53
SOM_DestroyLocalEnvironment macro, Ref–54
SOM_Error macro, Ref–55
SOM_Expect macro, Ref–56
SOM_GetClass macro, Ref–57
SOM_InitEnvironment macro, Ref–58
SOM_MainProgram macro, Ref–59
SOM_NoTrace macro, Ref–60
SOM_ParentNumResolve macro, Ref–61
SOM_Resolve macro, Ref–62
SOM_ResolveNoCheck macro, Ref–63
SOM_SubstituteClass macro, Ref–64
SOM_Test macro, Ref–65
SOM_TestC macro, Ref–66
SOM_UninitEnvironment macro, Ref–67
SOM_WarnMsg macro, Ref–68

SOMClass class, Ref–69
somAddDynamicMethod method, Ref–72
somAllocate method, Ref–74
somCheckVersion method, Ref–75
somClassReady method, Ref–77
somDeallocate method, Ref–78
somDescendedFrom method, Ref–79
somFindMethod(OK) methods, Ref–80
somFindSMethod(OK) methods, Ref–82
somGetInstancePartSize method, Ref–83
somGetInstanceSize method, Ref–84
somGetInstanceToken method, Ref–85
somGetMemberToken method, Ref–86
somGetMethodData method, Ref–87
somGetMethodDescriptor method, Ref–88
somGetMethodIndex method, Ref–89
somGetMethodToken method, Ref–90
somGetName method, Ref–91
somGetNthMethodData method, Ref–92
somGetNthMethodInfo method, Ref–93
somGetNumMethods method, Ref–94
somGetNumStaticMethods method, Ref–95
somGetParents method, Ref–96
somGetVersionNumbers method, Ref–97
somInstanceDataOffsets attribute, Ref–69
somLookupMethod method, Ref–98
somNew(NoInit) methods, Ref–100
somRenew(NoInit) methods, Ref–101
somSupportsMethod method, Ref–103

SOM kernel (cont’d.)
SOMClassMgr class, Ref–104

somClassFromId method, Ref–106
somFindClass method, Ref–107
somFindClsInFile method, Ref–109
somGetInitFunction method, Ref–111
somGetRelatedClasses method, Ref–113
somInterfaceRepository attribute, Ref–104
somLoadClassFile method, Ref–115
somLocateClassFile method, Ref–116
somMergeInto method, Ref–117
somRegisterClass method, Ref–119
somRegisteredClasses attribute, Ref–104
somSubstituteClass method, Ref–120
somUnloadClassFile method, Ref–122
somUnregisterClass method, Ref–123

SOMObject class, Ref–124
somCastObj method, Ref–126
somClassDispatch method, Ref–136
somDefaultAssign method, Ref–127
somDefaultConstAssign method, Ref–128
somDefaultConstCopyInit method, Ref–129
somDefaultCopyInit method, Ref–130
somDefaultInit method, Ref–132
somDestruct method, Ref–134
somDispatch method, Ref–136
somDispatchX method, Ref–139
somDumpSelf method, Ref–141
somDumpSelfInt method, Ref–142
somFree method, Ref–144
somGetClass method, Ref–145
somGetClassName method, Ref–146
somGetSize method, Ref–147
somInit method, Ref–148
somIsA method, Ref–150
somIsInstanceOf method, Ref–152
somPrintSelf method, Ref–154
somResetObj method, Ref–155
somRespondsTo method, Ref–156
somUninit method, Ref–157

SOM metaclass classes/methods. See “Metaclass
Framework”

somAddDynamicMethod method, Ref–72
somAllocate method, Ref–74
somApply function, Ref–2
SOM_Assert macro, Ref–51
somBeginPersistentIds function, Ref–4
somBuildClass function, Ref–6
SOMCalloc function, Ref–40
somCastObj method, Ref–126
somCheckId function, Ref–7
somCheckVersion method, Ref–75
SOMClass class, Ref–69

See also “SOM kernel”
somClassDispatch method, Ref–136
somClassFromId method, Ref–106
SOMClassInitFuncName function, Ref–41
SOM_ClassLibrary macro, Ref–52
SOMClassMgr class, Ref–104

See also “SOM kernel”

