SOMobjects Developer Toolkit
Programmers
Reference Manual

Reference material for the classes,
methods, functions, and macros
provided by the System Object Model
and its accompanying frameworks

Version 2.1
October 1994

Note: Before using this information and the product it supports, be sure to read the trademark information under
“Trademarks” on page xv.

Version 2.1 (October 1994)

The following paragraph does not apply to the United Kingdom or any country where such provisions
are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THE PUB-
LICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Some states do not allow disclaimer of express or implied warranties in certain transactions; therefore, this state-
ment may not apply to you.

This publication could include technical inaccuracies or typographical errors. Changes are periodically made to
the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time.

It is possible that this publication may contain reference to, or information about, IBM products (machines and
programs), programming, or services that are not announced in your country. Such references or information
must not be construed to mean that IBM intends to announce such IBM products, programming, or services in
your country.

Requests for technical information about IBM products should be made to your IBM Authorized Dealer or your
IBM Marketing Representative.

IBM may have patents or pending patent applications covering subject matter in this document. The furnishing of
this document does not give you any license to these patents. You can send license inquiries, in writing, to the
IBM Director of Commercial Relations, IBM Corporation, Purchase, NY 10577.

COPYRIGHT LICENSE: This publication contains printed sample application programs in source language, which
illustrate AIX, OS/2, or Windows programming techniques. You may copy and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the AIX, OS/2, or Windows application programming interface.

Each copy of any portion of these sample programs or any derivative work, which is distributed to others, must
include a copyright notice as follows: “©(your company name) (year) All Rights Reserved.”

However, the following copyright notice protects this documentation under the Copyright laws of the United
States and other countries which prohibit such actions as, but not limited to, copying, distributing, modifying, and
making derivative works.

© Copyright International Business Machines Corporation, 1991 — 1994. All rights reserved.

The term “IBM” is a registered trademark and “SOMobjects” and “System Object Model” are trademarks of
International Business Machines Corporation.

Notice to US Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

ii SOMobjects Developer Toolkit

SOMobjects Toolkit Programmers Reference Manual

Contents

SOM Kernel ReferencCe i

somApply Function . .

somBeginPersistentlds Function i
somBUIldClass FUNCLION

somCheckld Function

somClassResolve FUNCLION i e
somComparelds FUNCLION e e
somDataResolve FUunction i e
somEndPersistentlds Function i
somEnvironmentEnd Function
somEnvironmentNew Function i
SOmEXxceptionFree FUNCLON e
somExceptionld FUNCLiON
somExceptionValue Function i
somGetGlobalEnvironment Function i
somldFromString Function

somlsObj Function ..
somLPrintf Function .

somMainProgram FUNCHioN i
somParentNumResolve Function i
somParentResolve FUNCLON i e
somPrefixLevel FUNCLON i e

somPrintf Function ..

somRegisterld FUNCHiON

somResolve Function

somResolveByName Function ... i
somSetException FUNCLION
somSetExpectedlds Functiono
somSetOutChar FUNCLION e
somStringFromld Function
somTotalReglds Function i
somuUniqueKey FUNCLION e

somVprintf Function .
SOMCalloc Function

SOMClassInitFuncName Functionc. .
SOMDeleteModule FUNCLIONt e

SOMError Function .
SOMFree Function ..

SOMInitModule FUNCHION e e e
SOMLoadModule FUNCLIONot e

SOMMalloc Function

SOMOutCharRoutine FUNCLIONt e

SOMRealloc Function

Programmers Reference Manual

Ref -1

Ref-2

Ref-4

Ref-6

Ref -7

Ref -8
Ref - 10
Ref - 11
Ref - 12
Ref - 13
Ref-14
Ref - 15
Ref - 16
Ref - 17
Ref - 18
Ref - 19
Ref — 20
Ref - 21
Ref - 22
Ref — 23
Ref - 25
Ref — 26
Ref — 27
Ref — 28
Ref — 29
Ref - 31
Ref - 32
Ref — 34
Ref - 35
Ref — 36
Ref — 37
Ref — 38
Ref — 39
Ref - 40
Ref-41
Ref - 42
Ref - 43
Ref — 44
Ref — 45
Ref — 47
Ref — 48
Ref - 49
Ref — 50

SOM _ASSEIt MaACIO ...\ttt e e e e Ref - 51

SOM_ClassLibrary Macro Ref — 52
SOM_CreateLocalEnvironmentMacro ..., Ref — 53
SOM_DestroyLocalEnvironment Macroc.ouuiiniiiinninnnaan. Ref — 54
SOM _EITOr MaCrO ..ottt ettt ettt Ref — 55
SOM_EXPECEMACIO . . .ottt e e e e e Ref — 56
SOM_GetClass MaCrO . ..o vt e e e e e Ref — 57
SOM_INItENvironment Macroooii it e e e e Ref — 58
SOM_MainProgram MacCrOouuii ittt ittt Ref — 59
SOM_NOTrace MacCrot e e Ref — 60
SOM_ParentNUmMReSoIve Macroiiiiiii e Ref — 61
SOM_RESOIVE MACKO . . . oot e Ref — 62
SOM_ResolveNOCheck Macro ..., Ref — 63
SOM_SubstituteClassS Macrocoiiii i e e e Ref — 64
SOM _TESEMACIO .. ittt e e e Ref — 65
SOM _TeStC MaCIO . ..ottt e e e e e e et Ref — 66
SOM_UninitEnvironment Macroc.oiiiiiiiieii e, Ref — 67
SOM_WarnMsg MacCr0t e Ref — 68
SOMCIASS Class ...ttt e e e e Ref — 69
somAddDynamicMethod Method i Ref - 72
somAllocate Method Ref - 74
somCheckVersion Method i i Ref - 75
somClassReady Method i Ref — 77
somDeallocate Method Ref - 78
somDescendedFrom Method i Ref - 79
somFindMethod, somFindMethodOk Methods Ref — 80
somFindSMethod, somFindSMethodOk Methods Ref — 82
somGetlinstancePartSize Method Ref — 83
somGetinstanceSize Method Ref — 84
somGetlinstanceToken Method i Ref — 85
somGetMemberToken Method i Ref — 86
somGetMethodData Method i Ref — 87
somGetMethodDescriptor Method i Ref — 88
somGetMethodindex Method Ref — 89
somGetMethodToken Method i Ref — 90
somGetName Method i e Ref-91
somGetNthMethodData Method i, Ref — 92
somGetNthMethodInfo Method, Ref — 93
somGetNumMethods Method i Ref — 94
somGetNumStaticMethods Method Ref — 95
somGetParents Method i Ref — 96
somGetVersionNumbers Method Ref — 97
somLookupMethod Method i Ref — 98
somNew, somNewNolnitMethods i i, Ref - 100
somRenew, somRenewNolnit, somRenewNolnitNoZero,

somRenewNoZeroMethods i Ref-101
somSupportsMethod Method Ref — 103
SOMCIASSMGr Class ...t e e e e Ref — 104
somClassFromld Method i Ref — 106
somFindClass Method e Ref — 107
somFindClsInFile Method i e Ref - 109

iv SOMobjects Developer Toolkit

somGetlnitFunction Method
somGetRelatedClasses Method i
sombLoadClassFile Method
somLocateClassFile Method i
somMergelnto Method
somRegisterClass Method i
somSubstituteClass Method i
somUnloadClassFile Method i,
somUnregisterClass Method i,

SOMODJECE Class ..ttt e e e e
somCastObj Method
somDefaultAssign Method ...
somDefaultConstAssign Method i
somDefaultConstCopylnitMethod i
somDefaultCopylnit Method
somDefaultinit Method
somDestruct Method
somDispatch, somClassDispatch Methods
somDispatchX Methods (Obsolete) ...,
somDumpSelf Method
somDumpSelfint Method
somFree Method e
somGetClass Method
somGetClassName Method i i
somGetSize Method e
somlnit Method
SOMISA MEthOd o
somlsinstanceOf Method
somPrintSelf Method e
somResetObj Method
somRespondsTo Method i,
somUninit Method

DSOM Framework Reference
get_next_response FUNCLONttt
ORBIfree FUNCLIONot e e e e
send_multiple_requests Function
somdExceptionFree FUNCtion i
SOMD _INit FUNCLION e e
SOMD_NOORBfree FUNCLION i e e
SOMD_RegisterCallback Function i,
SOMD_Uninit FUNCHON e e e
Context_delete Macroiiiiii e
Request_delete Macroot

BOA Class ..ottt
change_implementation Method i
create Method o
deactivate_impl Method
deactivate_obj Method i
dispose Method
get_id Methodo e

Programmers Reference Manual

Ref — 111
Ref — 113
Ref - 115
Ref - 116
Ref — 117
Ref — 119
Ref - 120
Ref — 122
Ref — 123

Ref — 124
Ref — 126
Ref — 127
Ref - 128
Ref - 129
Ref — 130
Ref — 132
Ref — 134
Ref — 136
Ref — 139
Ref — 141
Ref — 142
Ref — 144
Ref — 145
Ref — 146
Ref — 147
Ref — 148
Ref — 150
Ref — 152
Ref — 154
Ref — 155
Ref — 156
Ref — 157

Ref — 159

Ref - 161
Ref - 162
Ref - 163
Ref — 165
Ref — 166
Ref - 167
Ref — 168
Ref-170
Ref-171
Ref-172

Ref - 174
Ref - 175
Ref - 176
Ref - 178
Ref — 179
Ref — 180
Ref — 181

get_principal Method Ref — 182

impl_is_ready Method i e Ref — 183
obj_is ready Method i Ref — 184
set_exception Method Ref — 185
CONEEXE ClaSS ..ttt Ref — 186
create_child Method Ref — 187
delete_values Method i Ref — 188
destroy Method (for a Contextobject)coo i Ref - 189
get values Method i Ref — 190
set one value Method i Ref — 192
set values Method i Ref — 193
ImplementationDef Class ...ttt e e e Ref — 194
IMPIREPOSITOrY Class ...t e Ref — 196
add_class_to_impldefMethod i Ref — 197
add_impldef Method Ref — 198
delete_impldef Method i Ref - 199
find_all_impldefs Method i Ref — 200
find_classes_by impldef Method i Ref — 201
find_impldef Method i e Ref — 202
find_impldef by aliasMethod i Ref — 203
find_impldef by classMethod i i Ref — 204
remove_class_from_allMethod Ref — 205
remove_class_from_impldef Method Ref — 206
update_impldef Method Ref — 207
NVLISt Class ...ttt e e e Ref — 208
add_item Method Ref — 209
free Method Ref —211
free_memory Method Ref — 212
get_countMethod Ref - 214
get_item Method Ref - 215
set item Method e Ref — 217
ODbJeCtMOr Class .. vttt Ref — 219
somdDestroyObject Method Ref — 220
somdGetldFromObject Method i Ref — 221
somdGetObjectFromld Method i Ref — 222
somdNewObject Method Ref — 223
somdReleaseObject Method i Ref — 224
ORB ClaSS oottt Ref — 225
create_listMethod Ref — 226
create_operation_listMethod Ref — 227
get_default_context Method i Ref — 228
object_to_string Method Ref — 229
string_to_object Method Ref — 230
Principal Class i Ref — 231
Request Classo Ref — 232
add_argMethod Ref — 233
destroy Method (for a Requestobject), Ref — 235
get_response Method Ref — 237
INVOKE MEthodo e e Ref — 239
send Method Ref — 241

Vi SOMobjects Developer Toolkit

SOMDCIIentProxy Classot e Ref — 243

somdProxyFree Method Ref — 244
somdProxyGetClass Method i i Ref — 245
somdProxyGetClassName Method i, Ref — 246
somdReleaseResources Method i Ref — 247
somdTargetFree Method Ref — 249
somdTargetGetClass Method i Ref — 250
somdTargetGetClassName Method Ref — 251
SOMDODJECt Class .. vv it Ref — 252
create_request Method i e Ref — 253
create_request_args Method Ref — 256
duplicate Method i e Ref — 258
get_implementation Method Ref — 259
get_interface Method Ref — 260
is_constant Method i e Ref — 261
iS_NiEMethod Ref — 262
iS_proxy Method Ref — 263
iS_SOM_ref Method Ref — 264
release Method o Ref — 265
SOMDObjJeCtMgr Class ... e e Ref — 266
somdFindAnyServerByClass Method Ref — 267
somdFindServer Method i Ref — 268
somdFindServerByName Method i Ref — 269
somdFindServersByClass Method i, Ref — 270
SOMDSEIVEr Class ..ottt Ref — 271
somdCreateObjMethod i Ref — 272
somdDeleteObjMethod i Ref — 273
somdDispatchMethod Method i i, Ref — 274
somdGetClassObj Method Ref - 275
somdObjReferencesCached Method Ref — 276
somdRefFromSOMObj Method i Ref — 277
somdSOMODbjFromRef Method i Ref — 278
SOMDSeErVerMgr Classt e e e e e Ref — 279
somdDisableServer Method i Ref — 280
somdEnableServer Method i Ref — 281
somdIsServerEnabled Method Ref — 282
somdListServer Method Ref — 283
somdRestartServer Method i Ref — 284
somdShutdownServer Method i Ref — 285
somdStartServer Method i e Ref — 286
SOMOA ClaSS .ottt e Ref — 287
activate_impl_failed Method Ref — 288
change_id Method i e Ref — 289
create_constantMethod Ref — 290
create_ SOM refMethod i Ref — 292
execute_next requestMethod i Ref — 293
execute_request loopMethod i Ref — 294
get_SOM_object Method i Ref — 296
Interface Repository Framework Reference Ref — 297
AttributeDef Class Ref — 298
ConstantDef Class ...t e Ref — 299
Contained Classttt e Ref — 300
describe Method Ref — 302
within Method e Ref — 304

Programmers Reference Manual Vii

viii

Container Class ...t Ref — 306

contents Method Ref — 307
describe_contents Method Ref — 309
lookup_name Method e Ref — 311
ExceptionDef Classo Ref — 313
InterfaceDef Classo Ref — 314
describe_interface Method Ref — 316
ModuleDef Class Ref — 318
OperationDef Classt Ref — 319
ParameterDef Classo Ref — 321
Repository Class Ref — 322
lookup_id Method Ref — 323
lookup_modifier Method Ref — 324
release_cache Method i Ref — 326
TYPEDEf Class ...t Ref — 327
TypeCode_alignment Function i Ref — 328
TypeCode _copy FUNCHONot e e e Ref — 329
TypeCode_equal FUNCtion i i i i Ref — 330
TypeCode_free FUNCHON e Ref — 331
TypeCode_Kind FUNCHON e Ref — 332
TypeCodeNew FUNCLON e Ref — 334
TypeCode_param_count Function i iiiiiiiiiniinennn. Ref — 336
TypeCode_parameter FUNCHONttt Ref — 337
TypeCode print FUNCLONt i e i e Ref — 339
TypeCode_setAlignment FUNCHON e Ref — 340
TypeCode_size FUNCLION e Ref — 341
Persistence Framework Reference Ref — 343
M_SOMPPersistentObject Classot Ref — 344
sompGetClassLevelEncoderDecoderName Method Ref — 345
sompSetClassLevelEncoderDecoderName Method Ref — 346
SOMPASCI Class ..ottt Ref — 347
SOMPAsciiMedialnterface Class ...t Ref — 348
sompGetMediaName Method i Ref — 349
somplnitSpecific Method Ref — 350
sompQueryBlockSize Method Ref — 352
sompStat Method Ref — 353
SOMPAttrEncoderDecoder Class ...t Ref — 354
SOMPBINary Classt e Ref — 355
SOMPBinaryFileMediaClass i, Ref — 356
SOMPENcoderDecoderAbstract Class ..., Ref — 357
sompEDRead Method i Ref — 358
SOMPEDWIite Method Ref — 359
SOMPFileMediaAbstract Class ..., Ref — 360
sompGetOffset Method i Ref — 361
somplnitReadOnly Method i Ref — 362
somplnitReadWrite Method Ref — 363
sompReadBytes Method Ref — 364

SOMobjects Developer Toolkit

sompReadCharacter Method i
sompReadDouble Method
sompReadFloat Method i
sompRead<IntegralType>Methods
sompReadLine Method
sompReadOctet Method i
sompReadSomobject Method
sompReadString Method
sompReadStringToBuffer Method i i
sompReadTypeCode Method i

sompSeekPosition,

sompSeekPositionRel Methods

sompWriteBytes Method
sompWriteCharacter Method i e
sompWriteDouble Method
sompWriteFloat Method
sompWrite<IntegralType> Methodso,
sompWriteLine Method
sompWriteOctet Method
sompWriteSomobject Method
sompWriteString Method
sompWriteTypeCode Method o

SOMPIdASSIgNer Classt e

SOMPIdAssignerAbstract Class ...t
sompGetSystemAssignedid Method

SOMPIOGIOUP Class . .ottt e
sompAddToGroup Method i

sompCount Method

sompFindByKey Method oo e

sompFirst Method .

sompFreelterator Method i
sompNewlterator Method
sompNextObjectinGroup Method i i
sompRemoveFromGroup Method i

SOMPIOGroupMgrAbstract Class
sompDeleteObjectFromGroup Method i i,
sompFreeMedialnterface Method i
sompGetMedialnterface Method
sompGroupExists Method
somplnstantiateMedialnterface Method L.
sompMediaFormatOk Method i i
sompNewMedialnterface Method i
sompObjectinGroup Method i
sompReadGroup Method i
sompReadObjectDataMethod,
sompWriteGroup Method

SOMPMedialnterfaceAbstract Class ...t

sompClose Method
sompOpen Method

Programmers Reference Manual

Ref — 365
Ref — 366
Ref — 367
Ref — 368
Ref — 369
Ref — 370
Ref - 371
Ref - 372
Ref - 373
Ref - 374
Ref — 375
Ref — 376
Ref — 377
Ref — 378
Ref — 379
Ref — 380
Ref — 381
Ref — 382
Ref — 383
Ref — 384
Ref — 385

Ref — 386

Ref — 387
Ref — 388

Ref — 389
Ref — 390
Ref — 392
Ref — 394
Ref — 396
Ref — 398
Ref — 399
Ref — 400
Ref - 401

Ref — 403
Ref — 404
Ref — 405
Ref — 406
Ref — 407
Ref — 408
Ref — 409
Ref-410
Ref - 411
Ref-412
Ref-413
Ref - 414

Ref — 415
Ref — 416
Ref — 417

SOMPPersistentld Class ...t e e Ref — 418

sompEqualslOGroupName Method i, Ref - 419
sompGetGroupOffset Method i Ref — 420
sompGetlOGroupMgrClassName Method Ref — 421
sompGetlOGroupMgrClassNameLen Method Ref — 422
sompGetlOGroupName Method i, Ref — 423
sompGetlOGroupNameLen Method L. Ref — 424
sompSetGroupOffset Method Ref — 425
sompSetlOGroupMgrClassName Method Ref — 426
sompSetlOGroupName Method i Ref — 427
SOMPPersistentObject Classot Ref — 428
sompActivated Method Ref — 429
sompCheckState Method i Ref — 430
sompClearState Method Ref — 431
sompEquals Method Ref — 432
sompFreeEncoderDecoder Method i Ref — 433
sompGetDirty Method Ref — 434
sompGetEncoderDecoder Method i Ref — 435
sompGetEncoderDecoderName Method Ref — 436
sompGetlOGroup Method o Ref — 437
sompGetPersistentld Method Ref — 438
sompGetPersistentldString Method Ref — 439
sompGetRelativeldString Method Ref — 440
somplnitGivenld Method Ref — 441
somplnitlOGroup Method Ref — 442
somplnitNearObject Method i Ref — 443
somplnitNextAvail Method Ref — 444
somplsDirty Method Ref — 445
sompMarkForCompaction Method i Ref — 446
sompPassivate Method Ref — 447
sompSetDirty Method Ref — 448
sompSetEncoderDecoderName Method Ref — 449
sompSetState Method e Ref — 450
SOMPPersistentStorageMgr Class Ref — 451
sompAddidToReadSet Method i Ref — 452
sompAddObjectToWriteSet Method i Ref — 453
sompDeleteObject Method i Ref — 454
sompObjectExists Method Ref — 455
sompRestoreObject Method i e Ref — 456
sompRestoreObjectFromldString Method Ref — 457
sompRestoreObjectWithoutChildren Method Ref — 458
sompStoreObject Method Ref — 459
sompStoreObjectWithoutChildren Method ot Ref — 460
SOMUTIA Class . ..ot i et e e e Ref — 461
somutCompareld Method i Ref — 462
somutEqualsid Method Ref — 463
somutHashld Method e Ref — 464
somutSetldld Method Ref — 465

SOMobjects Developer Toolkit

SOMUTSLNGId Classo e
somutCompareString Method i i
somutEqualsString Method
somutGetldString Method
somutGetldStringLen Method
somutSetldString Method

Replication Framework Reference
SOMR Class . .ttt

SOMRLINearizable Class e e
somrGetState Method
somrSetState Method

SOMRNameable Classouiiii i e e e
somrGetObjName Method
somrSetObjName Method i

SOMRRepPlichbl Classo e e
somrApplyUpdates Method i,
somrDoDirective Method
somrGetSecurityPolicy Method i
somrLock Method
somrLockNIogOp Method o
somMrPin Method
somrReleaseLockNAbortOp Method i
somrReleaseLockNAbortUpdate Method
somrReleaseNPropagateOperation Method
somrReleaseNPropagateUpdate Method,
somrReplnit Method
somrRepUninit Method
somrUnPin Method

Metaclass Framework Reference

SOMMBeforeAfter Metaclass ...ttt e
sommAfterMethod Method i
sommBeforeMethod Method

SOMMSinglelnstance Metaclassccoviiiiiiii i,
sommGetSinglelnstance Method i

SOMMTraced Metaclassouiii e e
SOMRReplicable Metaclass

SOMRReplicableObject Class ...t
somrLoggingType Method
somrReplicableExemptMethod Method

Event Management Framework Reference

SOMECIHENtEVENt Class ... v i e e e
somevGetEventClientDataMethod i,
somevGetEventClientType Method i i it
somevSetEventClientData Method
somevSetEventClientType Method i,

Programmers Reference Manual

Ref — 466
Ref — 467
Ref — 468
Ref — 469
Ref — 470
Ref-471

Ref — 473

Ref — 474

Ref — 475
Ref - 476
Ref — 477

Ref — 478
Ref - 479
Ref — 480

Ref — 481
Ref — 483
Ref — 484
Ref — 485
Ref — 486
Ref — 487
Ref — 488
Ref — 489
Ref — 490
Ref — 491
Ref — 492
Ref — 494
Ref — 496
Ref — 497

Ref — 499

Ref — 500
Ref - 501
Ref — 503

Ref — 505
Ref — 506

Ref — 507
Ref — 508

Ref — 509
Ref - 510
Ref — 511

Ref — 513

Ref - 514
Ref - 515
Ref - 516
Ref — 517
Ref — 518

Xi

Xii

SOMEEMaAN Class ...t e e Ref — 519

someChangeRegData Method o i Ref - 521
someGetEManSem Method Ref — 522
someProcessEventMethod Ref — 523
someProcessEvents Method Ref — 524
someQueueEvent Method Ref — 525
someRegister Method Ref — 526
someRegisterEv Method Ref — 528
someRegisterProc Method Ref — 530
someReleaseEManSem Method Ref - 531
someShutdown Method Ref — 532
someUnRegister Method Ref — 533
SOMEEMRegisterData Classcoouiiiiiiiii i, Ref — 534
someClearRegData Method i Ref — 535
someSetRegDataClientType Method Ref — 536
someSetRegDataEventMask Method i Ref — 537
someSetRegDataSink Method i Ref — 538
someSetRegDataSinkMask Method i Ref — 539
someSetRegDataTimerCount Method Ref — 540
someSetRegDataTimerinterval Method iiio... Ref — 541
SOMEEVENt Class ...ttt e Ref — 542
somevGetEventTime Method Ref — 543
somevGetEventType Method i Ref — 544
somevSetEventTime Method i Ref — 545
somevSetEventType Method i Ref — 546
SOMESINKEVENt Classt iiii eeeeee Ref — 547
somevGetEventSink Method Ref — 548
somevSetEventSink Method Ref — 549
SOMETIMErEvent Classcoiiii e Ref — 550
somevGetEventinterval Method Ref — 551
somevSetEventinterval Method Ref — 552
SOMEWOrKProcEvent Class ... e e e Ref — 553
INAEX . e e Ref — 555

SOMobjects Developer Toolkit

About This Book

This book gives reference material for the System Object Model (SOM) of the SOMobjects
Developer Toolkit. In particular, it contains a reference page for every class, method, function,
and macro provided by the SOM run-time library, the DSOM run-time library, the Persistence
Framework, the Replication Framework, the Interface Repository Framework, and the Event
Management Framework. It also includes documentation of the utility metaclasses provided by
the SOMobjects Developer Toolkit, and each of their methods.

In addition to this book, refer to the SOMobjects Developer Toolkit Users Guide for introductory
information. Also, refer to the Emitter Framework Guide and Reference for documentation of
the Emitter Framework of the SOMobjects Toolkit, and to the SOMobjects Developer Toolkit
Collection Classes Reference Manual for documentation of the collection classes and methods.

How This Book Is Organized

Atthe highest level, this book is organized by framework. Within each framework, the reference
pages describe the classes in alphabetical order, with the methods of each class given in
alphabetical order following their corresponding class. Similarly, related functions and SOM
macros are given in separate alphabetical sequences in the corresponding section. The refer-
ence page for a SOM class contains the following topics:

Description: A description of the class.

File Stem: The file stem for the class’s IDL interface specification (.idl) file
and its usage binding (.h/.xh) files.

Base Class: The class’s direct base (parent) classes.

Ancestor Classes: The class’s ancestor (indirect base) classes.

Metaclass: The class’s metaclass.

New Methods: The names of the methods that the class introduces

(grouped roughly according to purpose).

Each new method is documented on a separate reference page.
Overriding Methods: The names of the methods that the class overrides from

ancestor classes

The reference page for a method of a SOM class contains the following topics:

Purpose: The purpose of the method in brief.

Syntax: The method’'s C/C++ procedure prototype (which includes the
method procedure’s return type and the names and types of its
parameters). The in/out/inout keywords associated with each of the
method’s parameters in the method’s IDL declaration are also
shown. These keywords are shown for information only;
they are not actually present in the method procedure prototype.

Description: A description of the method’s use.

Parameters: A description of each of the method procedure’s parameters.
Return Value: A description of the method’s return value.

Example: An example of using or overriding the method, if available.

Although methods of SOM classes are language neutral
(i.e., they can be invoked from any programming language that
can use SOM), the examples given here are written in C.

Original Class: The name of the class that introduces the method
(the class is documented separately in this book).

Related Information: Related methods and functions (and macros, for the SOM kernel)
that can be found in this book.

Programmers Reference Manual Xiii

The reference page for a function has the following topics:

Purpose: The purpose of the function in brief.

Syntax: The function’s prototype (which includes the return type and the
names and types of the parameters).

Description: A description of the function’s use.

Parameters: A description of each of the function’s parameters.

Return Value: A description of the function’s return value.

Example: An example of using the function, if available.

Related Information: Related methods and functions (and macros, for the SOM kernel)
that can be found in this book.

The reference page for a macro has the following topics:

Purpose: The purpose of the macro in brief.
Syntax: The syntax for invoking the macro.
Description: A description of the macro’s use.
Parameters: A description of each of the macro’s parameters.
Expansion: A description of the macro’s expansion

(although the exact code expansion is not always given).
Example: An example of invoking the macro, if available.

Related Information: Related macros and functions that can be found in this book.

Who Should Use This Book

Xiv

This book is for the professional programmer using the SOMobjects Developer Toolkit to build
object-oriented class libraries or application programs that use SOM class libraries or the
frameworks in the SOMobjects Developer Toolkit.

This book assumes that you are an experienced programmer and that you have a general
familiarity with the basic notions of object-oriented programming. Practical experience using an
object-oriented programming language is helpful, but not essential.

SOMobjects Developer Toolkit

Trademarks

The following terms are trademarks of the International Business Machines Corporation in the
United States and/or other countries:

AIX

IBM

Operating System/2
0s/2

OS/2 Workplace Shell
RISC System 6000
SOMobijects

System Object Model

For convenience, the acronym “SOM” is used in this publication to reference the technology of
the System Object Model, and the term “SOM Compiler” is used to reference the compiler of the
System Object Model.

Each of the following terms used in this publication is a trademark of another company:

Intel Intel Corporation

IPX Novell Corporation

Lotus 1-2-3 Lotus Development Corporation
Microsoft EXCEL Microsoft Corporation

Microsoft Windows Microsoft Corporation

NetWare Novell Corporation

Objective-C The Stepstone Corporation
Smalltalk Digitalk Inc.

The term “ANSI C” used throughout this publication refers to American National Standard
X3.159-1989.

The term “CORBA” used throughout this publication refers to the Common Object Request
Broker Architecture standards promulgated by the Object Management Group, Inc.

Programmers Reference Manual XV

XVi SOMobjects Developer Toolkit

SOM Kernel Reference

SOM Kernel Class Organization

SOMObject
class

7N\

SOMClassMgr

D EEE——

Denotes “is a subclass of”

Programmers Reference Manual

SOM kernel

Ref -1

SOM functions

somApply Function

Purpose

Syntax

Invokes an apply stub. Apply stubs are never invoked directly by SOM users, the somApply
function must be used instead.

boolean somApply (
SOMObject objPtr,
somToken *retVal,
somMethodDataPtr mdPtr,
va_list args);

Description

somApply provides a single uniform interface through which it is possible to call any method
procedure. The interface is based on the caller passing: the object to which the method proce-
dureisto be applied; a return address for the method result; a somMethodDataPtr indicating the
desired method procedure; and an ANSI standard va_list structure containing the method
procedure arguments. Different method procedures expect different argument types and return
different result types, so the purpose of somApply is to select an apply stub appropriate for the
specific method involved, according to the supplied method data, and then call this apply stub.
The apply stub removes the arguments from the va_list, calls the method procedure with these
arguments, accepts the returned result, and then copies this result to the location pointed to by
retval.

The method procedure used by the apply stub is determined by the content of the
somMethodData structure pointed to by mdPtr. The class methods somGetMethodData and
somGetNthMethodData are used to load a somMethodData structure. These methods re-
solve static method procedures based on the receiving class’s instance method table.

The SOM API requires that information necessary for selecting an apply stub be provided when
anew method is registered with its introducing class (via the methods somAddStaticMethod or
somAddDynamicMethod). This is required because SOM itself needs apply stubs when
dispatch method resolution is used. C and C++ implementation bindings for SOM classes
support this requirement, but SOM does not terminate execution if this requirement is not met by
aclassimplementor. Thus, itis possible that there may be methods for which somApply cannot
select an appropriate apply stub. The somMethodData structure for the method can be in-
spected before calling somApply to verify that the method data contains sufficient information
to select an appropriate apply stub: either the applyStub component or the stubinfo component
of this structure must be non-NULL. If these conditions are met, then somApply performs as
described above, and a TRUE value is returned; otherwise FALSE is returned.

Parameters

objPtr A pointer to the object on which the method procedure is to be invoked.

retval A pointer to the memory region into which the result returned by the method
procedure is to be copied. This pointer cannot be null (even in the case of
method procedures whose returned result is void).

mdPtr A pointer to the somMethodData structure that describes the method whose
procedure is to be executed by the apply stub.

args A pointer to a memory region in which all of the arguments to the method
procedure have been laid out in consecutive addresses, according to the
protocolimplemented by va_lists. The first entry of the va_list must be objPtr.

Ref -2 SOM kernel SOMobjects Developer Toolkit

SOM functions

Furthermore, all arguments on the va_list must appear in widened form, as
defined by ANSI C. For example, floats must appear as doubles, and chars
and shorts must appear as ints.

Return Value

The somApply function returns 1 (TRUE) if it executes successfully, or 0 (FALSE) otherwise.

C++ Example

#include <somcls.xh>
#include <string.h>
#include <stdarg.h>
main ()
{ va_list args = (va_list) SOMMalloc (4) ;
va_list push = args;
string result;
SOMClass *scObj;
somMethodData md;

somEnvironmentNew () ; /* Init environment */
scObj = SOMClass; /* The SOMClass object */

scObj->somGetMethodData (somIdFromString (” somGetName”), &md) ;
va_arg(push, SOMClass*) = scObj;

somApply (scObj, (somToken*)&result, &md, args);
SOM_Assert (!strcmp (result,”SOMClass”), SOM Fatal) ;
/* result is ”SOMClass” */

Related Information

Data Structures: SOMObject (somobij.idl), somMethodData (somapi.h),
somToken (sombtype.h), somMethodPtr (sombtype.h), va_list (stdarg.h)

Methods: somGetMethodData, somGetNthMethodData,
somAddDynamicMethod(somcls.idl)

Programmers Reference Manual SOM kernel Ref -3

SOM functions

somBeqginPersistentlds Function

Pu rpose
Tells SOM to begin a “persistent ID interval.”

Syntax
void somBeginPersistentlds ();

Description
The somBeginPersistentlds function informs the SOM ID manager that strings for any new
SOM IDs that are registered will not be freed or modified. This allows the ID manager to use a
pointer to the string in the unregistered ID as the master copy of the ID’s string, rather than
making a copy of the string. This makes ID handling more efficient.

Parameters

None.

Return Value
None.

Ref -4 SOM kernel SOMobjects Developer Toolkit

C Example

SOM functions

#include <som.h>
/* This is the way to create somlIds efficiently */

static string idlName = “whoami”;
static somId somId idl = &idlName;
/*

somId idl will be registered the first time it is used
in an operation that takes a somId, or it can be explicitly
registered using somCheckId.

*/

main ()
somId idl, id2;
string id2Name = ”"whereami”;

somEnvironmentNew () ;

somBeginPersistentIds () ;

idl = somCheckId(somId idl); /* registers the id as persistent */
somEndPersistentIds () ;

id2 = somIdFromString (id2Name); /* registers the id */

SOM_Assert (!strcmp ("whoami”, somStringFromId(idl)), SOM Fatal) ;
SOM_Assert (!strcmp ("whereami”, somStringFromId(id2)), SOM Fatal) ;
idlName = ”"it does matter”; /* because it is persistent */
id2Name = ”"it doesn’t matter”; /* because it is not persistent */
SOM_Assert (strcmp (“whoami”, somStringFromId(idl)), SOM Fatal) ;

/* The idl string has changed */

SOM_Assert (!strcmp ("whereami”, somStringFromId(id2)), SOM Fatal) ;

/* the id2 string has not */

Related Information

Functions: somCheckld, somRegisterld, somldFromString, somStringFromld,
somComparelds, somTotalReglds, somUniqueKey, somSetExpectedlds,

somEndPersistentlds

Programmers Reference Manual SOM kernel Ref -5

SOM functions

somBuildClass Function

Pu rpose
Automates the process of building a new SOM class object.
Syntax
SOMClass somBuildClass (
unsigned long inheritVars,
somStaticClassInfoPtr sciPtr,
long majorVersion,
long minorVersion);
Description
The somBuildClass function accepts declarative information defining a new class that is be
built, and performs the activities required to build and register a correctly functioning class
object. The C and C++ implementation bindings use this function to create class objects.
Parameters
inheritvVars A bitmask that determines inheritance from parent classes. A mask containing
all ones is an appropriate default.
scCiPtr A pointer to a structure holding static class information.
majorVersion The major version number for the class.
minorVersion The minor version number for the class.
Example

See any .ih or .xih implementation binding file for details on construction of the required data
structures.

Return Value

The somBuildClass function returns a pointer to a class object.

Related Information

Data Structures: somStaticClassInfo (somapi.h)

Ref -6 SOM kernel SOMobjects Developer Toolkit

SOM functions

somCheckld Function

Purpose
Registers a SOM ID.
Syntax
somld somCheckld (somld id);
Description
The somCheckld function registers a SOM ID and converts it into an internal representation.
The input SOM ID is returned. If the ID is already registered, this function has no effect.
Parameters

id The somld to be registered.

Return Value
The registered somid.

Example
See function somBeginPersistentlds.

Related Information
Data Structures: somld (sombtype.h)
Functions: somRegisterld, somldFromString, somStringFromld, somComparelds,

somTotalReglds, somSetExpectedlds, somUniqueKey, somBeginPersistentlds,
somEndPersistentlds

Programmers Reference Manual SOM kernel Ref -7

SOM functions

somClassResolve Function

Purpose

Obtains a pointer to the procedure that implements a static method for instances of a particular
SOM class.

Syntax

somMethodPtr somClassResolve (SOMClass cls, somMToken mToken);

Description

The somClassResolve function is used to obtain a pointer to the procedure that implements
the specified method for instances of the specified SOM class. The returned procedure pointer
can then be used to invoke the method. The somClassResolve function is used to support
“casted” method calls, in which a method is resolved with respect to a specified class rather than
the class of which an object is a direct instance. The somClassResolve function can only be
used to obtain a method procedure for a static method (a method declared in an IDL specifica-
tion for a class); dynamic methods do not have method tokens.

The SOM language usage bindings for C and C++ do not support casted method calls, so this
function must be used directly to achieve this functionality. Whenever using SOM method
procedure pointers, itis necessary to indicate the use of system linkage to the compiler. The way
this is done depends on the compiler and the system being used. However, C and C++ usage
bindings provide an appropriate typedef for this purpose. The name of the typedef is based on
the name of the class that introduces the method, as illustrated in the example below.

Parameters
cls A pointer to the class object whose instance method procedure is required.

mToken The method token for the method to be resolved. The SOM API requires that if
the class “XYZ" introduces the static method “foo”, then the method token for
“foo” is found in the class data structure for “XYZ” (called XYZClassData) in the
structure member named “foo” (that is, at XYZClassData.foo). Method tokens
can also be obtained using the somGetMethodToken method.

Return Value

A somMethodPtr pointer to the procedure that implements the specified method for the speci-
fied class of SOM object.

Ref -8 SOM kernel SOMobjects Developer Toolkit

SOM functions

C++ Example

// SOM IDL for class A and class B
#include <somobj.idls>
module scrExample {
interface A : SOMObject { void foo(); implementation
callstyle=o0idl; }; };
interface B : A { implementation { foo: override; }; };

}i

// Example C++ program to implement and test module scrExample
#define SOM Module screxample Source

#include <scrExample.xih>

#include <stdio.hs>

SOM_Scope void SOMLINK scrExample Afoo (scrExample A *somSelf) ;

{ printf(7i\n”); }

SOM_Scope void SOMLINK scrExample Bfoo (scrExample B *somSelf) ;
{ printf(”2\n”); }

main ()

{

scrExample B *objPtr = new scrExample B;

// This prints 2
objPtr->foo() ;

// This prints 1
((somTD_scrExample A foo) /* A necessary method procedure cast */
somClassResolve (
_scrExample A, // the A class object
scrExample AClassData.foo) // the foo method token
) /* end of method procedure expression */
(objPtr); /* method arguments */

// This prints 2
((somTD_scrExample A foo) /* A necessary method procedure cast */
somClassResolve (
_scrExample B, // the B class object
scrExample AClassData.foo) // the foo method token
) /* end of method procedure expression */
(objPtr); /* method arguments */

Related Information

Data Structures: somMethodPtr (sombtype.h), SOMClass (somcls.idl),
somMToken (somapi.h)

Functions: somResolveByName, somParentResolve, somParentNumResolve,
somResolve

Methods: somDispatch, somClassDispatch, somFindMethod, somFindMethodOk,
somGetMethodToken

Macros: SOM_Resolve, SOM_ResolveNoCheck

Programmers Reference Manual SOM kernel Ref -9

SOM functions

somComparelds Function

Pu rpose
Determines whether two SOM IDs represent the same string.
Syntax
int somComparelds (somld id1, somlid id2);
Description
The somComparelds function returns 1 if the two input IDs represent strings that are equal;
otherwise, it returns 0.
Parameters
idl The first SOM ID to be compared.
id2 The second SOM ID to be compared.

Return Value

Returns returns 1 if the two input IDs represent strings that are equal; otherwise, it returns 0.

C Example

#include <som.h>
main ()

{

somId idl, id2, id3;

somEnvironmentNew () ;

idl = somIdFromString (”this”) ;
id2 = somIdFromString(”that”);
id3 = somIdFromString (”“this”) ;

SOM_Test (somCompareIds (idl, id3));
SOM_Test (! somCompareIds (idl, id2));

}

Related Information
Data Structures: somld (sombtype.h)

Functions: somCheckld, somRegisterld, somldFromString, somStringFromld,
somTotalReglds, somSetExpectedlds, somUniqueKey, somBeginPersistentlds,
somEndPersistentlds

Ref —10 SOM kernel SOMobjects Developer Toolkit

SOM functions

somDataResolve Function

Purpose

Accesses instance data within an object.

Syntax

somToken somDataResolve (SOMObject obj, somDToken dToken);

Description

The somDataResolve function is used to access instance data within an object. This function is
of use primarily to class implementors (rather than class clients) who are not using the SOM C or
C++ language bindings.

For C or C++ programmers with access to the C or C++ implementation bindings for a class,
instance data can be accessed using the <className>GetData macro (which expands to a
usage of somDataResolve).

Parameters
obj A pointer to the object whose instance data is required.

dToken A data token for the required instance data. The SOM API specifies that the
data token for accessing the instance data introduced by a class is found in the
instanceDataToken component of the auxiliary class data structure for that
class. The example below illustrates this.

Return Value
A somToken (that is, a pointer) that points to the data in obj identified by the dToken.

C Example

The following C/C++ expression evaluates to the address of the instance data introduced by
class “XYZ" within the object “obj”. This assumes that “obj” points to an instance of “XYZ” or a
subclass of “XYZ".

include <som.h>
somDataResolve (obj, XYZCClassData.instanceDataToken)

Related Information

Data Structures: somToken (sombtype.h), SOMObject (somobij.idl),
somDToken (somapi.h)

Programmers Reference Manual SOM kernel Ref —-11

SOM functions

somEndPersistentlds Function

Pu rpose
Tells SOM to end a “persistent ID interval.”

Syntax
void somEndPersistentlds ();

Description
The somEndPersistentlds function informs the SOM ID manager that strings for any new SOM
IDs that are registered might be freed or modified by the client program. Thus, the ID manager
must make a copy of the strings.

Parameters

None.

Return Value

None.

Example

See function somBeginPersistentlds.

Related Information

Functions: somCheckld, somRegisterld, somldFromString, somStringFromid,
somComparelds, somTotalReglds, somUniqueKey, somSetExpectedlds,
somBeginPersistentlds

Ref —12 SOM kernel SOMobjects Developer Toolkit

somEnvironmentEnd Function

Purpose

Syntax

Provides general cleanup for applications.

void somEnvironmentEnd ();

Description

The somEnvironmentEnd function is a general cleanup function that must be called by all
Windows applications before exiting. AIX and OS/2 programs may also invoke this function, but
it is not required on these systems because all necessary SOM cleanup is performed by the
operating system during program termination.

A convenience macro, SOM_MainProgram, which usually appears at the beginning of each
application, adds the somEnvironmentEnd function to the “atexit” list. If the “atexit” mecha-
nism does not work reliably with your compiler, or if you know that your program bypasses
the normal program termination sequence, you should insert an explicit call to
somEnvironmentEnd at the point where your main program exits. (All main programs for
Windows must begin either with the SOM_MainProgram macro or with a call to the
somMainProgram function.)

Parameters

None.

Return Value

None.