Ref – 561Programmers Reference Manual

somClassReady method, Ref–77

somClassResolve function, Ref–8
somCompareIds function, Ref–10

SOM_CreateLocalEnvironment macro, Ref–53

somd21somFree attribute, Ref–266

somDataResolve function, Ref–11

SOMDClientProxy class, Ref–243
See also “DSOM Framework”

somdCreateObj method, Ref–272
somdDeleteObj method, Ref–273

somdDestroyObject method, Ref–220

somdDisableServer method, Ref–280

somdDispatchMethod method, Ref–274

somDeallocate method, Ref–78

somDefaultAssign method, Ref–127

somDefaultConstAssign method, Ref–128
somDefaultConstCopyInit method, Ref–129

somDefaultCopyInit method, Ref–130

somDefaultInit method, Ref–132

SOMDeleteModule function, Ref–42

somdEnableServer method, Ref–281

somDescendedFrom method, Ref–79

SOM_DestroyLocalEnvironment macro, Ref–54
somDestruct method, Ref–134

somdExceptionFree function, Ref–165

somdFindAnyServerByClass method, Ref–267

somdFindServer method, Ref–268

somdFindServerByName method, Ref–269

somdFindServersByClass method, Ref–270

somdGetClassObj method, Ref–275

somdGetIdFromObject method, Ref–221
somdGetObjectFromId method, Ref–222

SOMD_Init function, Ref–166

somDispatch method, Ref–136

somDispatchX method, Ref–139

somdIsServerEnabled method, Ref–282

somdListServer method, Ref–283

somdNewObject method, Ref–223
SOMD_NoORBfree function, Ref–167

SOMDObject class, Ref–252
See also “DSOM Framework”

SOMDObjectMgr class, Ref–266
See also “DSOM Framework”

somdObjReferencesCached method, Ref–276
somdProxyFree method, Ref–244

somdProxyGetClass method, Ref–245

somdProxyGetClassName method, Ref–246

somdRefFromSOMObj method, Ref–277

SOMD_RegisterCallback function, Ref–168

somdReleaseObject method, Ref–224

somdReleaseResources method, Ref–247

somdRestartServer method, Ref–284
SOMDServer class, Ref–271

See also “DSOM Framework”
SOMDServerMgr class, Ref–279

See also “DSOM Framework”
somdShutdownServer method, Ref–285
somdSOMObjFromRef method, Ref–278
somdStartServer method, Ref–286
somdTargetFree method, Ref–249
somdTargetGetClass method, Ref–250
somdTargetGetClassName method, Ref–251
somDumpSelf method, Ref–141
somDumpSelfInt method, Ref–142
SOMD_Uninit function, Ref–170
someChangeRegData method, Ref–521
someClearRegData method, Ref–535
SOMEClientEvent class, Ref–514

See also “Event Management Framework”
SOMEEMan class, Ref–519

See also “Event Management Framework”
SOMEEMRegisterData class, Ref–534

See also “Event Management Framework”
SOMEEvent class, Ref–542

See also “Event Management Framework”
someGetEManSem method, Ref–522
somEndPersistentIds function, Ref–12
somEnvironmentEnd function, Ref–13
somEnvironmentNew function, Ref–14
someProcessEvent method, Ref–523
someProcessEvents method, Ref–524
someQueueEvent method, Ref–525
someRegister method, Ref–526
someRegisterEv method, Ref–528
someRegisterProc method, Ref–530
someReleaseEManSem method, Ref–531
SOMError function, Ref–43
SOM_Error macro, Ref–55
someSetRegDataClientType method, Ref–536
someSetRegDataEventMask method, Ref–537
someSetRegDataSink method, Ref–538
someSetRegDataSinkMask method, Ref–539
someSetRegDataTimerCount method, Ref–540
someSetRegDataTimerInterval method, Ref–541
someShutdown method, Ref–532
SOMESinkEvent class, Ref–547

See also “Event Management Framework”
SOMETimerEvent class, Ref–550

See also “Event Management Framework”
someUnRegister method, Ref–533
somevGetEventClientData method, Ref–515
somevGetEventClientType method, Ref–516
somevGetEventInterval method, Ref–551
somevGetEventSink method, Ref–548