Related Information

Macros: SOM_MainProgram

Programmers Reference Manual SOM kernel Ref—13

SOM functions

somEnvironmentNew Function

Pu rpose
Initializes the SOM runtime environment.

Syntax

SOMClassMgr somEnvironmentNew ();

Description

The somEnvironmentNew function creates the four primitive SOM objects (SOMObject,
SOMClass, SOMClassMgr, and SOMClassMgrObject) and initializes global variables used by
the SOM run-time environment. This function must be called before using any other SOM
functions or methods (with the exception of somSetExpectedlds). If the SOM run-time environ-
ment has already been initialized, calling this function has no harmful effect.

Although this function must be called before using other SOM functions or methods, it needn’t
always be called explicitly, because the <className>New macros, the <className>Renew
macros, the new operator, and the <className>NewClass procedures defined by the SOM C
and C++ language bindings call somEnvironmentNew if needed.

Parameters

None.

Return Value

A pointer to the single class manager object active at run time. This class manager can be
referred by the global variable SOMClassMgrObject.

Example

somEnvironmentNew () ;

Related Information

Functions: somExceptionld, somExceptionValue, somSetException,
somGetGlobalEnvironment

Ref —14 SOM kernel SOMobjects Developer Toolkit

SOM functions

somExceptionFree Function

Purpose
Frees the memory held by the exception structure within an Environment structure.
Syntax
void somExceptionFree (Environment *ev);
Description
The somExceptionFree function frees the memory held by the exception structure within an
Environment structure.
Parameters

ev A pointer to the Environment whose exception information is to be freed.

Return Value
None.

Example

See function somSetException.

Related Information
Data Structures: Environment (somcorba.h)

Functions: somExceptionld, somExceptionValue, somSetException,
somGetGlobalEnvironment, somdExceptionFree (DSOM function)

Programmers Reference Manual SOM kernel Ref-15

SOM functions

somExceptionld Function

Pu rpose
Gets the name of the exception contained in an Environment structure.
Syntax
string somExceptionld (Environment *ev);
Description
The somExceptionld function returns the name of the exception contained in the specified
Environment structure.
Parameters

ev A pointer to an Environment structure containing an exception.

Return Value

The somExceptionld function returns the name of the exception contained in the specified
Environment structure, as a string.

Example

See function somSetException.

Related Information
Data Structures: string (somcorba.h), Environment (somcorba.h)

Functions: somExceptionValue, somExceptionFree, somSetException,
somGetGlobalEnvironment

Ref —16 SOM kernel SOMobjects Developer Toolkit

SOM functions

somExceptionValue Function

Purpose
Gets the value of the exception contained in an Environment structure.
Syntax
somToken somExceptionValue (Environment *ev);
Description
The somExceptionValue function returns the value of the exception contained in the specified
Environment structure.
Parameters

ev A pointer to an Environment structure containing an exception.

Return Value

The somExceptionValue function returns a pointer to the value of the exception contained in
the specified Environment structure.

Example

See function somSetException.

Related Information
Data Structures: somToken (sombtype.h), Environment (somcorba.h)

Functions: somExceptionld, somExceptionFree, somSetException,
somGetGlobalEnvironment

Programmers Reference Manual SOM kernel Ref-17

SOM functions

somGetGlobalEnvironment Function

Pu rpose
Returns a pointer to the current global Environment structure.

Syntax

Environment *somGetGlobalEnvironment ();

Description

The somGetGlobalEnvironment function returns a pointer to the current global Environment
structure. This structure can be passed to methods that require an (Environment *) argument.
The caller can determine if the called method has raised an exception by testing whether

ev-> major != NO_ EXCEPTION

If an exception has been raised, the caller can retrieve the name and value of the exception
using the somExceptionld and somExceptionValue functions.

Parameters
None.

Return Value

A pointer to the current global Environment structure.

Example
See function somSetException.

Related Information
Data Structures: Environment (somcorba.h)

Functions: somExceptionld, somExceptionValue,
somExceptionFree, somSetException

Ref —18 SOM kernel SOMobjects Developer Toolkit

SOM functions

somldFromString Function

Purpose
Returns the SOM ID corresponding to a given text string.

Syntax
somld somldFromString (string aString);

Description
The somldFromString function returns the SOM ID that corresponds to a given text string.
Ownership of the somld returned by somldFromString passes to the caller, which has the
responsibility to subsequently free the somld using SOMFree.

Parameters

asString The string to be converted to a SOM ID.

Return Value
Returns the SOM ID corresponding to the given text string.

Example

See function somBeginPersistentlds.

Related Information
Data Structures: somld (sombtype.h), string (somcorba.h)

Functions: somCheckld, somRegisterld, somStringFromld, somComparelds,
somTotalReglds, somSetExpectedlds, somUniqueKey, somBeginPersistentlds,
somEndPersistentlds

Programmers Reference Manual SOM kernel Ref—-19

SOM functions

somlIsObj Function

Pu rpose
Failsafe routine to determine whether a pointer references a valid SOM object.

Syntax
boolean somlsObj (somToken memPtr);

Description
The somlIsObj function returns 1 if its argument is a pointer to a valid SOM object, or returns 0
otherwise. The function handles address faults, and does extensive consistency checking to
guarantee a correct result.

Parameters

memPtr A somToken (a pointer) to be checked.

Return Value
The somIsObj function returns 1 if obj is a pointer to a valid SOM object, and 0 otherwise.

C++ Example

#include <stdio.h>
#include <som.xh>

void example (void *memPtr)

{
if (!somIsObj (memPtr))
printf ("memPtr is not a valid SOM object.\n”);
else
printf ("memPtr points to an object of class %s\n”,
((SOMObject *)memPtr)->somGetClassName ()) ;
}

Related Information

Data Structures: boolean (somcorba.h), somToken (sombtype.h)

Ref —20 SOM kernel SOMobjects Developer Toolkit

SOM functions

somLPrintf Function

Purpose

Prints a formatted string in the manner of the C printf function, at the specified indentation level.

Syntax

long somLPrintf (long level, string fmt, ...);

Description

The somLPrintf function prints a formatted string using SOMOutCharRoutine, in the same
manner as the C printf function. The implementation of SOMOutCharRoutine determines the
destination of the output, while the C printf function is always directed to stdout. (The default
output destination for SOMOutCharRoutine is stdout also, but this can be modified by the user.)
The output is prefixed at the indicated level, by preceding it with 2*level spaces.

Parameters
level The level at which output is to be placed.
fmt The format string to be output.

varargs The values to be substituted into the format string.

Return Value
Returns the number of characters written.

C Example

#include <somobj.h>
somLPrintf (5, ”"The class name is %s.\n”, _somGetClassName (obj)) ;

Related Information
Data Structures: string (somcorba.h)

Functions: somVprintf, somPrefixLevel, somPrintf, SOMOutCharRoutine

Programmers Reference Manual SOM kernel Ref-21

somMainProgram Function

Pu rpose
Performs SOM initialization on behalf of a new program.

Syntax
SOMClassMgr *somMainProgram ();

Description

The somMainProgram function informs SOM about the beginning of a new thread of execution
(called a task on Windows). The SOM Kernel then performs any needed initialization, includ-
ing the deferred execution of the SOMInitModule functions found in statically-loaded class
libraries. The somMainProgram function must appear near the beginning of all Windows main
programs, and may also be used in AIX or OS/2 programs. When used, it supersedes any need
to call the somEnvironmentNew function.

A convenience macro, SOM_MainProgram, which combines the execution of the
somMainProgram function with the scheduling of the somEnvironmentEnd function during
normal program termination, is available for C and C++ programmers.

Parameters

None.

Return Value
A pointer to the SOMClassMgr object.

Related Information
Functions: somEnvironmentNew, somEnvironmentEnd

Macros: SOM_MainProgram, SOM_ClassLibrary

Ref —22 SOM kernel SOMobjects Developer Toolkit

SOM functions

somParentNumResolve Function

Purpose

Obtains a pointer to a procedure that implements a method, given a list of method tables.

Syntax

somMethodPtr somParentNumResolve (

Description

somMethodTabs parentMtab,
int parentNum,
somMToken mToken);

The somParentNumResolve function is used to make parent method calls by the C and C++
language implementation bindings. The somParentNumResolve function returns a pointer to
a procedure for performing the specified method. This pointer is selected from the specified
method table, which is intended to be the method table corresponding to a parent class.

For C and C++ programmers, the implementation bindings for SOM classes provide convenient
macros for making parent method calls (the “parent_" macros).

Parameters
parentMtab

parentNum

mToken

Return Value

A list of method tables for the parents of the class being implemented. The
SOM API specifies that the list of parent method tables for a given class be
stored in the auxiliary class data structure of the class, in the parentMtab
component. Thus, for the class “XYZ”, the parent method table list is found in
location XYZCClassData.parentMtab. Parent method table lists are available
from class objects via the method call somGetPClsMtabs.

The position of the parent for which the method is to be resolved. The order of a
class’s parents is determined by the order in which they are specified in the
interface statement for the class. (The first parent is number 1.)

The method token for the method to be resolved. The SOM API requires that if
the class “XYZ” introduces the static method “foo”, then the method token for
“foo” is found in the class data structure for “XYZ” (called XYZClassData) in the
structure member named “foo” (that is, at XYZClassData.foo). Method tokens
can also be obtained using the somGetMethodToken method.

A somMethodPtr pointer to a procedure that implements the specified method, selected from
the specified method table.

Programmers Reference Manual

SOM kernel Ref —23

SOM functions

C++ Example

// SOM IDL for class A and class B
#include <somobj.idl>
module spnrExample {
interface A : SOMObject { void foo(); implementation ({
callstyle=o0idl; }; };
interface B : A { implementation { foo: override; }; };

}i

// Example C++ program to implement and test module scrExample
#define SOM Module spnrexample Source

#include <spnrExample.xih>

#include <stdio.hs>

SOM_Scope void SOMLINK spnrExample Afoo (spnrExample A *somSelf) ;

{ printf (1\n") ; }

SOM_Scope void SOMLINK spnrExample Bfoo (spnrExample B *somSelf) ;
{ printf(”2\n"); }

main ()

{

spnrExample B *objPtr = new spnrExample Bj;

// This prints 2
objPtr->foo () ;

// This prints 1
((somTD_spnrExample A foo) /* This method procedure expression cast
is necessary */
somParentNumResolve (
objPtr->somGetClass () ->somGetPClsMtabs () ,
1l
spnrExample AClassData.foo) // the foo method token
) /* end of method procedure expression */
(objPtr); /* method arguments */

Related Information

Data Structures: somMethodPtr (sombtype.h), somMethodTabs (somapi.h),
somMToken (somapi.h)

Functions: somResolveByName, somResolve, somParentNumResolve,
somClassResolve

Methods: somGetPClsMtab, somGetPClsMtabs, somGetMethodToken
Macros: SOM_ParentNumResolve, SOM_Resolve, SOM_ResolveNoCheck

Ref —24 SOM kernel SOMobjects Developer Toolkit

SOM functions

somParentResolve Function

Purpose

Obtains a pointer to a procedure that implements a method, given a list of method tables.
Obsolete but still supported.

Syntax

somMethodPtr somParentResolve (somMethodTabs parentMtab,

Description

somMToken mToken);

The somParentResolve function is used by old, single-parent class binaries to make parent
method calls. The function is obsolete, but is still supported. The somParentResolve function
returns a pointer to the procedure thatimplements the specified method. This pointer is selected
from the first method table in the parentMtab list.

Parameters
parentMtab

mToken

Return Value

A list of parent method tables, the first of which is the method table for the
parent class for which the method is to be resolved. The SOM API specifies that
the list of parent method tables for a given class be stored in the auxiliary class
data structure of the class, in the parentMtab component. Thus, for
the class “XYZ", the parent method table list is found in location
XYZCClassData.parentMtab. Parent method table lists are available from
class objects via the method call somGetPClsMtabs.

The method token for the method to be resolved. The SOM API requires that if
the class “XYZ” introduces the static method “foo”, then the method token for
“foo” is found in the class data structure for “XYZ” (called XYZClassData) in the
structure member named “foo” (that is, at XYZClassData.foo). Method tokens
can also be obtained using the somGetMethodToken method.

A somMethodPtr pointer to the procedure that implements the specified method, selected
from the first method table.

Related Information

Data Structures: somMethodPtr (sombtype.h), somMethodTabs (somapi.h),

somMToken (somapi.h)

Functions: somResolveByName, somResolve, somParentNumResolve,
somClassResolve

Methods: somDispatch, somClassDispatch, somFindMethod, somFindMethodOk,
somGetMethodToken

Macros: SOM_Resolve, SOM_ResolveNoCheck

Programmers Reference Manual

SOM kernel Ref —25

SOM functions

somPrefixLevel Function

Pu rpose
Outputs blanks to prefix a line at the indicated level.
Syntax
void somPrefixLevel (long level);
Description
The somPrefixLevel function outputs blanks (via the somPrintf function) to prefix the next line
of output at the indicated level. (The number of blanks produces is 2*level.) This function is
useful when overriding the somDumpSelfint method, which takes the level as an argument.
Parameters

level The level at which the next line of output is to start.

Return Value

None.

C/C++ Example

#include <som.h>
somPrefixLevel (5) ;

Related Information
Functions: somPrintf, somVprintf, somLPrintf, SOMOutCharRoutine

Ref —26 SOM kernel SOMobjects Developer Toolkit

SOM functions

somPrintf Function

Purpose
Prints a formatted string in the manner of the C printf function.

Syntax

long somPrintf (string fmt, ...);

Description

The somPrintf function prints a formatted string using function SOMOutCharRoutine, in the
same manner as the C printf function. The implementation of SOMOutCharRoutine deter-
mines the destination of the output, while the C printf function is always directed to stdout. (The
default output destination for SOMOutCharRoutine is stdout also, but this can be modified by
the user.)

Parameters
fmt The format string to be output.

varargs The values to be substituted into the format string.

Return Value

Returns the number of characters written.

C Example

#include <somcls.h>
somPrintf ("The class name is %s.\n”, _somGetClassName (obj)) ;

Related Information

Functions: somVprintf, somPrefixLevel, somLPrintf, SOMOutCharRoutine

Programmers Reference Manual SOM kernel Ref —27

SOM functions

somReqisterld Function

Purpose
Registers a SOM ID and determines whether or not it was previously registered.

Syntax
int somRegisterld (somld id);

Description
The somRegisterld function registers a SOM ID and converts itinto an internal representation.
If the ID is already registered, somRegisterld returns 0 and has no effect. Otherwise,
somRegisterld returns 1.

Parameters

id The somld to be registered.

Return Value

If the ID is already registered, somRegisterld returns 0. Otherwise, somRegisterld returns 1.

C Example
#include <som.h>
static string s = ”"unregistered”;
static somId sid = &s;
main ()
{

somEnvironmentNew () ;
SOM Test (somRegisterId(sid) == 1);
SOM_Test (somRegisterId (somIdFromString (”“registered”)) == 0);

}

Related Information
Data Structures: somld (sombtype.h)

Functions: somCheckld, somldFromString, somStringFromld, somComparelds,
somTotalReglds, somSetExpectedlds, somUniqueKey, somBeginPersistentlds,
somEndPersistentlds

Ref —28 SOM kernel SOMobjects Developer Toolkit

SOM functions

somResolve Function

Purpose

Obtains a pointer to the procedure that implements a method for a particular SOM object.

Syntax
somMethodPtr somResolve (SOMObject obj, somMToken mToken);

Description

The somResolve function returns a pointer to the procedure that implements the specified
method for the specified SOM object. This pointer can then be used to invoke the method. The
somResolve function can only be used to obtain a method procedure for a static method (one
declared in an IDL or OIDL specification for a class); dynamic methods are not supported by
method tokens.

For C and C++ programmers, the SOM usage bindings for SOM classes provide more conve-
nient mechanisms for invoking methods. These bindings use the SOM_Resolve and
SOM_ResolveNoCheck macros, which construct a method token expression from the class
name and method name, and call somResolve.

Parameters
obj A pointer to the object whose method procedure is required.

mToken The method token for the method to be resolved. The SOM API requires that if
the class “XYZ” introduces the static method “foo”, then the method token for
“foo” is found in the class data structure for “XYZ” (called XYZClassData) in the
structure member named “foo” (that is, at XYZClassData.foo). Method tokens
can also be obtained using the somGetMethodToken method.

Return Value

A somMethodPtr pointer to the procedure that implements the specified method for the
specified SOM object.

Programmers Reference Manual SOM kernel Ref —29

SOM functions

C Example

// SOM IDL for class A and class B
#include <somobj.idl>
module srExample {
interface A : SOMObject { void foo(); implementation ({
callstyle=o0idl; }; };
interface B : A { implementation { foo: override; }; };

}i

// Example C++ program to implement and test module scrExample
#define SOM Module srexample Source

#include <srExample.ih>

#include <stdio.hs>

SOM_Scope void SOMLINK srExample Afoo (srExample A *somSelf) ;

{ printf(71\n"); }

SOM_Scope void SOMLINK srExample Bfoo (srExample B *somSelf) ;
{ printf(”2\n"); }

main ()

{

srExample B objPtr = srExample BNew /() ;

/* This prints 2 */
((somTD_srExample A foo) /* this method procedure expression cast
is necessary */
somResolve (objPtr, srExample AClassData.foo)
) /* end of method procedure expression */
(objPtr) ;

Related Information
Data Structures: somMethodPtr (sombtype.h), somMToken (somapi.h)

Functions: somResolveByName, somParentResolve, somParentNumResolve,
somClassResolve

Methods: somDispatch, somClassDispatch, somFindMethod, somFindMethodOk,
somGetMethodToken

Macros: SOM_Resolve, SOM_ResolveNoCheck

Ref —30 SOM kernel SOMobjects Developer Toolkit

SOM functions

somResolveByName Function

Purpose

Obtains a pointer to the procedure that implements a method for a particular SOM object.

Syntax
somMethodPtr somResolveByName (SOMObject obj, string methodName);

Description

The somResolveByName function is used to obtain a pointer to the procedure thatimplements
the specified method for the specified SOM object. The returned procedure pointer can then be
used to invoke the method. The C and C++ usage bindings use this function to support name-
lookup methods.

This function can be used for invoking dynamic methods. However, the C and C++ usage
bindings for SOM classes do not support dynamic methods, thus typedefs necessary for the use
of dynamic methods are not available as with static methods. The function somApply provides
an alternative mechanism for invoking dynamic methods that avoids the need for casting
procedure pointers.

Parameters
obj A pointer to the object whose method procedure is required.

methodName A character string representing the name of the method to be resolved.

Return Value

A somMethodPtr pointer to the procedure that implements the specified method for the
specified SOM object.

C Example

Assuming the static method “setSound,” is introduced by the class “Animal”, the following
example will correctly invoke this method on an instance of “Animal” or one of its descendent
classes.

#include <animal.hs>
example (Animal myAnimal)

somTD Animal setSound
setSoundProc = somResolveByName (myAnimal, ”“setSound”) ;
setSoundProc (myAnimal, “Roar!”);

}

Related Information

Data Structures: somMethodPtr (sombtype.h), SOMObject (somobj.idl),
string (somcorba.h)

Functions: somResolve, somParentResolve, somParentNumResolve,
somClassResolve

Methods: somDispatch, somClassDispatch, somFindMethod, somFindMethodOk
Macros: SOM_Resolve, SOM_ResolveNoCheck

Programmers Reference Manual SOM kernel Ref—-31

SOM functions

somSetException Function

Purpose

Sets an exception value in an Environment structure.

Syntax

void somSetException (Environment *ev,

Description

enum exception_type major,
string exceptionName,
somToken params);

The somSetException function sets an exception value in an Environment structure.

Parameters
ev

major

A pointer to the Environment structure in which to set the exception. This
value must be either NULL or a value formerly obtained from the function
somGetGlobalEnvironment.

An integer representing the type of exception to set.

exceptionName The qualified name of the exception to set. The SOM Compiler defines, in the

params

Return Value
None.

Ref —32 SOM kernel

header files it generates for an interface, a constant whose value is the quali-
fied name of each exception defined within the interface. This constant has the
name “ex_<exceptionName>", where <exceptionName> is the qualified
(scoped) exception name. Where unambiguous, the usage bindings also de-
fine the short form “ex_<exceptionName>", where <exceptionName> is un-
qualified.

A pointer to an initialized exception structure value. No copy is made of this
structure; hence, the caller cannot free it. The somExceptionFree function
should be used to free the Environment structure that contains it.

SOMobjects Developer Toolkit

SOM functions

C Example

/* IDL declaration of class X: */
interface X : SOMObject (
exception OUCH {long codel; long code2; };
void foo(in long arg) raises (OUCH) ;

}i

/* implementation of foo method */
SOM_Scope void SOMLINK foo (X somSelf, Environment *ev, long arg)

{

X OUCH *exception params; /* X OUCH struct is defined
in X’'s usage bindings * /

if (arg > 5) /* then this is a very bad error */

{

exception params = (X OUCH*)SOM Malloc (sizeof (X _OUCH)) ;
exception params->codel = arg;
exception params->code2 = arg-5;

somSetException (ev, USER EXCEPTION, ex X OUCH,
exception params) ;
/* the Environment ev now contains an X OUCH exception, with
* the specified exception params struct. The constant
* ex X OUCH is defined in foo.h. Note that exception params
* must be malloced.
*
/

return;

main ()
Environment *ev;
X X;

somEnvironmentNew () ;

x = Xnew() ;

ev = somGetGlobalEnvironment () ;

X foo(x, ev, 23);

if (ev-> major != NO EXCEPTION) ({
printf (”foo exception = %$s\n”, somExceptionId(ev)) ;
printf ("codel = %d\n”,

((X_OUCH*) somExceptionValue (ev)) ->codel) ;

/* finished handling exception. */
/* free the copied id and the original X OUCH structure: */
somExceptionFree (ev) ;

Related Information

Data Structures: Environment, exception_type, string (somcorba.h)

Functions: somExceptionld, somExceptionValue, somExceptionFree,
somGetGlobalEnvironment

Programmers Reference Manual SOM kernel Ref —33

SOM functions

somSetExpectedlds Function

Pu rpose
Tells SOM how many unique SOM IDs a client program expects to use.

Syntax
void somSetExpectedlds (unsigned long numlds);

Description
The somSetExpectedlds function informs the SOM run-time environment how many unique
SOM IDs a client program expects to use during its execution. This has the potential of slightly
improving the program’s space and time efficiency, if the value specified is accurate. This
function, if used, must be called prior to any explicit or implicit invocation of the
somEnvironmentNew function to have any effect.

Parameters

numlids The number of SOM IDs the client program expects to use.

Return Value
None.

C Example

#include <som.h>
somSetExpectedIds (1000) ;

Related Information

Functions: somCheckld, somRegisterld, somldFromString, somStringFromid,
somComparelds, somTotalReglds, somUniqueKey, somBeginPersistentids,
somEndPersistentlds

Ref —34 SOM kernel SOMobjects Developer Toolkit

somSetOutChar Function

Purpose
Changes the behavior of the somPrintf function.
Syntax
void somSetOutChar (
somTD_SOMOutCharRoutine * outCharRtn);
Description
The somSetOutChar function is called to change the output character routine that somPrintf
invokes. By default, somPrintf invokes a character output routine that goes to “stdout.”
The execution of somSetOutChar affects only the application (or thread) in which it occurs.
Thus, somSetOutChar is normally preferred over SOMOutCharRoutine for changing the
output routine called by somPrintf, since SOMOutCharRoutine remains in effect for subse-
guent threads as well.
Some additional samples of somSetOutChar can be found in the “somapi.h” header file.
Parameters

outCharRtn A pointer to your routine that outputs a character in the way you want.

Return Value
None.

Example

#include <som.h>
static int irOutChar (char c);

static int irOutChar (char c)

{

(Customized code goes here)

somSetOutChar ((somTD_SOMOutCharRoutine *) irOutChar) ;

}

Related Information
Functions: somPrintf, SOMOutCharRoutine

Programmers Reference Manual SOM kernel Ref —35

SOM functions

somStringFromld Function

Pu rpose
Returns the string that a SOM ID represents.

Syntax

string somStringFromld (somld id);

Description
The somStringFromld function returns the string that a given SOM ID represents.

Parameters
id The SOM ID for which the corresponding string is needed.

Return Value
Returns the string that the given SOM ID represents.

Example
See function somBeginPersistentlds.

Related Information
Data Structures: string (somcorba.h), somld (sombtype.h)

Functions: somCheckld, somRegisterld, somldFromString, somComparelds,
somTotalReglds, somSetExpectedlds, somUniqueKey, somBeginPersistentlds,
somEndPersistentlds

Ref —36 SOM kernel SOMobjects Developer Toolkit

SOM functions

somTotalReqglds Function

Pu rpose
Returns the total number of SOM IDs that have been registered.

Syntax
unsigned long somTotalReglds ();

Description
The somTotalReglds function returns the total number of SOM IDs that have been registered
so far. This value can be used as a parameter to the somSetExpectedlds function to advise
SOM about expected ID usage in later executions of a client program.

Parameters

None.

Return Value

Returns the total number of SOM IDs that have been registered.

C Example
#include <som.h>
main ()
{ int i;
somId id;

somEnvironmentNew () ;

id = somIdFromString(”abc”)

i = somTotalRegIds () ;

id = somIdFromString(”abc”) ;
SOM_Test (i == somTotalReglds) ;

Related Information

Functions: somCheckld, somRegisterld, somldFromString, somStringFromid,
somComparelds, somSetExpectedlds, somUniqueKey, somBeginPersistentlds,
somEndPersistentlds

Programmers Reference Manual SOM kernel Ref —37

SOM functions

somUnigueKey Function

Pu rpose
Returns the unique key associated with a SOM ID.

Syntax
unsigned long somUniqueKey (somID id);

Description
The somUniqueKey function returns the unique key associated witha SOM ID. The unique key
for a SOM ID is a number that uniquely represents the string that the SOM ID represents. The
unigue key for a SOM ID is the same as the unique key for another SOM ID only if the two SOM
IDs represent the same string.

Parameters

id The SOM ID for which the unique key is needed.

Return Value
An unsigned long representing the unigue key of the specified SOM ID.

C Example

#include <som.h>

main ()

{
unsigned long k1, k2;
k1l = somUniqueKey (somIdFromString (”abc”)) ;
k2 = somUniqueKey (somIdFromString (”abc”)) ;
SOM_Test (k1 == k2);

}

Related Information
Data Structures: somld (sombtype.h)

Functions: somCheckld, somRegisterld, somldFromString, somStringFromld,
somComparelds, somTotalReglds, somSetExpectedlds, somBeginPersistentlds,
somEndPersistentlds

Ref —38 SOM kernel SOMobjects Developer Toolkit

SOM functions

somVprintf Function

Pu rpose
Prints a formatted string in the manner of the C vprintf function.

Syntax
long somVprintf (string fmt, va_list ap);

Description
The somVprintf function prints a formatted string using SOMOutCharRoutine, in the same
manner as the C vprintf function. The implementation of SOMOutCharRoutine determines the
destination of the output, while the C printf function is always directed to stdout. (The default
output destination for SOMOutCharRoutine is stdout also, but this can be modified by the
user.)

Parameters
fmt The format string to be output.
ap A va_list representing the values to be substituted into the format string.

Return Value

Returns the number of characters written.

C Example

#include <som.h>

main ()

{
va_list args = (va_list) SOMCalloc (20) ;
va_list push = args;
float £ = 3.1415;
char ¢ = "a’;
va_arg(push, int) = 1;
va_arg(push, double) = f; /* note ANSI widening */
va_arg(push, int) = c¢; /* here, too */
va_arg(push, char*) = ”this is a test”;

somVprintf (”%d, %f, %c, %s\n”, args);

}

Related Information
Data Structures: string (somcorba.h), va_list (stdarg.h)

Functions: somPrintf, somPrefixLevel, somLPrintf, SOMOutCharRoutine

Programmers Reference Manual SOM kernel Ref —39

SOM functions

SOMCalloc Function

Purpose

Allocates sufficient zeroed memory for an array of objects of a specified size.

Syntax

somToken (*SOMCalloc) (size_t num, size _t size);

Description

The SOMCalloc function allocates an amount of memory equal to num*size (sufficient memory
for an array of num objects of size size). The SOMCalloc function has the same interface as the
C calloc function. It performs the same basic function as calloc with some supplemental error
checking. If an error occurs, the SOMError function is called. This routine is replaceable by
changing the value of the global variable SOMCalloc.

Parameters
num The number of objects for which space is to be allocated.

size The size of the objects for which space to is to be allocated.

Return Value

A pointer to the first byte of the allocated space.

Example
See function somVprintf.

Related Information
Data Structures: somToken (sombtype.h)
Functions: SOMMalloc, SOMRealloc, SOMFree

Ref —40 SOM kernel SOMobjects Developer Toolkit

SOM functions

SOMCIlassInitFuncName Function

Purpose
Returns the name of the function used to initialize classes in a DLL.

Syntax
string (*SOMClassInitFuncName) ();

Description
The SOMClasslInitFuncName function is called by the SOM Class Manager to determine what
function to call to initialize the classes in a DLL. The default version returns the string
“SOMInitModule.” The function can be replaced (so that the Class Manager will invoke a
different function to initialize classes in a DLL) by changing the value of the global variable
SOMClassInitFuncName.

Parameters

None.

Return Value

Returns the name of the function that should be used to initialize classes in a DLL.

C Example

#include <som.h>
string XYZFuncName () { return "XYZ"; }
main ()

{

SOMClassInitFuncName = XYZFuncName;

Related Information
Data Structures: string (somcorba.h)
Functions: SOMLoadModule, SOMDeleteModule

Programmers Reference Manual SOM kernel Ref-—41

SOM functions

SOMDeleteModule Function

Pu rpose
Unloads a dynamically linked library (DLL).

Syntax
int (*SOMDeleteModule) (somToken modHandle);

Description
The SOMDeleteModule function unloads the specified dynamically linked library (DLL). This
routine is called by the SOM Class Manager to unload DLLs. SOMDeleteModule can be
replaced (thus changing the way the Class Manager unloads DLLS) by changing the value of
the global variable SOMDeleteModule.

Parameters

modHandle The somToken for the DLL to be unloaded. This token is supplied by the
SOMLoadModule function when it loads the DLL.

Return Value

Returns 0 if successful or a non-zero system-specific error code otherwise.

Related Information
Data Structures: somToken (sombtype.h)
Functions: SOMLoadModule, SOMClassInitFuncName

Ref —42 SOM kernel SOMobjects Developer Toolkit

SOM functions

SOMError Function

Pu rpose
Handles an error condition.

Syntax
void (*SOMError) (int errorCode, string fileName, int lineNum);

Description
The SOMError function inspects the specified error code and takes appropriate action, depend-
ing on the severity of the error. The last digit of the error code indicates whether the error is
classified as SOM_Fatal (9), SOM_Warn (2), or SOM_Ignore (1). The defaultimplementation of
SOMError prints a message that includes the specified error code, filename, and line number,
and terminates the current process if the error is classified as SOM_Fatal. The fileName and
lineNum arguments specify where the error occurred. This routine can be replaced by changing
the value of the global variable SOMError.
For C and C++ programmers, SOM defines a convenience macro, SOM_Error, which invokes
the SOMError function and supplies the last two arguments.

Parameters
errorCode An integer representing the error code of the error.
fileName The name of the file in which the error occurred.
lineNum The line number where the error occurred.

Return Value

None.

Related Information

Macros: SOM_Test, SOM_TestC, SOM_WarnMsg, SOM_Assert,
SOM_Expect, SOM_Error

Programmers Reference Manual SOM kernel Ref —43

SOM functions

SOMFree Function

Pu rpose
Frees the specified block of memory.

Syntax
void (*SOMFree) (somToken ptr);

Description
The SOMFree function frees the block of memory pointed to by ptr. SOMFree should only be
called with a pointer previously allocated by SOMMalloc or SOMCalloc. The SOMFree function
has the same interface as the C free function. It performs the same basic function as free with
some supplemental error checking. If an error occurs, the SOMError function is called. This
routine is replaceable by changing the value of the global variable SOMFree.
To free an object (rather than a block of memory), use the somFree method, rather than this
function.

Parameters
ptr A pointer to the block of storage to be freed.

Return Value
None.

C Example

#include <som.h>
main ()

{
somToken ptr = SOMMalloc (20) ;
somFree (ptr) ;

}

Related Information
Functions: SOMCalloc, SOMRealloc, SOMMalloc

Methods: somFree

Ref —44 SOM kernel SOMobjects Developer Toolkit

SOM functions

SOMInitModule Function

Purpose

Syntax

Invokes the class creation routines for the classes contained in an OS/2 or Windows class library

(DLL).

SOMEXTERN void SOMLINK SOMInitModule (

Description

long MajorVersion,
long MinorVersion,
string ClassName);

On OS/2 or Windows, a class library (DLL) can contain the implementations for multiple classes,
all of which should be created when the DLL is loaded. On OS/2, when loading a DLL, the SOM
class manager determines the name of a DLL initialization function, and if the DLL exports a
function of this name, the class manager invokes that function (whose purpose is to create the
classes in the DLL). SOMInitModule is the default name for this DLL initialization function.

On Windows, the SOM class manager does not call SOMInitModule. It must be called from the
default Windows DLL initialization function, LibMain. This call is made indirectly through the
SOM_ClassLibrary macro (see the Example below).

Parameters

MajorVersion The major version number of the class that was requested when the library was

loaded.

MinorVersion The minor version number of the class that was requested when the library was

loaded.

ClassName The name of the class that was requested when the library was loaded.

Return Value

Example

None.

#include "xyz.h”
#ifdef IBMC

#pragma linkage (SOMInitModule, system)

#endif

SOMEXTERN void SOMLINK SOMInitModule (long majorVersion,

{

long minorVersion, string className)

SOM_ IgnoreWarning (majorVersion); /* This function makes */
SOM_IgnoreWarning (minorVersion); /* no use of the passed */
SOM_IgnoreWarning (className) ; /* arguments. */

xyzNewClass (A MajorVersion, A MinorVersion) ;

Programmers Reference Manual SOM kernel Ref —45

For Windows, also include the following function:

#include <windows.h>

int CALLBACK LibMain (HINSTANCE inst,
WORD ds,
WORD Heapsize,
LPSTR cmdLine)

SOM_IgnoreWarning (inst) ;
SOM_ignoreWarning (ds) ;
SOM_IgnoreWarning (heapSize) ;
SOM_IgnoreWarning (cmdLine) ;

SOM_ClassLibrary ("xyz.dl1l”);
return 1; /* Indicate success to loader */

Related Information
Functions: SOMClassInitFuncName
Methods: somGetlnitFunction

Macros: SOM_ClassLibrary

Ref —46 SOM kernel SOMobjects Developer Toolkit

SOM functions

SOMLoadModule Function

Purpose

Loads the dynamically linked library (DLL) containing a SOM class.

Syntax

int (*SOMLoadModule) (

Description

string className,
string fileName,

string functionName,
long majorVersion,

long minorVersion,
somToken *modHandle);

The SOMLoadModule function loads the dynamically linked library (DLL) containing a SOM
class. This routine is called by the SOM Class Managerto load DLLs. SOMLoadModule can be
replaced (thus changing the way the Class Manager loads DLLs) by changing the value of the
global variable SOMLoadModule.

Parameters
className

fileName

functionName

majorVersion
minorVersion

modHandle

Return Value

The name of the class whose DLL is to be loaded.

The name of the DLL library file.
This can be either a simple name or a fully qualified pathname.

The name of the routine to be called after the DLL is loaded. The routine is
responsible for creating a class object for each class in the DLL. Typically, this
argument will have the value SOMInitModule, obtained from the
SOMClassInitFuncName function. If no SOMInitModule entry exists in the
DLL, the default version of SOMLoadModule looks for a routine named
<className>NewClass instead. If neither entry point is found, the default
version of SOMLoadModule fails.

The expected major version number of the class, to be passed to the initializa-
tion routine of the DLL.

The expected minor version number of the class, to be passed to the initializa-
tion routine of the DLL.

The address where SOMLoadModule should place atoken that can be subse-
quently used by the SOMDeleteModule routine to unload the DLL.

Returns 0 if successful or a non-zero system-specific error code otherwise.

Related Information

Functions: SOMDeleteModule, SOMClassInitFuncName

Programmers Reference Manual

SOM kernel Ref —47

SOM functions

SOMMalloc Function

Pu rpose
Allocates the specified amount of memory.
Syntax
somToken (*SOMMalloc) (size_t size);
Description
The SOMMalloc function allocates size bytes of memory. The SOMMalloc function has the
same interface as the C malloc function. It performs the same basic function as malloc with
some supplemental error checking. If an error occurs, the SOMError function is called. This
routine is replaceable by changing the value of the global variable SOMMalloc.
Parameters

size The amount of memory to be allocated, in bytes.

Return Value
A pointer to the first byte of the allocated space.

Example
See function SOMFree.

Related Information
Functions: SOMCalloc, SOMRealloc, SOMFree

Ref —48 SOM kernel SOMobjects Developer Toolkit

SOMOutCharRoutine Function

Purpose

Prints a character. This function is replaceable.

Syntax

int

Description

(*SOMOutCharRoutine) (char c);

SOM functions

SOMOutCharRoutine is a replaceable character output routine. Itis invoked by SOM whenev-
er a character is generated by one of the SOM error-handling or debugging macros. The default
implementation outputs the specified character to stdout. To change the destination of character
output, store the address of a user-written character output routine in global variable
SOMOutCharRoutine.

Another function, somSetOutChar, may be preferred over the SOMOutCharRoutine function.
The somSetOutChar function enables each application (or thread) to have a customized
character output routine.

Parameters
C

Return Value

The character to be output.

Returns 0 if an error occurs and 1 otherwise.

Example

Related Infor

#include <som.h>

#pragma linkage (myCharacterOutputRoutine, system)

/* Define a replacement routine: */
int SOMLINK myCharacterOutputRoutine (char c)

{
}

/* After the next stmt all output */
/* will be sent to the new routine */
SOMOutCharRoutine = myCharacterOutputRoutine;

(Customized code goes here)

mation

Functions: somVprintf, somPrefixLevel, somLPrintf, somPrintf, somSetOutChar

Programmers Reference Manual

SOM kernel

Ref — 49

SOM functions

SOMRealloc Function

Pu rpose

Changes the size of a previously allocated region of memory.
Syntax

somToken (*SOMRealloc) (somToken ptr, size_t size);
Description

The SOMRealloc function changes the size of the previously allocated region of memory
pointed to by ptr so that it contains size bytes. The new size may be greater or less than the
original size. The SOMRealloc function has the same interface as the C realloc function. It
performs the same basic function as realloc with some supplemental error checking. If an error
occurs, the SOMError function is called. This routine is replaceable by changing the value of the
global variable SOMRealloc.

Parameters
ptr A pointer to the previously allocated region of memory. If NULL, a new region of
memory of size bytes is allocated.
size The size in bytes for the re-allocated storage. If zero, the memory pointed to by

ptr is freed.

Return Value

A pointer to the first byte of the re-allocated space. (A pointer is returned because the block of
storage may need to be moved to increase its size.)

Related Information
Functions: SOMCalloc, SOMMalloc, SOMFree

Ref —50 SOM kernel SOMobjects Developer Toolkit

SOM macros

SOM_Assert Macro

Purpose
Asserts that a boolean condition is true.
Syntax
void SOM_Assert (
boolean condition,
long errorCode);
Description

The SOM_Assert macro is used to place boolean assertions in a program:

o |fconditionis FALSE, and errorCode indicates a warning-level errorand SOM_WarnLevel is
set to be greater than zero, then a warning message is output.

o Ifconditionis FALSE and errorCode indicates a fatal error, an error message is output and the
process is terminated.

o If condition is TRUE and SOM_AssertLevel is set to be greater than zero, then an informa-
tional message is output.

External (Global) Data
long SOM _WarnLevel; /* default = 0 */

long SOM AssertLevel; /* default 0 */

Parameters
condition A boolean expression that is expected to be TRUE (nonzero).
errorCode The integer error code for the error to be raised if condition is FALSE.
Expansion

If condition is FALSE, and errorCode indicates a warning-level errorand SOM_WarnLevel is set
to be greater than zero, then a warning message is output. If condition is FALSE and errorCode
indicates a fatal error, an error message is output and the process is terminated. If condition is
TRUE and SOM_AssertLevel is set to be greater than zero, then an information message is
output.

Example

#include <som.h>
main ()

{

SOM_WarnLevel = 1;
SOM Assert (2==2, 29);

}

Related Information
Macros: SOM_Expect, SOM_Test, SOM_TestC

Programmers Reference Manual SOM kernel Ref-51

SOM macros

SOM_ClassLibrary Macro

Purpose

Syntax

Identifies the file name of the DLL for a SOM class library in a Windows LibMain function.

void SOM_ClassLibrary (string “libname.dll ");

Description

Each Windows SOM class library must supply a Windows LibMain function. In LibMain, the
SOM_ClassLibrary macro identifies both the actual file name of the library as it would appear in
a Windows LoadLibrary call and the location of the library’s SOMInitModule function. This
information is passed to the SOM Kernel, which in turn registers the library and schedules the
execution of the SOMInitModule function. This macro can also be used in OS/2 class libraries
within the context of a DLL “init/term” function

Typically, the SOM Kernel invokes the SOMInitModule function of each statically loaded class
library during the execution of the somMainProgram function in the using application. For
dynamically loaded class libraries, SOMInitModule is invoked immediately upon completion of
the library’s LibMain (or an OS/2 DLL “init/term”) function.

Because the SOM_ClassLibrary macro expands to reference the SOMInitModule function,
either a declaration of the SOMInitModule function, or the function itself, should precede the
appearance of SOM_ClassLibrary in the current compilation unit, as shown in the example
below).

Parameters

Example

libname.dll The name of the file containing the DLL (as the name would appear in a
Windows LoadLibrary call).

/* This example illustrates the use of the SOM ClassLibrary
macro in a Windows LibMain function */

#include <som.h>

SOMEXTERN void SOMLINK SOMInitModule (long majorVersion,
long minorVersion,
string className) ;

#include <windows.h>

int CALLBACK LibMain (HINSTANCE inst,
WORD ds,
WORD Heapsize,
LPSTR cmdLine)

{

SOM_IgnoreWarning (inst) ;

SOM_ignoreWarning (ds) ;

SOM_IgnoreWarning (heapSize) ;

SOM_IgnoreWarning (cmdLine) ;

SOM ClassLibrary (”"xyz.dll”);

return 1; /* Indicate success to loader */
}

Related Information

Macros: SOM_MainProgram
Functions: somMainProgram

Ref —52 SOM kernel SOMobjects Developer Toolkit

SOM macros

SOM_CreatelLocalEnvironment Macro

Purpose
Creates and initializes a local Environment structure.
Syntax
Environment * SOM_CreateLocalEnvironment ();
Description
The SOM_CreateLocalEnvironment macro creates a local Environment structure. This En-
vironment structure can be passed to methods as the Environment argument so that excep-
tion information can be returned without affecting the global environment.
Parameters
None.
Expansion
The SOM_CreateLocalEnvironment expands to an expression of type (Environment *).
C Example

Environment *ev;
ev = SOM CreateLocalEnvironment () ;
_myMethod (obj, ev);

SOM_DestroyLocalEnvironment (ev) ;

Related Information
Data Structures: Environment (somcorba.h)

Macros: SOM_DestroyLocalEnvironment, SOM_InitEnvironment,
SOM_UninitEnvironment

Functions: somGetGlobalEnvironment

Programmers Reference Manual SOM kernel Ref —53

SOM macros

SOM_DestroyLocalEnvironment Macro

Pu rpose
Destroys a local Environment structure.
Syntax
void SOM_DestroyLocalEnvironment (Environment * ev);
Description
The SOM_DestroyLocalEnvironment macro destroys a local Environment structure, such
as one created using the SOM_CreatelLocalEnvironment macro.
Parameters
ev A pointer to the Environment structure to be discarded.
Expansion
The SOM_DestroyLocalEnvironment function first invokes the somExceptionFree function
on the Environment structure; then it invokes SOMFree on it to free the memory it occupies.
Example

Environment *ev;
ev = SOM CreateLocalEnvironment () ;
_myMethod (obj, ev);

SOM DestroyLocalEnvironment (ev) ;

Related Information
Macros: SOM_CreateLocalEnvironment, SOM_UninitEnvironment

Functions: somExceptionFree

Ref —54 SOM kernel SOMobjects Developer Toolkit

SOM macros

SOM_Error Macro

Pu rpose
Reports an error condition.