Ref – 562 SOMobjects Developer Toolkit

somevGetEventTime method, Ref–543
somevGetEventType method, Ref–544
somevSetEventClientData method, Ref–517
somevSetEventClientType method, Ref–518
somevSetEventInterval method, Ref–552
somevSetEventSink method, Ref–549
somevSetEventTime method, Ref–545
somevSetEventType method, Ref–546
SOMEWorkProcEvent class, Ref–553

See also “Event Management Framework”
somExceptionFree function, Ref–15
somExceptionId function, Ref–16
somExceptionValue function, Ref–17
SOM_Expect macro, Ref–56
somFindClass method, Ref–107
somFindClsInFile method, Ref–109
somFindMethod(OK) methods, Ref–80
somFindSMethod(OK) methods, Ref–82
SOMFree function, Ref–44
somFree method, Ref–144
SOM_GetClass macro, Ref–57
somGetClass method, Ref–145
somGetClassName method, Ref–146
somGetGlobalEnvironment function, Ref–18
somGetInitFunction method, Ref–111
somGetInstancePartSize method, Ref–83
somGetInstanceSize method, Ref–84
somGetInstanceToken method, Ref–85
somGetMemberToken method, Ref–86
somGetMethodData method, Ref–87
somGetMethodDescriptor method, Ref–88
somGetMethodIndex method, Ref–89
somGetMethodToken method, Ref–90
somGetName method, Ref–91
somGetNthMethodData method, Ref–92
somGetNthMethodInfo method, Ref–93
somGetNumMethods method, Ref–94
somGetNumStaticMethods method, Ref–95
somGetParents method, Ref–96
somGetRelatedClasses method, Ref–113
somGetSize method, Ref–147
somGetVersionNumbers method, Ref–97
somIdFromString function, Ref–19
somInit method, Ref–148
SOM_InitEnvironment macro, Ref–58
SOMInitModule function, Ref–45
somInstanceDataOffsets attribute, Ref–69
somInterfaceRepository attribute, Ref–104
somIsA method, Ref–150
somIsInstanceOf method, Ref–152
somIsObj function, Ref–20

somLoadClassFile method, Ref–115
SOMLoadModule function, Ref–47
somLocateClassFile method, Ref–116
somLookupMethod method, Ref–98
somLPrintf function, Ref–21
sommAfterMethod method, Ref–501
somMainProgram function, Ref–22
SOM_MainProgram macro, Ref–59
SOMMalloc function, Ref–48
SOMMBeforeAfter metaclass, Ref–500

See also “Metaclass Framework”
sommBeforeMethod method, Ref–503
somMergeInto method, Ref–117
sommGetSingleInstance method, Ref–506
somModifiers attribute, Ref–300
SOMMSingleInstance metaclass, Ref–505

See also “Metaclass Framework”
SOMMTraced metaclass, Ref–507

See also “Metaclass Framework”
sommTraceIsOn attribute, Ref–507
somNew(NoInit) methods, Ref–100
SOM_NoTrace macro, Ref–60
SOMOA class, Ref–287

See also “DSOM Framework”
SOMObject class, Ref–124

See also “SOM kernel”
SOMOutCharRoutine function, Ref–49
sompActivated method, Ref–429
sompAddIdToReadSet method, Ref–452
sompAddObjectToWriteSet method, Ref–453
sompAddToGroup method, Ref–390
somParentNumResolve function, Ref–23
SOM_ParentNumResolve macro, Ref–61
somParentResolve function, Ref–25
SOMPAscii class, Ref–347

See also “Persistence Framework”
SOMPAsciiMediaInterface class, Ref–348

See also “Persistence Framework”
SOMPAttrEncoderDecoder class, Ref–354

See also “Persistence Framework”
SOMPBinary class, Ref–355

See also “Persistence Framework”
SOMPBinaryFileMedia class, Ref–356

See also “Persistence Framework”
sompCheckState method, Ref–430
sompClearState method, Ref–431
sompClose method, Ref–416
sompCount method, Ref–392
sompDeleteObject method, Ref–454
sompDeleteObjectFromGroup method, Ref–404
sompEDRead method, Ref–358
sompEDWrite method, Ref–359
SOMPEncoderDecoderAbstract class, Ref–357