Syntax
void SOM_Error (long errorCode);

Description
The SOM_Error macro invokes the SOMError error handling procedure with the specified error
code, supplying the filename and line humber where the macro was invoked. The default
implementation of SOMError outputs a message containing the error code, filename, and line
number. Additionally, if the last digit of the error code indicates a serious error (that is, value
SOM_Fatal), the process is terminated.

Parameters
errorCode The integer error code for the error to be reported.

Expansion

The SOM_Error macro invokes the SOMError error handler, supplying the filename and line
number where the macro was invoked.

Related Information
Functions: SOMError

Programmers Reference Manual SOM kernel Ref —55

SOM macros

SOM_Expect Macro

Pu rpose
Asserts that a boolean condition is expected to be true.
Syntax
void SOM_Expect (boolean condition);
Description
The SOM_Expect macro is used to place boolean assertions that are expected to be true into a
program:
o If condition is FALSE and SOM_WarnLevel is set to be greater than zero, then a warning
message is output.
o If condition is TRUE and SOM_AssertLevel is set to be greater than zero, then an informa-
tional message is output.
Parameters
condition A boolean expression that is expected to be TRUE (nonzero).
Expansion
If condition is FALSE and SOM_WarnLevel is set to be greater than zero, then a warning
message is output. If condition is TRUE and SOM_AssertLevel is set to be greater than zero,
then an information message is output.
Example

SOM_Expect (2==2) ;

Related Information
Macros: SOM_Assert, SOM_Test, SOM_TestC

Ref —56 SOM kernel SOMobjects Developer Toolkit

SOM macros

SOM_GetClass Macro

Purpose

Returns a pointer to the class object of which a SOM object is an instance.

Syntax
SOMClass SOM_GetClass (SOMObject objPtr);

Description

The SOM_GetClass macro returns the class object of which obj is an instance. This is done
without recourse to a method call on the object. The somGetClass method introduced by
SOMObject is also intended to return the class of which an object is an instance, and the default
implementation provided for this method by SOMObject uses the macro.

Important Note: It is generally recommended that the somGetClass method call be used,
since it cannot be known whether the class of an object wishes to provide special handling when
its address is requested from an instance. But, there are (rare) situations where a method call
cannot be made, and this macro can then be used. If you are unsure as to whether to use the
method or the macro, you should use the method.

Parameters

objPtr A pointer to the object whose class is needed.

C++ Example

#include <somcls.xh>
#include <animal.xh>
main ()
{
Animal *a = new Animal;
SOMClass clsl = SOM GetClass(a);
SOMClass cls2 = a->somGetClass() ;
if (clsl == cls2)
printf ("macro and method for getClass the same for Animal\n”) ;
else
printf ("macro and method for getClass not same for Animall\n”);

Related Information

Methods: somGetClass

Programmers Reference Manual SOM kernel Ref —57

SOM macros

SOM_InitEnvironment Macro

Purpose

Initializes a local Environment structure.

Syntax

void SOM_InitEnvironment (Environment * ev);

Description

The SOM_InitEnvironment macro initializes a locally declared Environment structure. This
Environment structure can then be passed to methods as the Environment argument so that
exception information can be returned without affecting the global environment.

Parameters

ev A pointer to the Environment structure to be initialized.

Expansion

The SOM_InitEnvironment initializes an Environment structure to zero.

C Example

Environment ev;
SOM_InitEnvironment (&ev) ;
_myMethod (obj, &ev);

SOM_UninitEnvironment (&ev) ;

Related Information

Macros: SOM_DestroyLocalEnvironment, SOM_CreateLocalEnvironment,
SOM_UninitEnvironment

Functions: somGetGlobalEnvironment

Ref —58 SOM kernel SOMobjects Developer Toolkit

SOM macros

SOM_MainProgram Macro

Purpose

Identifies an application as a SOM program and registers an end-of-program exit procedure to
release SOM resources when the application terminates.

Syntax
SOMClassMgr SOM_MainProgram ();

Description

The SOM_MainProgram macro should appear near the beginning of each Windows applica-
tion program that uses SOM or a SOM class library. It can also be used in OS/2 or AIX programs
but is not generally required on these platforms. Any statically referenced SOM class libraries
are initialized during the execution of this macro, and an end-of-program exit procedure is
established to release SOM resources during normal program termination. (This macro com-
bines the execution of the C/C++ “atexit” function with the SOM somMainProgram function and
returns a reference to the global SOMClassMgr object.)

Parameters
None.

Example

#include <som.h>
#include <windows.h>

int PASCAL WinMain (HINSTANCE inst,
WORD ds,
WORD Heapsize,
LPSTR cmdLine)

SOM MainProgram () ;

/* Rest of main program follows */

}

Related Information
Functions: somMainProgram

Macros: SOM_ClassLibrary

Programmers Reference Manual SOM kernel Ref —59

SOM macros

SOM_NoTrace Macro

Pu rpose
Used to turn off method debugging.
Syntax
SOM_NoTrace (<token> className, <token> methodName);
Description
The SOM_NoTrace macro is used to turn off method debugging. Within an implementation file
for a class, before #including the implementation (.ih or .xih) header file for the class, #define the
<className>MethodDebug macro to be SOM_NoTrace. Then, <className>MethodDebug
will have no effect.
Parameters
className The name of the class for which tracing will be turned off, given as a simple
token rather than a quoted string.
methodName The name of the method for which tracing will be turned off, given as a simple
token rather than a quoted string.
Expansion
The SOM_NoTrace macro has a null (empty) expansion.
Example

Within an implementation file:
#define AnimalMethodDebug(c,m) SOM NoTrace (c,m)

#include <animal.ih>
/* Now AnimalMethodDebug does nothing */

Ref —60 SOM kernel SOMobjects Developer Toolkit

SOM macros

SOM_ParentNumResolve Macro

Purpose

Obtains a pointer to a method procedure from a list of method tables. Used by C and C++
implementation bindings to implement parent method calls.

Syntax

somMethodPtr SOM_ParentNumResolve (
<token> IntroClass,
long parentNum,
somMethodTabs parentMtabs,
<token> methodName);

Description

The SOM_ParentNumResolve macro invokes the somParentNumResolve function to obtain
a pointer to the static method procedure that implements the specified method for the specified
parent. The method is specified by indicating the introducing class, IntroClass, and the method
name, methodName.

Parameters

introClass The name of the class that introduces methodName. This name should be
given as a simple token, rather than a quoted string (for example, Animal rather
than “Animal”).

parentNum The position of the desired parent. The first (leftmost) parent of a class has
position 1.

parentMtabs A list of parent method tables acquired by invoking the somGetPClsMtabs
method on a class object.

methodName The name of the method to be resolved. This name should be given as a simple
token, rather than a quoted string (for example, setSound rather than
“setSound”).

Expansion

The expansion of the macro produces an expression that is appropriately typed for application
of the evaluated result to the indicated method’s arguments, as illustrated below.

Example

#include <somcls.h>
main ()

SOMClassMgr *cm = somEnvironmentNew () ;

somMethodTabs mList = somGetPClsMtabs (SOMClass) ;
SOM_ ParentNumResolve (SOMObject, 1, mList, somDumpSelfInt)
(_SOMClass, 1) ;

}

Related Information
Functions: somParentNumResolve
Methods: somGetPClsMtabs

Programmers Reference Manual SOM kernel Ref—61

SOM macros

SOM_Resolve Macro

Purpose

Obtains a pointer to a static method procedure.

Syntax

somMethodPtr SOM_Resolve (
SOMObject objPtr,
<token> className,
<token> methodName);

Description

The SOM_Resolve macro invokes the somResolve function to obtain a pointer to the static
method procedure that implements the specified method for the specified object. This pointer
can be used for efficient repeated casted method invocations on instances of the class of the
object on which the resolution is done, or instances of subclasses of this class. The name of the
class that introduces the method and the name of the method must be known to use this macro.
Otherwise, use the somResolveByName, somFindMethod or somFindMethodOk method.

The SOM_Resolve macro can only be used to obtain a method procedure for a static method
(one defined in the IDL specification for a class); not a dynamic method. Unlike the
SOM_ResolveNoCheck macro, the SOM_Resolve macro performs several consistency
checks on the object pointed to by objPtr.

Parameters
objPtr A pointer to the object to which the resolved method procedure will be applied.

className The name of the class that introduces methodName. This name should be
given as a simple token, rather than a quoted string (for example, Animal rather
than “Animal”).

methodName The name of the method to be resolved. This name should be given as a simple
token, rather than a quoted string (for example, setSound rather than
“setSound”).

Expansion

The SOM_Resolve macro uses the className and methodName to construct the method
token for the specified method, then invokes the somResolve function. Thus, the macro
expands to an expression that represents the entry-point address of the method procedure. This
value can be stored in a variable and used for subsequent invocations of the method.

Example

Animal myObj = AnimalNew () ;

somMethodProc *procPtr;

procPtr = SOM Resolve (myObj, Animal, setSound) ;

/* note that procPtr will need to be typecast when it is used */

Related Information
Macros: SOM_ResolveNoCheck
Functions: somResolve, somClassResolve, somResolveByName

Methods: somFindMethod, somFindMethodOk, somDispatch, somClassDispatch

Ref —62 SOM kernel SOMobjects Developer Toolkit

SOM macros

SOM_ResolveNoCheck Macro

Purpose

Obtains a pointer to a static method procedure, without doing consistency checks.

Syntax

somMethodPtr SOM_ResolveNoCheck (
SOMObject objPtr,
<token> className,
<token> methodName);

Description

The SOM_ResolveNoCheck macro invokes the somResolve function to obtain a pointer to
the method procedure that implements the specified method for the specified object. This
pointer can be used for efficient repeated invocations of the same method on the same type of
objects. The name of the class that introduces the method and the name of the method must be
known at compile time. Otherwise, use the somFindMethod or somFindMethodOk method.

The SOM_ResolveNoCheck macro can only be used to obtain a method procedure for a static
method (one defined in the IDL specification for a class) and not a method added to a class atrun
time. Unlike the SOM_Resolve macro, the SOM_ResolveNoCheck macro does not perform
any consistency checks on the object pointed to by objPtr.

Parameters
objPtr A pointer to the object to which the resolved method procedure will be applied.

className The name of the class that introduces methodName. This name should be
given as a simple token, rather than a quoted string (for example, Animal rather
than “Animal”).

methodName The name of the method to be resolved. This name should be given as a simple
token, rather than a quoted string (for example, setSound rather than
“setSound”).

Expansion

The SOM_ResolveNoCheck macro uses the className and methodName to construct an
expression whose value is the method token for the specified method, then invokes the
somResolve function. Thus, the macro expands to an expression that represents the entry-
point address of the method procedure. This value can be stored in a variable and used for
subsequent invocations of the method.

Example

Animal myObj = AnimalNew () ;
somMethodProc *procPtr;
procPtr = SOM ResolveNoCheck (myObj, Animal, setSound)

Related Information
Macros: SOM_Resolve
Functions: somResolve, somClassResolve, somResolveByName

Methods: somDispatch, somClassDispatch, somFindMethod, somFindMethodOk

Programmers Reference Manual SOM kernel Ref —63

SOM macros

SOM_SubstituteClass Macro

Pu rpose
Provides a convenience macro for invoking the somSubstituteClass method.
Syntax
long SOM_SubstituteClass (
<token> oldClass,
<token> newClass);
Description
The method somSubstituteClass requires existing class objects as arguments. Therefore, the
macro SOM_SubstituteClass first assures that the classes named oldClass and newClass
exist, and then calls the method somSubstituteClass with these class objects as arguments.
Parameters
oldClass The name of the class to be substituted, given as a simple token rather than a
quoted string.
newClass The name of the class that will replace oldClass, given as a simple token rather
than a quoted string.
Example

See the method somSubstituteClass.

Related Information
Methods: somSubstituteClass

Ref —64 SOM kernel SOMobjects Developer Toolkit

SOM macros

SOM_Test Macro

Purpose

Tests whether a boolean condition is true; if not, a fatal error is raised.

Syntax

void SOM_Test (boolean expression);

Description
The SOM_Test macro tests the specified boolean expression:

o Ifthe expressionis TRUE and SOM_AssertLevel is set to a value greater than zero, then an
information message is output.

o If the expression is FALSE, an error message is output and the process is terminated.
Note: The SOM_TestC macro is similar, except that it only outputs a warning message in this
situation.

Parameters

expression The boolean expression to test.

External (Global) Data

long SOM AssertLevel; /* default is 0 */

Expansion

The SOM_Test macro tests the specified boolean expression. If the expression is TRUE and
SOM_AssertLevel is setto a value greater than zero, then an information message is output. If
the expression is FALSE, an error message is output and the process is terminated.

C Example

#include <som.h>
main ()

{

SOM_AssertLevel = 1;
SOM Test (1=1) ;

}

Related Information
Macros: SOM_Expect, SOM_Assert, SOM_TestC

Programmers Reference Manual SOM kernel Ref — 65

SOM macros

SOM_TestC Macro

Pu rpose

Tests whether a boolean condition is true; if not, a warning message is output.
Syntax

void SOM_TestC (boolean expression);
Description

The SOM_TestC macro tests the specified boolean expression:

o Ifthe expressionis TRUE and SOM_AssertLevel is set to a value greater than zero, then an
information message is output.

o If the expression is FALSE and SOM_WarnLevel is set to a value greater than zero, then a
warning message is output. Note: The SOM_Test macro is similar, except that it raises a fatal
error in this situation.

Parameters

expression The boolean expression to test.

External (Global) Data
long SOM AssertLevel; /* default is 0 */

long SOM WarnLevel; /* default is 0 */

Expansion

The SOM_TestC macro tests the specified boolean expression. If the expression is TRUE and
SOM_AssertLevel is set to a value greater than zero, then an information message is output. If
the expression is FALSE and SOM_WarnLevel is set to a value greater than zero, a warning
message is output.

C Example

#include <som.h>
main ()

{

SOM_WarnLevel = 1;
SOM_TestC(l:l) H

}

Related Information
Macros: SOM_Expect, SOM_Assert, SOM_Test

Ref —66 SOM kernel SOMobjects Developer Toolkit

SOM macros

SOM_UninitEnvironment Macro

Purpose
Uninitializes a local Environment structure.
Syntax
void SOM_UninitEnvironment (Environment * ev);
Description
The SOM_UninitEnvironment macro uninitializes a locally declared Environment structure.
Parameters
ev A pointer to the Environment structure to be uninitialized.
Expansion
The SOM_UninitEnvironment invokes the somExceptionFree function on the specified
Environment structure.
C Example

Environment ev;
SOM_InitEnvironment (&ev) ;
_myMethod (obj, &ev);

SOM _UninitEnvironment (&ev) ;

Related Information

Macros: SOM_DestroyLocalEnvironment, SOM_InitEnvironment

Programmers Reference Manual SOM kernel Ref —67

SOM macros

SOM_WarnMsg Macro

Pu rpose
Reports a warning message.
Syntax
void SOM_WarnMsg (string msg);
Description
If SOM_WarnLevel is set to a value greater than zero, the SOM_WarnMsg macro prints the
specified message, along with the filename and line number where the macro was invoked.
Parameters
msg The warning message to be output.
Expansion

If SOM_WarnLevel is set to a value greater than zero, the SOM_WarnMsg macro prints the
specified message, along with the filename and line number where the macro was invoked.

Related Information
Macros: SOM_Error

Ref —68 SOM kernel SOMobjects Developer Toolkit

SOMClass class

SOMClass Class
Description

File Stem

Base

Metaclass

SOMClass is the root class for all SOM metaclasses. That is, all SOM metaclasses must be
subclasses of SOMClass or some other class derived from it. It defines the essential behavior
common to all SOM classes. In particular, it provides a suite of methods for initializing class
objects, generic methods for manufacturing instances of those classes, and methods that
dynamically obtain or update information about a class and its methods at run time.

Justas all SOM classes are expected to have SOMObject (or a class derived from SOMObject)
as their base class, all SOM classes are expected to have SOMClass or a class derived from
SOMClass as their metaclass. Metaclasses define “class” methods (sometimes called “factory”
methods or “constructors”) that manufacture objects from any class object that is defined as an
instance of the metaclass.

To define your own class methods, define your own metaclass by subclassing SOMClass or
one of its subclasses. Three methods that SOMClass inherits and overrides from SOMObject
are typically overridden by any metaclass that introduces instance data— somlnit, somUninit,
and somDumpSelfint. The new methods introduced in SOMClass that are frequently overrid-
den are somNew, somRenew, and somClassReady. (See the descriptions of these methods
for further information.)

Other reasons for creating a new metaclass include tracking object instances, automatic gar-
bage collection, interfacing to a persistent object store, or providing/managing information that
is global to a set of object instances.

somcls

SOMObject

SOMClass (SOMClass is the only class with itself as metaclass.)

Ancestor Classes

Types

SOMObject

typedef sequence <SOMClass> SOMClassSequence;

struct somOffsetinfo {

SOMClass cls;
long offset
h

typedef sequence <somOffsetinfo> SOMOffsets;

New Methods

Attributes:

readonly attribute somOffsets sominstanceDataOffsets

_get_somlinstanceDataOffsets returns a sequence of structures, each of which indicates an
ancestor of the receiver class (or the receiver class itself) and the offset to the beginning of the

Programmers Reference Manual SOM kernel Ref —69

SOMClass class

instance data introduced by the indicated class in an instance of the receiver class. The
somOffsets information can be used in conjunction with information derived from calls to a
SOM Interface Repository to completely determine the layout of SOM objects at runtime.

C++ Example

#include <somcls.xh>
main ()

{

int 1i;

SOMClassMgr *scm = somEnvironmentNew () ;

somOffsets so = SOMClass-> get somInstanceDataOffsets();

for (i=0; i<so. length; i++)

printf (”In an instance of SOMClass,

%$s data starts at %d\n”,

so. buffer[i] ->cls->somGetName (),

so._buffer[i] ->offset);

Introduced Methods

Group: Instance Creation (Factory)
somAllocate
somDeallocate
somNew
somNewNolnit
somRenew
somRenewNolnit
somRenewNolInitNoZero
somRenewNoZero

Group: Initialization/Termination
somAddDynamicMethod
somClassReady

Group: Access
somGetinstancePartSize
somGetinstanceSize
somGetinstanceToken
somGetMemberToken
somGetMethodData
somGetMethodDescriptor
somGetMethodIndex
somGetMethodToken
somGetName
somGetNthMethodData
somGetNthMethodInfo
somGetNumMethods
somGetNumStaticMethods
somGetParents
somGetVersionNumbers

Group: Testing
somCheckVersion
somDescendedFrom
somSupportsMethod

Ref —70 SOM kernel

SOMobjects Developer Toolkit

Group: Dynamic

somFindMethod
somFindMethodOk
somFindSMethod
somFindSMethodOk
somLookupMethod

Overridden Methods

somDumpSelfint
somDefaultinit
somDestruct

Deprecated Methods

Use of the methods listed below is discouraged. There are three reasons for this:

First, these methods are used in constructing classes, and this capability is provided by the
function somBuildClass. Class construction in SOM is currently a fairly complex activity, and it
is likely to become even more so as the SOMobjects kernel evolves. To avoid breaking source
code that constructs classes, you are advised to always use somBuildClass to build SOM
classes. Note: The SOM language bindings always use somBuildClass.

Second, these methods are used for customizing aspects of SOM classes, such as method
resolution and object creation. Doing this requires that metaclasses override various methods
introduced by SOMClass. However, if this is done without the Cooperation Framework that
implements the SOM Metaclass Framework, SOMobjects cannot guarantee that applications
will function correctly. Unfortunately, the Cooperation Framework (while available to SOM users
as an experimental feature) is not officially supported by the SOMobjects Toolkit. So, this is
another reason why the following methods are deprecated.

Finally, some of these methods are now obsolete, so it seems appropriate that their use be
discouraged.

somAddStaticMethod
somGetApplyStub
somGetClassData
somGetClassMtab
somGetinstanceOffset
somGetMethodOffset
somGetParent

somGetPClsMtab
somGetPClsMtabs

somGetRdStub

somlnitClass

somInitMIClass

somOverrideMtab
somOverrideSMethod
somSetClassData
somSetMethodDescriptor
_get_sombDirectInitClasses attribute
_set_somDirectInitClasses attribute

Programmers Reference Manual SOM kernel Ref-71

SOMClass class

somAddDynamicMethod Method

Purpose

Adds a new dynamic instance method to a class. Dynamic methods are not part of the declared
interface to a class of objects, and are therefore not supported by implementation and usage
bindings. Instead, dynamic methods provide a way to dynamically add new methods to a class
of objects during execution. SOM provides no standard protocol for informing a user of the
existence of dynamic methods and the arguments they take. Dynamic methods must be in-
voked using name-lookup or dispatch resolution.

IDL Syntax

void somAddDynamicMethod (
in somld methodld,
in somld methodDescriptor,
in somMethodPtr method,
in somMethodPtr applyStub);

Note: For backward compatibility, this method does not take an Environment parameter.

Description

The somAddDynamicMethod method adds a new dynamic instance method to the receiving
class. This involves recording the method’s ID, descriptor, method procedure (specified by
method), and apply stub in the receiving class’s method data.

The arguments to somAddDynamicMethod should be non-null and obey the requirements
expressed below. This is the responsibility of the implementor of a class, who in general has no
knowledge of whether clients of this class will require use of the applyStub argument.

Parameters
receiver A pointer to a SOM class object.
methodId A somld that names the method.

methodDescriptor
A somld appropriate for requesting information concerning the method from
the SOM IR. This is currently of the form <className>::<methodName>.

method A pointer to the procedure that will implement the new method. The first argu-
ment of this procedure is the address of the object on which it is being invoked.

applyStub A pointer to a procedure that returns nothing and receives as arguments: a
method receiver; an address where the return value from the method call is to
be stored; a pointer to a method procedure; and a va_list containing the argu-
ments to the method. The applyStub procedure (which is usually called by
somDispatch) must unload its va_list argument into separate variables of the
correct type for the method, invoke its procedure argument on these variables,
and then copy the result of the procedure invocation to the address specified by
the return value argument.

Return Value
None.

Ref —72 SOM kernel SOMobjects Developer Toolkit

C Example

SOMClass class

/* New dynamic method “newMethodl” for class "XXX” */
static char *somMN newMethodl = "newMethodl”;
static somId somId newMethodl = &somMN_newMethodl;

static char *somDS newMethodl = ”XXX::newMethodl”;
static somId somDI newMethodl &somDS _newMethodl;

static void SOMLINK somAP newMethodl (SOMObject somSelf,
void * retVal,
somMethodProc * methodPtr,
va_list _ ap)

void* somSelf = va arg(_ ap, SOMObject) ;
int argl = va_arg(__ap, int);
SOM_IgnoreWarning(retVal);

Original Class

Related Inf

((somTD_SOMObject newMethodl) _ methodPtr) (_somSelf, argl);

}

main ()

{
__somAddDynamicMethod (
XXXClassData.classObject, /* Receiver (class object) */
somId newMethodl, /* method name somId */
somDI_newMethodl, /* method descriptor somId */
(somMethodProc *) newMethodl, /* method procedure */
(somMethodProc *) somAP newMethodl); /* method apply stub */

}

SOMClass

ormation

Methods: somGetMethodDescriptor

Programmers Reference Manual SOM kernel Ref—-73

SOMClass class

somAllocate Method

Purpose

Supports class-specific memory allocation for class instances. Cannot be overridden.

IDL Syntax

string somAllocate (in long size);

Note: For backward compatibility, this method does not take an Environment parameter.

Description

When building a class, the somBuildClass function is responsible for registering the procedure
that will be executed when this method is invoked on the class. The default procedure registered
by somBuildClass uses the SOMMalloc function, but the IDL modifier somallocate can be
used in the SOM IDL class implementation section to indicate a different procedure. Users of
this method should be sure to use the dual method, somDeallocate, to free allocated storage.
Also, if the IDL modifier somallocate is used to indicate a special allocation routine, the IDL
modifier somdeallocate should be used to indicate a dual procedure to be called when the
somDeallocate method is invoked.

Parameters
receiver A pointer to the class object whose memory allocation method is desired.

size The number of bytes to be allocated.

Return Value

string A pointer to the first byte of the allocated memory region, or NULL if sufficient
memory is not available.

C++ Example

#include <som.xh>
#include <somcls.xh>
main ()
SOMClassMgr *cm = somEnvironmentNew () ;
/* Use SOMClass'’s instance allocation method */

string newRegion = SOMClass->somAllocate (20) ;
}
Original Class
SOMClass

Related Information

Methods: somDeallocate

Ref — 74 SOM kernel SOMobjects Developer Toolkit

SOMClass class

somCheckVersion Method

Purpose

Checks a class for compatibility with the specified major and minor version numbers. Not
generally overridden.

IDL Syntax

boolean somCheckVersion (
In long majorVersion,
In long minorVersion);

Note: For backward compatibility, this method does not take an Environment parameter.

Description

The somCheckVersion method checks the receiving class for compatibility with the specified
major and minor version numbers. An implementation is compatible with the specified version
numbers if it has the same major version number and a minor version number that is equal to or
greater than minorVersion. The version number pair (0,0) is considered to match any version.

This method is called automatically after creating a class object to verify that a dynamically
loaded class definition is compatible with a client application.

Parameters
receiver A pointer to the SOM class whose version information should be checked.

majorVersion This value usually changes only when a significant enhancement or incompat-
ible change is made to a class.

minorVersion This value changes whenever minor enhancements or fixes are made to a
class. Class implementors usually maintain downward compatibility across
changes in the minorVersion number.

Return Value

Returns 1 (true) if the implementation of this class is compatible with the specified major and
minor version number, and O (false) otherwise.

C Example

#include <animal.h>
main ()
{
Animal myAnimal;
myAnimal = AnimalNew () ;

if (_somCheckVersion(Animal, 0, 0))

somPrintf (“Animal IS compatible with 0.0\n”);
else

somPrintf ("Animal IS NOT compatible with 0.0\n”);

if (_somCheckVersion(Animal, 1, 1))

somPrintf ("Animal IS compatible with 1.1\n”);
else

somPrintf ("Animal IS NOT compatible with 1.1\n”);

_somFree (myAnimal) ;

}

Programmers Reference Manual SOM kernel Ref—-75

SOMClass class

Assuming that the implementation of Animal is version 1.0, this program produces the following
output:

Animal IS compatible with 0.0
Animal IS NOT compatible with 1.1

Original Class
SOMClass

Ref — 76 SOM kernel SOMobjects Developer Toolkit

SOMClass class

somClassReady Method

Purpose

IDL Syntax

Indicates that a class has been constructed and is ready for normal use. Designed to be
overridden.

void somClassReady ();

Note: For backward compatibility, this method does not take an Environment parameter.

Description

The somClassReady method is invoked automatically by the somBuildClass function after
constructing and initializing a class object. The default implementation of this method provided
by SOMClass simply registers the newly constructed class with SOMClassMgrObject. Meta-
classes can override this method to augment class construction with additional registration
protocol.

To have special processing done when a class object is created, you must define a metaclass for
the class that overrides somClassReady. The final statement in any overriding method should
invoke the parent method to ensure that the class is properly registered with
SOMClassMgrObject. Users of the C and C++ implementation bindings for SOM classes
should never invoke the somClassReady method directly; it is invoked automatically during
class construction.

Parameters

receiver A pointer to the class object that should be registered.

Return Value

Original CI

None.

ass
SOMClass

Programmers Reference Manual SOM kernel Ref-77

SOMClass class

somDeallocate Method

Purpose

Frees memory originally allocated by the somAllocate method from the same class object.
Cannot be overridden.

IDL Syntax

void somDeallocate (in string memPtr);

Note: For backward compatibility, this method does not take an Environment parameter.

Description

The somDeallocate method is intended for use to free memory allocated using its dual method,
somAllocate. When building a class, the somBuildClass function is responsible for registering
the procedure that will be executed when this method is invoked on the class. The default
procedure registered by somBuildClass uses the SOMFree function, but the IDL modifier
somdeallocate can be usedinthe SOM IDL class implementation section to indicate a different
procedure. Users of this method should be sure that the dual method, somAllocate, was
originally used to allocate storage. Also, if the IDL modifier somdeallocate is used to indicate a
special deallocation routine, the IDL modifier somallocate should be used to indicate a dual
procedure to be called when somAllocate is invoked.

Parameters

receiver A pointer to the class object whose somAllocate was originally used to allo-
cate the memory now to be freed.

memPtr A pointer to the first byte of the region of memory that is to be freed.

Return Value
None.

Original Class
SOMClass

Related Information
Methods: somAllocate

Ref — 78 SOM kernel SOMobjects Developer Toolkit

SOMClass class

sombDescendedFrom Method

Purpose

Tests whether one class is derived from another. Not generally overridden.

IDL Syntax

boolean somDescendedFrom (in SOMClass aClassObj);

Note: For backward compatibility, this method does not take an Environment parameter.

Description

Tests whether the receiver class is derived from a given class. For programs that use classes as
types, this method can be used to ascertain whether the type of one object is a subtype of
another.

This method considers a class object to be descended from itself.

Parameters

receiver A pointer to the class object to be tested.
aClassObj A pointer to the potential ancestor class.

Return Value

Returns 1 (true) if receiver is derived from aClassObj, and O (false) otherwise.

C Example

#include <dog.h>
/* ___

AnimalNewClass (0, 0) ;
DogNewClass (0,0) ;

if (_somDescendedFrom (Dog, Animal))
somPrintf ("Dog IS descended from Animall\n”) ;

else

somPrintf ("Dog is NOT descended from Animal\n”) ;
if (somDescendedFrom (Animal, Dog))

somPrintf ("Animal IS descended from Dog\n”) ;
else

somPrintf ("Animal is NOT descended from Dog\n”) ;

This program produces the following output:

Dog IS descended from Animal
Animal is NOT descended from Dog

Original Class

SOMClass

Related Information

Methods: somlsA, somlisinstanceOf

Programmers Reference Manual SOM kernel Ref—-79

SOMClass clas

S

somFindMethod, somFindMethodOk Methods

Purpose

IDL Syntax

Finds the method procedure for a method and indicates whether it represents a static method or
a dynamic method. Not generally overridden.

boolean somFindMethod (
in somld methodld,
out somMethodPtr m);

boolean somFindMethodOk (
in somld methodld,
out somMethodPtr m);

Note: For backward compatibility, these methods do not take an Environment parameter.

Description

The somFindMethod and somFindMethod Ok methods perform name-lookup method reso-
lution, determine the method procedure appropriate for performing the indicated method on
instances of the receiving class, and load m with the method procedure address. For static
methods, method procedure resolution is done using the instance method table of the receiving
class.

Name-lookup resolution must be used to invoke dynamic methods. Also, name-lookup can be
useful when different classes introduce methods of the same name, signature, and desired
semantics, but it is not known until runtime which of these classes should be used as a type for
the objects on which the method is to be invoked. If the signature of a method is a not known,
then method procedures cannot be be used directly, and the somDispatch method can be used
after dynamically discovering the signature to allow the correct arguments can be placed on a
va_list.

As with any methods that return procedure pointers, these methods allow repeated invocations
of the same method procedure to be programmed. If this is done, it up to the programmer to
prevent runtime errors by assuring that each invocation is performed either on an instance of the
class used to resolve the method procedure or of some class derived from it. Whenever using
SOM method procedure pointers, itis necessary to indicate the arguments to be passed and the
use of system linkage to the compiler, so it can generate a correct procedure call. The way this is
done depends on the compiler and the system being used. However, C and C++ usage bindings
provide an appropriate typedef for static methods. The name of the typedef is based on the
name of the class that introduces the method, as illustrated in the example below.

Unlike the somFindMethod method, if the class does not support the specified method, the
somFindMethodOk method raises an error and halts execution.

If the class does not support the specified method, then *m is set to NULL and the return value is
meaningless. Otherwise, the returned result is true if the indicated method was a static method.

Parameters

receiver A pointer to the class object whose method is desired.

methodld An ID that represents the name of the desired method. The somldFromString
function can used to obtain an ID from the method’s name.

m A pointer to the location in memory where a pointer to the specified method'’s
procedure should be stored. Both methods store a NULL pointer in this location
(if the method does not exist) or a value that can be called.

Ref —80 SOM kernel SOMobjects Developer Toolkit

Return Value

SOMClass class

The somFindMethod and somFindMethod Ok methods return TRUE when the method proce-
dure can be called directly and FALSE when the method procedure is a dispatch function.

C Example

Assuming that the Animal class introduces the method setSound, the type name for the
setSound method procedure type will be somTD_Animal_setSound, as illustrated below:

#include <animal.h>
void main()

{

/*

}
/*

Animal myAnimal;

somId somId setSound;

somTD Animal setSound methodPtr;

Environment *ev = somGetGlobalEnvironment () ;

myAnimal = AnimalNew () ;
Note: Next three lines are equivalent to
_setSound (myAnimal, ev, "Roar!!!”);

__ -k/

somId setSound = somIdFromString(”setSound”) ;

_somFindMethod (somGetClass (myAnimal),
somId setSound, &methodPtr) ;
methodPtr (myAnimal, ev, "Roar!!!”);

_display (myAnimal, ev);
_somFree (myAnimal) ;

Program Output:
This Animal says
Roar!!!

*/

Original Class

SOMClass

Related Information

Methods: somFindSMethod, somFindSMethodOk, somSupportsMethod, somDispatch,
somClassDispatch

Functions: somApply, somResolve, somClassResolve, somResolveByName,
somParentNumResolve

Macros: SOM_Resolve, SOM_ResolveNoCheck, SOM_ParentNumResolve

Programmers Reference Manual

SOM kernel Ref —81

SOMClass class

somFindSMethod, somFindSMethodOk Methods

Purpose

Finds the method procedure for a static method. Not generally overridden.

IDL Syntax
somMethodPtr somFindSMethod (in somld methodId);
somMethodPtr somFindSMethodOk (in somld methodId);

Note: For backward compatibility, these methods do not take an Environment parameter.

Description

The somFindSMethod and somFindSMethodOk methods perform name-lookup resolution
in a similar fashion to somFindMethod and somFindMethodOk, but are restricted to static
methods. See the description of somFindMethod for a discussion of name-lookup method
resolution. Because these methods are restricted to resolving static methods, their interface is
slightly different from the somFindMethod interfaces; a method procedure pointer is returned
when lookup is successful; otherwise NULL is returned.

The somFindSMethodOk method is identical to somFindSMethod, except that an error is
raised if the indicated static method is not defined for the receiving class, and execution is

halted.
Parameters
receiver A pointer to a class object.
methodld A somld representing the name of the desired method.

Return Value

The somFindSMethod and somFindSMethodOk methods return a pointer to the method
procedure that supports the specified method for the class.

Example

See the somFindMethod method example.

Original Class
SOMClass

Related Information
Methods: somFindMethod, somFindMethodOk

Ref —82 SOM kernel SOMobjects Developer Toolkit

SOMClass class

somGetlnstancePartSize Method

Purpose
Returns the total size of the instance data structure introduced by a class. Not generally
overridden.
IDL Syntax
long somGetinstancePartSize ();
Note: For backward compatibility, this method does not take an Environment parameter.
Description
The somGetInstancePartSize method returns the amount of space needed in an object of the
specified class or any of its subclasses to contain the instance variables introduced by the class.
Parameters

receiver A pointer to the class object whose instance data size is desired.

Return Value

The somGetinstancePartSize method returns the size, in bytes, of the instance variables
introduced by this class. This does not include the size of instance variables introduced by this
class’s ancestor or descendent classes. If a class introduces no instance variables, 0 is re-
turned.

C Example

#include <animal.h>
main ()
{
Animal myAnimal;
SOMClass animalClass;
int instanceSize;
int instanceOffset;
int instancePartSize;

myAnimal = AnimalNew () ;
animalClass = _somGetClass (myAnimal) ;
instanceSize = somGetInstanceSize (animalClass);
instanceOffset = somGetInstanceOffset (animalClass);
instancePartSize = somGetInstancePartSize (animalClass) ;
somPrintf (”Instance Size: %d\n”, instanceSize);
somPrintf (”Instance Offset: %$d\n”, instanceOffset);
somPrintf (”Instance Part Size: %d\n”, instancePartSize);
_somFree (myAnimal) ;

I,

Output from this program:

Instance Size: 8

Instance Offset: 0

Instance Part Size: 4

*/

Original Class
SOMClass

Related Information
Methods: somGetinstanceSize

Programmers Reference Manual SOM kernel Ref —83

SOMClass class

somGetilnstanceSize Method
Purpose

Returns the size of an instance of a class. Not generally overridden.

IDL Syntax

long somGetinstanceSize ();

Note: For backward compatibility, this method does not take an Environment parameter.

Description

The somGetinstanceSize method returns the total amount of space needed in an instance of
the specified class.

Parameters
receiver A pointer to the class object whose instance size is desired.

Return Value

The somGetlinstanceSize method returns the size, in bytes, of each instance of this class. This
includes the space required for instance variables introduced by this class and all of its ancestor
classes.

C Example

#include <animal.h>
main ()
{
Animal myAnimal;
SOMClass animalClass;
int instanceSize;
int instanceOffset;
int instancePartSize;

myAnimal = AnimalNew () ;
animalClass = _somGetClass (myAnimal) ;
instanceSize = somGetInstanceSize (animalClass) ;
instanceOffset = somGetInstanceOffset (animalClass);
instancePartSize = somGetInstancePartSize (animalClass);
somPrintf (”Instance Size: %d\n”, instanceSize);
somPrintf (”Instance Offset: %d\n”, instanceOffset);
somPrintf (”Instance Part Size: %d\n”, instancePartSize);
_somFree (myAnimal) ;

J,

Output from this program:

Instance Size: 8

Instance Offset: 0

Instance Part Size: 4

*/

Original Class
SOMClass

Related Information
Methods: somGetinstancePartSize

Ref —84 SOM kernel SOMobjects Developer Toolkit

SOMClass class

somGetlnstanceToken Method

Purpose

Returns a data access token for the instance data introduced by a class. Not generally overrid-
den.

IDL Syntax

somDToken somGetinstanceToken ();

Note: For backward compatibility, this method does not take an Environment parameter.

Description

Returns a data token “pointing” to the beginning of the instance data introduced by the receiving
class. This token can be passed to the function somDataResolve to locate this instance data
within an an instance of the receiver class or any class derived from it. Also the instance data
token for a class can be passed to the class method somGetMemberToken to get a data token
for a specific instance variables introduced by the class (if the relative offset of this instance
variable is known). This approach is used by C and C++ implementation bindings to support
public instance data for OIDL classes (IDL classes currently have no public instance data).

A data token for the instance data introduced by a class is required by method procedures that
access data introduced by the method procedure’s defining class. For classes declared using
OIDL and IDL, the needed token is stored in the auxiliary class data structure, which is an
external data structure made statically available by the C and C++ language bindings as
<className>CClassData.instanceToken. Thus, this method call is not generally used by C and
C++ class implementors of classes declared using OIDL or IDL.

Parameters

receiver A pointer to a SOMClass object.

Return Value

Returns a data token for the beginning of the instance data introduced by the receiver.

Original Class
SOMClass

Related Information
Functions: somDataResolve

Methods: somGetinstanceSize, somGetlnstancePartSize,
somGetMemberToken

Programmers Reference Manual SOM kernel Ref -85

SOMClass class

somGetMemberToken Method

Pu rpose
Returns an access token for an instance variable. This is method is not generally overridden.

IDL Syntax

somDToken somGetMemberToken (
long memberOffset,
somDToken instanceToken);

Note: For backward compatibility, this method does not take an Environment parameter.

Description

The somGetMemberToken method returns an access token for the data member at offset
memberOffset within the block of instance data identified by instanceToken. The returned token
can subsequently be passed to the somDataResolve function to locate the data member.

Typically, only the code that implements a class declared using OIDL requires access to this
method, and this code is normally provided by implementation bindings. Thus C and C++
programmers do not normally invoke this method.

Parameters
receiver A pointer to a SOMClass object.
memberOffset A 32-bit integer representing the offset of the required data member.

instanceToken A token, obtained from somGetinstanceToken, that identifies the introduced
portion of the class.

Return Value
Returns an access token for the specified data member.

Original Class
SOMClass

Related Information
Functions: somDataResolve

Methods: somGetinstanceSize, somGetinstancePartSize,
somGetinstanceToken

Ref —86 SOM kernel SOMobjects Developer Toolkit

SOMClass class

somGetMethodData Method

Purpose

Returns method information for a specified method, which must have been introduced by the
receiver class or an ancestor of that class. Not generally overridden.

IDL Syntax

boolean somGetMethodData (
in somld methodld,
out somMethodData md);

Note: For backward compatibility, this method does not take an Environment parameter.

Description

The somGetMethodData method loads a somMethodData structure with data describing the
method identified by the passed methodld. If methodld does not identify a method known to the
receiver, then false is returned; otherwise, true is returned after loading the somMethodData
structure with data corresponding to the indicated method.

Parameters
receiver A pointer to the class that produced the index value.
methodld A somld for the method’s name.

md A pointer to a somMethodData structure.

Return Value

Boolean true if successful; otherwise false.

C++ Example

#include <somcls.xh>

main

{
somEnvironmentNew () ;
somId gmiId = somIdFromString (”somGetMethodIndex”) ;
somMethodData md;
boolean rc = SOMClass->somGetMethodData (gmiId, &md) ;
SOM_Test (rc && somCompareIds (gmiId, md.id)) ;

Related Information
Data Structures: somMethodData (somapi.h)

Methods: somGetMethodIndex, somGetMethodData, somGetNthMethodInfo

Programmers Reference Manual SOM kernel Ref —87

SOMClass class

somGetMethodDescriptor Method

Purpose

IDL Syntax

Returns the method descriptor for a method. Not generally overridden.

somld somGetMethodDescriptor (in somld methodid);

Note: For backward compatibility, this method does not take an Environment parameter.

Description

The somGetMethodDescriptor method returns the method descriptor for a specified method
of a class. (A method descriptor is a somld that represents the identifier of an attribute definition
or a method definition in the SOM Interface Repository. It contains information about the
method'’s return type and the types of its arguments.) If the class object does not support the
indicated method, NULL is returned.

Parameters
receiver A pointer to a SOMClass object.
methodld A somld method descriptor.