See also “Persistence Framework”

Ref – 563Programmers Reference Manual

sompEquals method, Ref–432
sompEqualsIOGroupName method, Ref–419
SOMPFileMediaAbstract class, Ref–360

See also “Persistence Framework”
sompFindByKey method, Ref–394
sompFirst method, Ref–396
sompFreeEncoderDecoder method, Ref–433
sompFreeIterator method, Ref–398
sompFreeMediaInterface method, Ref–405
sompGetClassLevelEncoderDecoderName method,

Ref–345
sompGetDirty method, Ref–434
sompGetEncoderDecoder method, Ref–435
sompGetEncoderDecoderName method, Ref–436
sompGetGroupOffset method, Ref–420
sompGetIOGroup method, Ref–437
sompGetIOGroupMgrClassName method, Ref–421
sompGetIOGroupMgrClassNameLen method, Ref–422
sompGetIOGroupName method, Ref–423
sompGetIOGroupNameLen method, Ref–424
sompGetMediaInterface method, Ref–406
sompGetMediaName method, Ref–349
sompGetOffset method, Ref–361
sompGetPersistentId method, Ref–438
sompGetPersistentIdString method, Ref–439
sompGetRelativeIdString method, Ref–440
sompGetSystemAssignedId method, Ref–388
sompGroupExists method, Ref–407
SOMPIdAssigner class, Ref–386

See also “Persistence Framework”
SOMPIdAssignerAbstract class, Ref–387

See also “Persistence Framework”
sompInitGivenId method, Ref–441
sompInitIOGroup method, Ref–442
sompInitNearObject method, Ref–443
sompInitNextAvail method, Ref–444
sompInitReadOnly method, Ref–362
sompInitReadWrite method, Ref–363
sompInitSpecific method, Ref–350
sompInstantiateMediaInterface method, Ref–408
SOMPIOGroup class, Ref–389

See also “Persistence Framework”
SOMPIOGroupMgrAbstract class, Ref–403

See also “Persistence Framework”
sompIsDirty method, Ref–445
sompMarkForCompaction method, Ref–446
sompMediaFormatOk method, Ref–409
SOMPMediaInterfaceAbstract class, Ref–415

See also “Persistence Framework”
sompNewIterator method, Ref–399
sompNewMediaInterface method, Ref–410
sompNextObjectInGroup method, Ref–400

sompObjectExists method, Ref–455
sompObjectInGroup method, Ref–411
sompOpen method, Ref–417
sompPassivate method, Ref–447
SOMPPersistentId class, Ref–418

See also “Persistence Framework”
SOMPPersistentObject class, Ref–428

See also “Persistence Framework”
SOMPPersistentStorageMgr class, Ref–451

See also “Persistence Framework”
sompQueryBlockSize method, Ref–352
sompReadBytes method, Ref–364
sompReadCharacter method, Ref–365
sompReadDouble method, Ref–366
sompReadFloat method, Ref–367
sompReadGroup method, Ref–412
sompRead<IntegralType> methods, Ref–368
sompReadLine method, Ref–369
sompReadObjectData method, Ref–413
sompReadOctet method, Ref–370
sompReadSomobject method, Ref–371
sompReadString method, Ref–372
sompReadStringToBuffer method, Ref–373
sompReadTypeCode method, Ref–374
somPrefixLevel function, Ref–26
sompRemoveFromGroup method, Ref–401
sompRestoreObject method, Ref–456
sompRestoreObjectFromIdString method, Ref–457
sompRestoreObjectWithoutChildren method, Ref–458
somPrintf function, Ref–27
somPrintSelf method, Ref–154
sompSeekPosition method, Ref–375
sompSeekPositionRel method, Ref–375
sompSetClassLevelEncoderDecoderName method,

Ref–346
sompSetDirty method, Ref–448
sompSetEncoderDecoderName method, Ref–449
sompSetGroupOffset method, Ref–425
sompSetIOGroupMgrClassName method, Ref–426
sompSetIOGroupName method, Ref–427
sompSetState method, Ref–450
sompStat method, Ref–353
sompStoreObject method, Ref–459
sompStoreObjectWithoutChildren method, Ref–460
sompWriteBytes method, Ref–376
sompWriteCharacter method, Ref–377
sompWriteDouble method, Ref–378
sompWriteFloat method, Ref–379
sompWriteGroup method, Ref–414
sompWrite<IntegralType> methods, Ref–380
sompWriteLine method, Ref–381
sompWriteOctet method, Ref–382