Return Value

Example

The somGetMethodDescriptor method returns a somld method descriptor.

somId myMethodDescriptor;
myMethodDescriptor = somGetMethodDescriptor (Animal,
somIdFromString (“setSound”)) ;

Original Class

Related Inf

SOMCIlass

ormation

Methods: somAddDynamicMethod, somGetNthMethodInfo,
somGetMethodData, somGetNthMethodData

Ref —88 SOM kernel SOMobjects Developer Toolkit

SOMClass class

somGetMethodIindex Method

Purpose

Returns a class-specific index for a method. Not generally overridden.

IDL Syntax

long somGetMethodIndex (in somld methodld);

Note: For backward compatibility, this method does not take an Environment parameter.

Description

The somGetMethodIndex method returns an index that can be used in subsequent calls to the
same receiving class to determine information about the indicated (static or dynamic) method,
via the methods somGetNthMethodData and somGetNthMethodInfo. The method must be
appropriate for use on aninstance of the receiver class; otherwise, a—1lisreturned. The index of
a method can change over time if dynamic methods are added to the receiver class or its
ancestors. Thus, in dynamic multi-threaded environments, a critical region should be used to
bracket the use of this method and of subsequent requests for method information based on
the returned index.

Parameters

receiver A pointer to a SOMClass object.

methodld A somld method ID.

Return Value

The somGetMethodIndex method returns a positive long if successful, and a —1 otherwise.

C++ Example

#include <somcls.xh>
main

{

Original Class

somEnvironmentNew () ;
somId gmiId = somIdFromString (”somGetMethodIndex”) ;

long index = _SOMClass->somGetMethodIndex (gmiId) ;
somMethodData md;
boolean rc = SOMClass->somGetNthMethodData (index, &md) ;

SOM_Test (rc && somComparelIds(gmiId, md.id)) ;

SOMClass

Related Information

Data Structures: somMethodData (somapi.h)

Methods: somGetNthMethodData, somGetNthMethodInfo

Programmers Reference Manual SOM kernel Ref —89

SOMClass class

somGetMethodToken Method

Pu rpose
Returns a method access token for a static method. Not generally overridden.
IDL Syntax
somMToken somGetMethodToken (in somld methodld);
Note: For backward compatibility, this method does not take an Environment parameter.
Description
The somGetMethodToken method returns a method access token for a static method with the
specified ID that was introduced by the receiver class or an ancestor of the receiver class. This
method token can be passed to the somResolve function (or one of the other offset-based
method resolution functions) to select a method procedure pointer from a method table of an
object whose class is the same as, or is derived from the class that introduced the method.
Parameters
receiver A pointer to a SOMClass object.
methodld A somld identifying a method.

Return Value

The somGetMethodToken method returns a somMToken method-access token.

C Example
Assuming that the class Animal introduces the method setSound,

#include <animal.h>

main() {
somMToken tok;
Animal myAnimal;
somTD _Animal setSound methodPtr; /* use typedef from animal.h */
Environment *ev = somGetGlobalEnvironment () ;
myAnimal = AnimalNew () ;
/*next 3 lines equivalent to _setSound(myAnimal, ev, “Roar!!!”);*/
tok = somGetMethodToken(Animal, somIdFromString(“setSound”)) ;
methodPtr = (somTD Animal setSound) somResolve (myAnimal, tok) ;
methodPtr (myAnimal, ev, "Roar!!!");
_display (myAnimal, ev);
_somFree (myAnimal) ;

}

Original Class
SOMClass

Related Information
Functions: somResolve, somClassResolve, somParentNumResolve

Methods: somGetNthMethodInfo, somGetMethodData

Ref —90 SOM kernel SOMobjects Developer Toolkit

somGetN

SOMClass class

ame Method

Purpose

IDL Syntax

Returns the name of a class. Not generally overridden.

string somGetName ();

Note: For backward compatibility, this method does not take an Environment parameter.

Description

The somGetName method returns the address of a zero-terminated string that gives the name
ofthe receiving class. This name may be used as a Repositoryld inthe Repository_lookup_id
method (described in the SOM Interface Repository Framework section) to obtain the IDL
interface definition that corresponds to the receiving class.

The returned name is not necessarily the same as the statically known class name used by a
programmer to gain access to the class object (for example, via the method somFindClass).
This is because the method somSubstituteClass may have been used to “shadow” the class
having the static name used by the programmer.

Also, when the interface to a class’s instances is defined within an IDL module, the returned
name will not directly correspond to the names of the procedures and macros made available by
the SOMobjects C and C++ usage bindings for accessing class objects (for example, the
<className>NewClass procedure, or the _<className> macro). This is because the
<className> token used in constructing the names of these procedures and macros uses an
underscore character to separate the module name from the interface name, while the actual
name of the corresponding class uses two colon characters instead of an underscore for this
purpose.

The somGetName method is not generally overridden. The returned address is valid until the
class object is unregistered or freed.

Parameters

receiver The class whose name is desired.

Return Value

The somGetName method returns a pointer to the name of the class.

C++ Example

#include <animal.xh> /* assume Animal defined in the Zoo module */
#include <string.h>

main ()
string className = Zoo AnimalNewClass (0, 0)->somGetName () ;
SOM_Test (!strcmp (className, “Zoo::Animal”)) ;

}

Original Class

Related Inf

SOMClass

ormation
Methods: Repository_lookup_id, somSubstituteClass, somFindClass

Programmers Reference Manual SOM kernel Ref-91

SOMClass class

somGetNthMethodData Method

Purpose

Returns method information for the nth (static or dynamic) method known to a given class. Not
generally overridden.

IDL Syntax

boolean somGetNthMethodData (
in long index,
out somMethodData md)

Note: For backward compatibility, this method does not take an Environment parameter.

Description

The somGetNthMethodData method loads a somMethodData structure with data describing
the method identified by the passed index. The index must have been produced by a previous
call to exactly the same receiver class; the same method will in general have differentindexes in
different classes. If the index does not identify a method known to this class, then false is
returned; otherwise, true is returned after loading the somMethodData structure with data
corresponding to the indicated method.

Parameters
receiver A pointer to the class that produced the index value.
index An index returned as a result of a previous call of somGetMethodIndex.

md A pointer to a somMethodData structure.

Return Value

Boolean true if successful; otherwise, false.

C++ Example

#include <somcls.xh>
main
somEnvironmentNew () ;
somId gmiId = somIdFromString (”somGetMethodIndex”) ;

long index = SOMClass->somGetMethodIndex (gmiId) ;
somMethodData md;
boolean rc = SOMClass->somGetNthMethodData (index, &md) ;

SOM Test (rc && somComparelIds (gmiId, md.id)) ;

Related Information
Data Structures: somMethodData (somapi.h)

Methods: somGetMethodIndex, somGetMethodData, somGetNthMethodInfo

Ref —92 SOM kernel SOMobjects Developer Toolkit

SOMClass class

somGetNthMethodInfo Method

Purpose

Returns the somld of the nth (static or dynamic) method known to a given class. Also loads a
somld with a descriptor for the method. Not generally overridden.

IDL Syntax

somld somGetNthMethodInfo (
in long index,
out somld descriptor);

Note: For backward compatibility, this method does not take an Environment parameter.

Description

The somGetNthMethodInfo method returns the identifier of a method, and loads the somld
whose address is passed with the somId of the method descriptor. Method descriptors are used
to support access to information stored in a SOM Interface Repository.

Parameters

receiver A pointer to the class from which the index was obtained using method
somGetMethodIndex.

index The nth method known to this class, whose method descriptor is desired.

descriptor A pointer to a somld that will be loaded with a somId for the descriptor.

Return Value

The somld for the indicated method, if a method with the indicated index is known to the
receiver; otherwise, NULL.

C++ Example

#include <somcls.xh>
main ()
somEnvironmentNew () ;
somId descriptor, icId = somIdFromString (”somInitClass”) ;

long ndx = _SOMClass->somGetMethodIndex (icId) ;
SOM_Test (
somCompareIds (
icId,

__SOMClass->somGetNthMethodInfo (ndx, &descriptor)) ;
SOMFree (icId) ;
SOMFree (descriptor) ;

}

Original Class
SOMClass

Related Information
Classes: Repository (repostry.idl)
Methods: somGetMethodIndex, somGetNthMethodData

Programmers Reference Manual SOM kernel Ref —93

SOMClass class

somGetNumMethods Method

Purpose

Returns the number of methods available for a class. Not generally overridden.

IDL Syntax
long somGetNumMethods ();

Note: For backward compatibility, this method does not take an Environment parameter.

Description

The somGetNumMethods method returns the number of methods currently supported by the
specified class, including inherited methods (both static and dynamic).

The value that the somGetNumMethods method returns is the total number of methods
currently known to the receiving class as being applicable to its instances. This includes both
static and dynamic methods, whether defined in this class or inherited from an ancestor class.

Parameters

receiver A pointer to the class whose instance method count is desired.

Return Value

The somGetNumMethods method returns the total number of methods that are currently
available for the receiving class.

C Example

#include <animal.h>
main ()

{

int numMethods;

AnimalNewClass (Animal MajorVersion, Animal MinorVersion) ;

numMethods = somGetNumMethods (Animal) ;
somPrintf ("Number of methods supported by class: %d\n”,
numMethods) ;
}
Original Class
SOMClass

Related Information
Methods: somGetNumStaticMethods

Ref —94 SOM kernel SOMobjects Developer Toolkit

SOMClass class

somGetNumStaticMethods Method

Pu rpose
Obtains the number of static methods available for a class. Not generally overridden.
IDL Syntax
long somGetNumStaticMethods ();
Note: For backward compatibility, this method does not take an Environment parameter.
Description
The somGetNumStaticMethods method returns the number of static methods available in the
specified class, including inherited ones. Static methods are those that are represented by
entries in the class’s instance method table, and which can be invoked using method tokens and
offset resolution.
Parameters

receiver A pointer to the class whose static method count is desired.

Return Value

The somGetNumStaticMethods method returns the total number of static methods that are
available for instances of the receiving class.

C Example

#include <animal.h>
main()

{

long numMethods;

AnimalNewClass (Animal MajorVersion, Animal MinorVersion) ;

numMethods = _somGetNumStaticMethods (Animal) ;
somPrintf ("Number of static methods supported by class: %d\n”,
numMethods) ;
}
Original Class
SOMClass

Related Information
Methods: somGetNumMethods

Programmers Reference Manual SOM kernel Ref —95

SOMClass class

somGetParents Method

Pu rpose
Gets a pointer to a class’s parent (direct base) classes. Not generally overridden.
IDL Syntax
SOMClassSequence somGetParents ();
Note: For backward compatibility, this method does not take an Environment parameter.
Description
The somGetParents method returns a sequence containing pointers to the parents of the
receiver.
Parameters
receiver A pointer to the class whose parent (base) classes are desired.

Return Value

The somGetParents method returns a sequence of pointers to the parents of the receiver, or
NULL otherwise (in the case of SOMObject). The sequence of parents is in left-to-right order.

C Example

/* Note: Dog is a single-inheritance subclass of Animal. */
#include <dog.h>
main ()
{
Dog myDog;
SOMClass dogClass;
SOMClassSequence parents;
char *parentName;
int i;

myDog = DogNew () ;

dogClass = _somGetClass (myDog) ;

parents = _somGetParents (dogClass) ;

for (i=0; i<parents. length; i++)
somPrintf ("-- parent %d is %s\n”, 1,

_somGetName (parents. buffer[i])) ;
_somFree (myDog) ;

}

/*

Output from this program:
-—- parent 0 is Animal

*/

Original Class
SOMClass

Related Information
Methods: somGetClass

Ref —96 SOM kernel SOMobjects Developer Toolkit

SOMClass class

somGetVersionNumbers Method

Purpose

Gets the major and minor version numbers of a class’s implementation code. Not generally
overridden.

IDL Syntax

void somGetVersionNumbers (
out long majorVersion,
out long minorVersion);

Note: For backward compatibility, this method does not take an Environment parameter.

Description

The somGetVersionNumbers method returns, via its output parameters, the major and minor
version numbers of the class specified by receiver. The class object must have already been
created (because the class object is the receiver of the method).

Parameters
receiver A pointer to a class object.
majorVersion A pointer where the major version number is to be stored.

minorVersion A pointer where the minor version number is to be stored.

Return Value

None.

C Example

#include <som.h>
main() {

long major, minor;
SOMClass myClass;

somEnvironmentNew () ;
myClass = somFindClass (SOMClassMgrObject,
somIdFromString (“Animal”), 0, 0);
_somGetVersionNumbers (myClass, &major, &minor);
gsomPrintf ("The version numbers are %i and %i.\n”, major, minor);

}

Original Class
SOMClass

Related Information

Methods: somCheckVersion

Programmers Reference Manual SOM kernel Ref —97

SOMClass clas

somLook

S

Purpose

IDL Syntax

upMethod Method

Performs name-lookup method resolution. Not generally overridden.

somMethodPtr somLookupMethod (in somld methodld);

Note: For backward compatibility, this method does not take an Environment parameter.

Description

The somLookupMethod method uses name-lookup resolution to return the address of the
method procedure that supports the indicated method on instances of the receiver class. The
method may be either static or dynamic. The SOM C and C++ usage bindings support name-
lookup method resolution by invoking somLookupMethod on the class of the object on which a
name-lookup method invocation is made.

The somLookupMethod method is like somFindSMethodOK except that dynamic methods
can also be returned. If the method is not supported by the receiving class, then an error is
returned and execution is halted. To check the existence of a method, somFindMethod can be
used.

As always, in order to use a method procedure pointer such as that returned by
somLookupMethod, itis necessary to typecast the procedure pointer so that the compiler can
create the correct procedure call. This means that a programmer making explicit use of this
method must either know the signature of the identified method, and from this create a typedef
indicating system linkage and the appropriate argument and return types, or make use of an
existing typedef provided by C or C++ usage bindings for a SOM class that introduces a static
method with the desired signature.

Parameters

receiver A pointer to the class whose instance method for the indicated method is
desired.

methodld A somld of the method whose method-procedure pointer is needed.

Return Value

A pointer to the method procedure that supports the method indicated by methodId. Or, if the
method is not supported by the receiving class, then an error is returned, and execution is
halted.

C++ Example

#include <somcls.xh>
#include <somcm.xh>
void main()
{
somId fcpId = somIdFromString (”somFindClass”)
somId animallId = somIdFromString (”Animal”) ;
SOMClassMgr *cm = somEnvironmentNew () ;
somTD_SOMClassMgr_ somFindClass findclassproc =
(somTD_SOMClassMgr somFindClass)
__SOMClassMgr->somLookupMethod (fcpId) ;
SOMClass *aCls = findclassproc (cm,animalId,0,0);

somFree (fcpId) ;
somFree (animalId) ;

Ref —98 SOM kernel SOMobjects Developer Toolkit

SOMClass class

Original Class
SOMClass

Related Information

Methods: somFindSMethod, somFindSMethodOk, somFindMethod,
somFindMethodOk

Programmers Reference Manual SOM kernel Ref —99

SOMClass class

somNew, somNewNolnit Methods

Pu rpose
Creates a new instance of a class.

IDL Syntax
SOMObject somNew ();
SOMObject somNewNolnit ();

Note: For backward compatibility, these methods do not take an Environment parameter.

Description

The somNew and somNewNolnit methods create a new instance of the receiving class. Space
is allocated as necessary to hold the new object.

When either of these methods is applied to a class, the result is a new instance of that class. If
the receiver class is SOMClass or a class derived from SOMClass, the new object will be a
class object; otherwise, the new object will not be a class object. The somNew method invokes
the somDefaultinit method on the newly created object. The somNewNolInit method does not.

Either method can fail to allocate enough memory to hold a new object and, if so, NULL is
returned.

The SOM Compiler generates convenience macros for creating instances of each class, for use
by C and C++ programmers. These macros can be used in place of this method.

Parameters
receiver A pointer to the class object that is to create a new instance.

Return Value
A pointer to the newly created SOMObject object, or NULL.

Example

#include <animal.h>

void main ()

{ Animal myAnimal;

/* ___

Note: next 2 lines are functionally equivalent to
myAnimal = AnimalNew () ;

___ */

/* Create class object:. */

AnimalNewClass (Animal MajorVersion, AnimalMinorVersion) ;

myAnimal = somNew(Animal); /* Create instance of Animal cls */

/* ... x/

_somFree (myAnimal) ; /* Free instance of Animal */

}
Original Class
SOMClass

Related Information
Methods: somRenew

Ref — 100 SOM kernel SOMobjects Developer Toolkit

SOMClass class

somRenew, somRenewNolnit, somRenewNolnitNoZero,
somRenewNoZero Methods

Purpose

Creates a new object instance using a passed block of storage.

IDL Syntax
SOMObject somRenew (in somToken memPtr);
SOMObject somRenewNolnit (in somToken memPtr);
SOMObject somRenewNolnitNoZero (in somToken memPtr);
SOMObject somRenewNoZero (in somToken mempPtr);

Note: For backward compatibility, these methods do not take an Environment parameter.

Description

The somRenew method creates a new instance of the receiving class by setting the appropriate
location in the passed memory block to the receiving class’s instance method table. Unlike
somNew, these “Renew” methods use the space pointed to by memPtr rather than allocating
new space for the object. The somRenew method automatically re-initializes the object by first
zeroing the object's memory, and then invoking somDefaultinit; somRenewNolnit zeros
memory, but does not invoke somDefaultinit. somRenewNolInitNoZero only sets the method
table pointer; while somRenewNoZero calls somDefaultInit, but does not zero memory first.

No check is made to ensure that the passed pointer addresses enough space to hold an
instance of the receiving class. The caller can determine the amount of space necessary by
using the somGetinstanceSize method.

The C bindings produced by the SOM Compiler contain a macro that is a convenient shorthand
for _somRenew(_className).

Parameters
receiver A pointer to the class object that is to create the new instance.

memPtr A pointer to the space to be used to construct a new object.

Return Value

The value of newObiject is returned, which is now a pointer to a valid, initialized object.

Programmers Reference Manual SOM kernel Ref — 101

SOMClass class

Example

#include <animal.h>

main ()
void *myAnimalCluster;
Animal animals|[5];
SOMClass animalClass;
int animalSize, 1i;

animalClass =
AnimalNewClass (Animal MajorVersion,Animal MinorVersion) ;

animalSize = somGetInstanceSize (animalClass) ;

/* Round up to double-word multiple */

animalSize = ((animalSize+3)/4)*4;

/*

* Next line allocates room for 5 objects

* in a &odg.cluster” with a single memory-

* allocation operation.

*/
myAnimalCluster = SOMMalloc (5*animalSize) ;

/*

* The for-loop that follows creates 5 initialized

* Animal instances within the memory cluster.

*/
for (i=0; 1i<5; i++)

animals[i] =
__somRenew (animalClass, myAnimalCluster+ (i*animalSize)) ;
/* Uninitialize the animals explicitly: */
for (i=0; i<5; i++)
_somUninit (animals[i]) ;

/*

* Finally, the next line frees all 5 animals

* with one operation.

*/
SOMFree (myAnimalCluster) ;

Original Class
SOMClass

Related Information

Methods: somGetinstanceSize, somDefaultlnit, somNew

Ref — 102 SOM kernel SOMobjects Developer Toolkit

SOMClass class

somSupportsMethod Method
Purpose

Returns a boolean indicating whether instances of a class support a given (static or dynamic)
method.

IDL Syntax

boolean somSupportsMethod (in somld methodid);
Note: For backward compatibility, this method does not take an Environment parameter.

Description
The somSupportsMethod method determines if instances of the specified class support the
specified (static or dynamic) method.

Parameters
receiver A pointer to the class object to be tested.

methodld An ID that represents the name of the method.

Return Value

The somSupportsMethod method returns 1 (true) if instances of the specified class support
the specified method, and O (false) otherwise.

Example

Note: animal supports a setSound method;
animal does not support a doTrick method.

___ */
#include <animal.h>
main ()
{
SOMClass animalClass;
char *methodNamel = ”“setSound”;
char *methodName2 = ”“doTrick”;
animalClass =
AnimalNewClass (Animal MajorVersion, Animal MinorVersion) ;
if (somSupportsMethod (animalClass,

somIdFromString (methodNamel)))
somPrintf (“Animals respond to %s\n”, methodNamel) ;
if (somSupportsMethod (animalClass,
somIdFromString (methodName2)))
somPrintf ("Animals respond to %s\n”, methodName2) ;

}
/*

Output from this program:
Animals respond to setSound

*/

Original Class
SOMClass

Related Information
Methods: somRespondsTo

Programmers Reference Manual SOM kernel Ref — 103

SOMClassMgr class

SOMClassMgr Class

Description

One instance of SOMClassMgr is created automatically during SOM initialization. This
instance (pointed to by the global variable, SOMClassMgrObject) acts as a run-time registry
for all SOM class objects that exist within the current process and assists in the dynamic loading
and unloading of class libraries.

You can subclass SOMClassMgr to augment the functionality of its registry. To have an
instance of your subclass replace the SOM-supplied SOMClassMgrObject, use the
somMergelnto method to place the existing registry information from SOMClassMgrObject
into your new class-manager object.