Ref – 564 SOMobjects Developer Toolkit

sompWriteSomobject method, Ref–383

sompWriteString method, Ref–384

sompWriteTypeCode method, Ref–385

SOMR class, Ref–474
See also “Replication Framework”

somrApplyUpdates method, Ref–483

somrDoDirective method, Ref–484

SOMRealloc function, Ref–50

somRegisterClass method, Ref–119

somRegisteredClasses attribute, Ref–104

somRegisterId function, Ref–28

somRenew(NoInit) methods, Ref–101

somResetObj method, Ref–155

somResolve function, Ref–29

SOM_Resolve macro, Ref–62

somResolveByName function, Ref–31

SOM_ResolveNoCheck macro, Ref–63

somRespondsTo method, Ref–156

somrGetObjName method, Ref–479

somrGetSecurityPolicy method, Ref–485

somrGetState method, Ref–476

SOMRLinearizable class, Ref–475
See also “Replication Framework”

somrLock method, Ref–486

somrLockNlogOp method, Ref–487

somrLoggingType method, Ref–510

SOMRNameable class, Ref–478
See also “Replication Framework”

somrPin method, Ref–488

somrReleaseLockNAbortOp method, Ref–489

somrReleaseLockNAbortUpdate method, Ref–490

somrReleaseNPropagateOperation method, Ref–491

somrReleaseNPropagateUpdate method, Ref–492

somrRepInit method, Ref–494

SOMRReplicable metaclass, Ref–508
See also “Metaclass Framework”

somrReplicableExemptMethod method, Ref–511

SOMRReplicableObject class, Ref–509
See also “Metaclass Framework”

SOMRReplicbl class, Ref–481
See also “Replication Framework”

somrRepUninit method, Ref–496

somrSetObjName method, Ref–480

somrSetState method, Ref–477

somrUnPin method, Ref–497

somSetException function, Ref–32

somSetExpectedIds function, Ref–34

somSetOutChar function, Ref–35

somStringFromId function, Ref–36

SOM_SubstituteClass macro, Ref–64

somSubstituteClass method, Ref–120
somSupportsMethod method, Ref–103
SOM_Test macro, Ref–65
SOM_TestC macro, Ref–66
somTotalRegIds function, Ref–37
somUninit method, Ref–157
SOM_UninitEnvironment macro, Ref–67
somUniqueKey function, Ref–38
somUnloadClassFile method, Ref–122
somUnregisterClass method, Ref–123
somutCompareId method, Ref–462
somutCompareString method, Ref–467
somutEqualsId method, Ref–463
somutEqualsString method, Ref–468
somutGetIdString method, Ref–469
somutGetIdStringLen method, Ref–470
somutHashId method, Ref–464
SOMUTId class, Ref–461

See also “Persistence Framework”
somutSetIdId method, Ref–465
somutSetIdString method, Ref–471
SOMUTStringId class, Ref–466

See also “Persistence Framework”
somVprintf function, Ref–39
SOM_WarnMsg macro, Ref–68
string_to_object method, Ref–230

�
Tracing methods. See “Metaclass Framework,

SOMMTraced metaclass”
type attribute, Ref–298, Ref–299, Ref–313, Ref–321,

Ref–327
TypeCode_alignment function, Ref–328
TypeCode_copy function, Ref–329
TypeCode_equal function, Ref–330
TypeCode_free function, Ref–331
TypeCode_kind function, Ref–332
TypeCodeNew function, Ref–334
TypeCode_param_count function, Ref–336
TypeCode_parameter function, Ref–337
TypeCode_print function, Ref–339
TypeCode_setAlignment function, Ref–340
TypeCode_size function, Ref–341
TypeDef class, Ref–327

See also “Interface Repository Framework”

�
update_impldef method, Ref–207
userName attribute, Ref–231
Utility metaclasses. See “Metaclass Framework”

�
value attribute, Ref–299

�
within method, Ref–304