File Stem

somcm

Base
SOMObject

Metaclass
SOMClass

Ancestor Classes

SOMObject
Types
interface Repository;
SOMClass *SOMClassArray;
Attributes

Listed below is each available attribute with its corresponding type in parentheses, followed by a
description of its purpose.

sominterfaceRepository (Repository)

The SOM Interface Repository object. If the Interface Repository is not available or cannot be
initialized, this attribute returns NULL. The object reference returned by this attribute is owned by
the SOMClassMgr and should not be freed.

somRegisteredClasses (sequence<SOMClass>)

This is a “readonly” attribute that returns a sequence containing all of the class objects regis-
tered in the current process. When you have finished using the returned sequence, you should
free the sequence’s buffer using SOMFree. Here is a fragment of code written in C that
illustrates the proper use of this attribute:

sequence (SOMClass) clsList;

clsList = SOMClassMgr get somRegisteredClasses (SOMClassMgrObject) ;
somPrintf (”Currently registered classes:\n”);
for (i=0; i<clsList. length; i++)

somPrintf (”\t%s\n”, SOMClass somGetName (clsList. buffer[i]));
SOMFree (clsList. buffer);

Ref — 104 SOM kernel SOMobjects Developer Toolkit

New Methods

Group: Basic Functions
somLoadClassFile
somLocateClassFile
somRegisterClass
somUnloadClassFile
somUnregisterClass

Group: Access
somGetlInitFunction
somGetRelatedClasses

Group: Dynamic
somClassFromlid
somFindClass
somFindClsInFile
somMergelnto
somSubstituteClass

Overridden Methods

somDumpSelfint
sominit
somUninit

Programmers Reference Manual

SOMClassMgr class

SOM kernel Ref — 105

SOMClassMgr class

somClassFromld Method

Pu rpose

Finds a class object, given its somld, if it already exists. Does not load the class.
IDL Syntax

SOMClass somClassFromld (in somld classld);

Note: For backward compatibility, this method does not take an Environment parameter.
Description

Finds a class object, given its somld, if it already exists. Does not load the class.

Use the somClassFromld method instead of somFindClass when you do not want the class

to be automatically loaded if it does not already exist in the current process.
Parameters

receiver Usually SOMClassMgrObject (or a pointer to an instance of a user-supplied
subclass of SOMClassMgr).

classld The somld of the class. This can be obtained from the name of the class using
the somldFromString function.

Return Value
Returns a pointer to the class, or NULL if the class object does not yet exist.

C Example
#include <som.h>
main () {
SOMClass myClass;

char *myClassName = “Animal”;
somId animalId;

somEnvironmentNew () ;
animalId = somIdFromString (myClassName) ;
myClass = SOMClassMgr somClassFromId (SOMClassMgrObject,
animalId) ;
if (!myClass)
somPrintf (”Class %s has not been loaded.\n”, myClassName) ;
SOMFree (animallId) ;

}

This program produces the following output:

Class Animal has not yet been loaded.

Original Class
SOMClassMgr

Related Information
Methods: somFindClass, somFindClsInFile

Ref — 106 SOM kernel SOMobjects Developer Toolkit

SOMClassMgr class

somFindClass Method

Purpose

Finds the class object for a class.

IDL Syntax

SOMClass somFindClass (
in somld classld,
in long majorVersion,
in long minorVersion);

Note: For backward compatibility, this method does not take an Environment parameter.

Description

The somFindClass method returns the class object for the specified class. This method first
uses somLocateClassFile (see paragraph below) to obtain the name of the file where the
class’s code resides, then uses somFindClsInFile.

If the requested class has not yet been created, the somFindClass method attempts to load the
class dynamically by loading its dynamically linked library and invoking its “new class” proce-
dure.

The somLocateClassFile method uses the following steps: (1) If the entry in the Interface
Repository for the class specified by classld contains a dliname modifier, this value is used as
the file name for loading the library. (For information about the dliname modifier, refer to the
topic “Modifier statements” in Chapter 4, “SOM IDL and the SOM Compiler,” of the SOMobjects
Developer Toolkit Users Guide.) (2) In the absence of a dllname modifier, the class name is
assumed to be the file name for the library. Use the somFindClsinFile method if you wish to
explicitly pass the file name as an argument.

If majorVersion and minorVersion are not both zero, they are used to check the class version
information against the caller’s expectations. An implementation is compatible with the speci-
fied version numbers ifit has the same major version number and a minor version number that is
equal to or greater than minorVersion.

Parameters

receiver Usually SOMClassMgrObject (or a pointer to an instance of a user-supplied
subclass of SOMClassMgr).

classid The somld representing the name of the class.
majorVersion The class’s major version number.

minorVersion The class’s minor version number.

Return Values

A pointer to the requested class object, or NULL if the class could not be found or created.

Programmers Reference Manual SOM kernel Ref — 107

SOMClassMgr class

C Example
#include <som.h>
/*
* This program creates a class object
* (from a DLL) without requiring the

* usage binding file (.h or .xh) for
* the class.

*/

void main ()

{

SOMClass myClass;
somId animalId;

somEnvironmentNew () ;
animalIld = somIdFromString (”Animal”);

/* The next statement is equivalent to:
#include ”animal.h”
myClass = AnimalNewClass (0, 0);

myClass = SOMClassMgr somFindClass (SOMClassMgrObject,
animalId, 0, O0);
if (myClass)
somPrintf (”“myClass: %s\n”, SOMClass_ somGetName (myClass));
else
somPrintf (”Class %s could not be dynamically loaded\n”,
somStringFromId (animalId)) ;
SOMFree (animallId) ;

}

This program produces the following output:

myClass: Animal

Original Class
SOMClassMgr

Related Information
Methods: somFindClsInFile, somLocateClassFile

Ref — 108 SOM kernel SOMobjects Developer Toolkit

SOMClassMgr class

somFindClsInFile Method

Purpose

Finds the class object for a class, given a filename that can be used for dynamic loading.

IDL Syntax

SOMClass somFindClsInFile (
in somld classld,
in long majorVersion,
in long minorVersion,
in string file);

Note: For backward compatibility, this method does not take an Environment parameter.

Description

The somFindClsInFile method returns the class object for the specified class. This method is
the same as somFindClass except that the caller provides the filename to be used if dynamic
loading is needed.

Ifthe requested class has not yet been created, the somFindClsInFile method attempts to load
the class dynamically by loading the specified library and invoking its “new class” procedure.

If majorVersion and minorVersion are not both zero, they are used to check the class version
information against the caller’s expectations. An implementation is compatible with the speci-
fied version numbers ifit has the same major version number and a minor version number thatis
equal to or greater than minorVersion.

Parameters

receiver Usually SOMClassMgrObject (or a pointer to an instance of a user-supplied
subclass of SOMClassMgr).

classid The somld representing the name of the class.
majorVersion The class’s major version number.
minorVersion The class’s minor version number.

file A string representing the filename to be used if dynamic loading is required.

Return Value

A pointer to the requested class object, or NULL if the class could not be found or created.

Programmers Reference Manual SOM kernel Ref — 109

SOMClassMgr class

C Example

#include <som.h>

/*
*
*
*

*

*/

This program loads a class and creates
an instance of it without requiring the
binding (.h) file for the class.

void main ()

{

}
/*

SOMObject myAnimal;
SOMClass animalClass;
char *animalName = ”"Animal”;
/*
* Filenames will be different for AIX, 0S/2 and Windows

Set animalfile to ”C:\\MYDLLS\\ANIMAL.DLL” for 0S/2
or Windows.
Set animalfile to ”/mydlls/animal.dll” for AIX.

* % % ok X X

/

char *animalFile = ”/mydlls/animal.dll”; /* AIX filename */

somEnvironmentNew () ;

animalClass = _somFindClsInFile (SOMClassMgrObject,
somIdFromString (animalName) ,
0, O,
animalFile) ;

myAnimal = _somNew (animalClass) ;

somPrintf ("The class of myAnimal is %s.\n”,
__somGetClassName (myAnimal)) ;
_somFree (myAnimal) ;

Output from this program:
The class of myAnimal is Animal.

*/

Original Class

SOMClassMgr

Related Information
Methods: somFindClass

Ref — 110 SOM kernel

SOMobjects Developer Toolkit

SOMClassMgr class

somGetInitFunction Method

Purpose

IDL Syntax

Obtains the name of the function that initializes the SOM classes in a class library.

string somGetlnitFunction ();

Note: For backward compatibility, this method does not take an Environment parameter.

Description

The somGetlnitFunction method supplies the name of the initialization function for OS/2 class
libraries (DLLS) that contain more than one SOM class. The defaultimplementation returns the
value of the global variable SOMClasslInitFuncName, which by default is set to the value
“SOMInitModule”.

For AlX, the name of the class initialization function is not important, since AlX class libraries
should always be constructed as shared libraries with a designated entry point which can be
executed automatically by the loader when the class is loaded. Consequently, the result of this
method is not significant on AIX.

Similarly, if an OS/2 class library (DLL) has been constructed with a DLL initialization function
assigned by the linker, you can choose to invoke the <className>NewClass functions for all
of the classes in the DLL during DLL initialization. In this case (as on AlX), there is no need to
export a “SOMInitModule” function. On the other hand, if your compiler does not provide a
convenient mechanism for creating a DLL initialization function, you can elect to export a
function named “SOMInitModule” (or whatever name is ultimately returned by the
somGetlnitFunction method).

The OS/2 SOMClassMgrObject, after loading a class library, will invoke the method
somGetInitFunction to obtain the name of a possible initialization function. If this name has
been exported by the class library just loaded, the SOMClassMgrObject calls this function to
initialize the classes in the library. If the name has not been exported by the DLL, the
SOMClassMgrObject then looks for an exported name of the form <className>NewClass,
where <className> is the name of the class supplied with the method that caused the DLL to be
loaded. If the DLL exports this name, it is invoked to create the named class.

On Windows, the SOM class manager does not call SOMInitModule. It must be called from the
default Windows DLL initialization function, LibMain. This call is made indirectly through the
SOM_ClassLibrary macro.

Regardless of the technique employed, the SOMClassMgrObject expects that all classes
packaged in a single class library will be created during this sequence.

This method is generally not invoked directly by users. User-defined subclasses of
SOMClassMgr, however, can override this method.

Parameters

receiver Usually SOMClassMgrObject (or a pointer to an instance of a user-supplied
subclass of SOMClassMgr).

Return Value

The somGetlnitFunction method returns a string that names the initialization function of class
libraries. By default, this name is the value of the global variable SOMClassInitFuncName, the
default value of which is SOMInitModule.

Programmers Reference Manual SOM kernel Ref —111

SOMClassMgr class

Original Class
SOMClassMgr

Related Information
Methods: somFindClass, somFindClIsInFile
Functions: SOMInitModule
Macros: SOM_ClassLibrary

Ref — 112 SOM kernel

SOMobjects Developer Toolkit

somGetR

SOMClassMgr class

elatedClasses Method

Purpose

IDL Syntax

Returns an array of class objects that were all registered during the dynamic loading of a class.

SOMClass * somGetRelatedClasses (in SOMClass classObj);

Note: For backward compatibility, this method does not take an Environment parameter.

Description

The somGetRelatedClasses method returns an array of class objects that were all registered
during the dynamic loading of the specified class. These classes are considered to define an
affinity group. Any class is amember of at most one affinity group. The affinity group returned by
this call is the one containing the class identified by the classObj parameter.

The first elementin the array is either the class that caused the group to be loaded, or the special
value -1, which means that the class manager is currently in the process of unregistering and
deleting the affinity group (only class-manager objects would ever see this value). The remain-
der of the array consists of pointers to class objects, ordered in reverse chronological sequence
to that in which they were originally registered. This list includes the given argument, classObj,
as one of its elements, as well as the class that caused the group to be loaded (also given by the
first element of the array). The array is terminated by a NULL pointer as the last element.

Use SOMFree to release the array when it is no longer needed. If the supplied class was not
dynamically loaded, it is not a member of any affinity group and NULL is returned.

Parameters

receiver Usually a pointer to SOMClassMgrObject, or a pointer to an instance of a
user-defined subclass of SOMClassMgr.

classObj A pointer to a SOMClass object.

Return Value

Example

The somGetRelatedClasses method returns a pointer to an array of pointers to class objects,
or NULL, if the specified class was not dynamically loaded.

#include <som.h>

SOMClass myClass, *relatedClasses;
string className;

long 1i;

className = SOMClass somGetName (myClass));

relatedClasses = SOMClassMgr somGetRelatedClasses
(SOMClassMgrObject, myClass) ;

if (relatedClasses && *relatedClasses) {

somPrintf (”Class=%s, related classes are: ”, className) ;
for (i=1; relatedClasses([i]; i++)
somPrintf (”%s ”,SOMClass_ somGetName (relatedClasses([i])) ;
somPrintf (”\n”);
somPrintf (”Class that caused loading was %$s\n”,
relatedClasses[0] == (SOMClassg) -1 ? ”-1"

SOMClass_somGetName (relatedClasses([0])) ;
SOMFree (relatedClasses) ;
} else
somPrintf (”No classes related to %s\n”, className) ;

Programmers Reference Manual SOM kernel Ref —113

SOMClassMgr class

Original Class
SOMClassMgr

Related Information
Methods: somGetlnitFunction

Ref — 114 SOM kernel

SOMobjects Developer Toolkit

SOMClassMgr class

somLoadClassFile Method

Pur pose
Dynamically loads a class.

IDL Syntax

SOMClass somLoadClassFile (
in somld classld,
in long majorVersion,
in long minorVersion,
in string file);

Note: For backward compatibility, this method does not take an Environment parameter.

Description

The SOMClassMgr object uses the somLoadClassFile method to load a class dynamically
during the execution of somFindClass or somFindClsInFile. ASOM class object representing
the class is expected to be created and registered as a result of this method.

The somLoadClassFile method can be overridden to load or create classes dynamically using
your own mechanisms. If you simply wish to change the name of the procedure that is called to
initialize the classes in a library, override somGetlInitFunction instead.

This method is provided to permit user-created subclasses of SOMClassMgr to handle the
loading of classes by overriding this method. Do not invoke this method directly; instead, use
somFindClass or somFindClsInFile.

Parameters
receiver Usually SOMClassMgrObject (or a pointer to an instance of a user-supplied
subclass of SOMClassMgr).
classid The somld representing the name of the class to load.

majorVersion The major version number used to check the compatibility of the class’s imple-
mentation with the caller’s expectations.

minorVersion The minor version number used to check the compatibility of the class’s imple-
mentation with the caller’s expectations.

file The name of the dynamically linked library file containing the class. The name
can be either a simple, unqualified name (without any extension) or a fully
qualified (or path) file name, as appropriate for your operating system. For
example, on OS/2, file could be c:\myhome\myapp\basename.dll or
else basename (but notbasename.dll).

Return Value

The somLoadClassFile method returns a pointer to the class object, or NULL if the class could
not be loaded or the class object could not be created.

Original Class
SOMClassMgr

Related Information

Methods: somFindClass, somFindClsInFile, somGetlInitFunction,
somUnloadClassFile

Programmers Reference Manual SOM kernel Ref —115

SOMClassMgr class

somLocateClassFile Method

Purpose

IDL Syntax

Determines the file that holds a class to be dynamically loaded.

string somLocateClassFile (
in somld classld,
in long majorVersion,
in long minorVersion);

Note: For backward compatibility, this method does not take an Environment parameter.

Description

The SOMClassMgr object uses the somLocateClassFile method when executing
somFindClass to obtain the name of a file to use when dynamically loading a class. The default
implementation consults the Interface Repository for the value of the dliname modifier of the
class; if no dliname modifier was specified, the method simply returns the class name as the
expected filename.

If you override the somLocateClassFile method in a user-supplied subclass of
SOMClassMgr, the name you return can be either a simple, unqualified name without any
extension or a fully qualified file name. Generally speaking, you would not invoke this method
directly. Itis provided to permit customization of subclasses of SOMClassMgr through overrid-

ing.

Parameters

receiver Usually SOMClassMgrObject (or a pointer to an instance of a user-supplied
subclass of SOMClassMgr).

classld The somld representing the name of the class to locate.

majorVersion The major version number used to check the compatibility of the class’s imple-
mentation with the caller’s expectations.

minorVersion The minor version number used to check the compatibility of the class’s imple-
mentation with the caller’s expectations.

Return Value

Original CI

Related Inf

The somLocateClassFile method returns the name of the file containing the class.

ass
SOMClassMgr

ormation

Methods: somFindClass, somFindClsInFile, somGetInitFunction, somLoadClassFile,
somUnloadClassFile

Ref — 116 SOM kernel SOMobjects Developer Toolkit

somMerqg

SOMClassMgr class

elnto Method

Purpose

IDL Syntax

Transfers SOM class registry information to another SOMClassMgr instance.

void somMergelnto (in SOMClassMgr target);

Note: For backward compatibility, this method does not take an Environment parameter.

Description

The somMergelnto method transfers the SOMClassMgr registry information from one object
to another. The target object is required to be an instance of SOMClassMgr or one of its
subclasses. At the completion of this operation, the target object can function as a replacement
for the receiver. The receiver object (which is then in a newly uninitialized state) is placed in a
mode where all methods invoked on it will be delegated to the target object. If the receiving ob-
ject is the instance pointed to by the global variable SOMClassMgrObject, then
SOMClassMgrObject is reassigned to point to the target object.

Subclasses of SOMClassMgr that override the somMergelnto method should transfer their
section of the class manager object from the target to the receiver, then invoke their parent’s
somMergelnto method as the final step.

Invoke this method only if you are creating your own subclass of SOMClassMgr. You can invoke
somMergelnto from an initializer for your new class manager.

Parameters

receiver Usually SOMClassMgrObject (or a pointer to an instance of a user-supplied
subclass of SOMClassMgr).

target A pointer to another instance of SOMClassMgr or one of its subclasses.

Return Value

None.

C++ Example

// === IDL For the New Class Manager ===
#include <somcm.idls>
interface NewCM : SOMClassMgr

implementation
somDefaultInit: override;

}i
// === C++ implementation for NewCM ===

#define SOM Module merge Source
#include "merge.xih”

Programmers Reference Manual SOM kernel Ref —117

SOM_Scope void SOMLINK somDefaultInit (NewCM *somSelf,

}

somInitCtrl* ctrl)

NewCMData *somThis; /* set in BeginInitializer */
somInitCtrl globalCtrl;

somBooleanVector myMask;
NewCMMethodDebug (”NewCM” , "somDefaultInit”) ;

NewCM BeginInitializer somDefaultInit;

NewCM Init SOMClassMgr somDefaultInit (somSelf, ctrl);

/*
* local NewCM initialization code added by programmer

*/

SOMClassMgrObject->somMergeInto (somSelf) ;

// === C++ test program ===

#include <merge.xh>
main ()

{

}

NewCM *ncm = new NewCM;

SOMClassMgrObject->somDumpSelf (0) ;

// === Output from test program ===

{An instance of class NewCM at address 20084388

1

1
1
1
1
1
1
1
1
1
1
)

Original Class

C
C

lassIdSpaceSize: 3200
lassIdHashTableSize: 397

loadAffinity: O
nextLoadAffinity: 1
IR Class: 00000000, IR Object: 00000000

[
[
[
[
[
P

-Class—-- -Token-- Aff Seq ---Id--- Name
20077A48 00000000 000 001 2008260C SOMObject
2007FB38 00000000 000 000 200825EC SOMClassMgr
20083B08 00000000 000 004 2008436C NewCM
20077BD8 00000000 000 002 2008262C SOMClass

4] 20082668 00000000 000 003 2008315C

w NP o

SOMParentDerivedMetaclass

SOMClassMgr

Ref — 118 SOM kernel

SOMobjects Developer Toolkit

SOMClassMgr class

somReqisterClass Method

Pu rpose
Adds a class object to the SOM run-time class registry.
IDL Syntax
void somRegisterClass (in SOMClass classObj);
Note: For backward compatibility, this method does not take an Environment parameter.
Description
The somRegisterClass method adds a class object to the SOM run-time class registry main-
tained by SOMClassMgrObject.
All SOM run-time class objects should be registered with the SOMClassMgrObiject. This is
done automatically during the execution of the somClassReady method as class objects are
created.
Parameters
receiver Usually SOMClassMgrObject (or a pointer to an instance of a user-supplied
subclass of SOMClassMgr).
classObj A pointer to the class object to add to the SOM class registry.

Return Value
None.

Original Class
SOMClassMgr

Related Information
Methods: somUnregisterClass

Programmers Reference Manual SOM kernel Ref —119

SOMClassMgr class

somSubstituteClass Method

Purpose

Causes the somFindClass, somFindClsInFile, and somClassFromld methods to substitute
one class for another.

IDL Syntax

long somSubstituteClass (
in string origClassName,
in string newClassName);

Note: For backward compatibility, this method does not take an Environment parameter.

Description

The somSubstituteClass method causes the somFindClass, somFindClsInFile, and
somClassFromld methods to return the class named newClassName whenever they would
normally return the class named origClassName. This effectively results in class
newClassName replacing or substituting for class origClassName. For example, the
<origClassName>New macro will subsequently create instances of newClassName.

Some restrictions are enforced to ensure that this works well. Both class origClassName and
class newClassName must have been already registered before issuing this method, and
newClassName must be an immediate child of origClassName. In addition (although not en-
forced), no instances should exist of either class at the time this method is invoked.

A convenience macro (SOM_SubstituteClass) is provided for C or C++ users. In one operation,
it creates both the old and the new class and then substitutes the new one in place of the old.
The use of both the somSubstituteClass method and the SOM_SubstituteClass macro is
illustrated in the example below.

Parameters

receiver Usually SOMClassMgrObject or a pointer to an instance of a user-defined
subclass of SOMClassMgr.

origClassName
A NULL terminated string containing the old class name.

newClassName
A NULL terminated string containing the new class name.

Return Value

The somSubstituteClass method returns a value of zero to indicate success; a non-zero value
indicates an error was detected.

Ref — 120 SOM kernel SOMobjects Developer Toolkit

SOMClassMgr class

C Example

#include ”“student.h”
#include "mystud.h”

/* Macro form */
SOM SubstituteClass (Student, MyStudent) ;

/* Direct use of the method, equivalent to
* the macro form above.
*/

SOMClass origClass, replacementClass;

origClass = StudentNewClass (Student MajorVersion,
Student MinorVersion) ;
replacementClass = MyStudentNewClass (MyStudent MajorVersion,

MyStudent MinorVersion) ;
SOMClassMgr somSubstituteClass (
SOMClass somGetName (origClass),
SOMClass_somGetName (replacementClass)) ;

Original Class
SOMClassMgr

Related Information
Methods: somClassFromld, somFindClass, somFindClsInFile, somMergelnto

Programmers Reference Manual SOM kernel Ref —121

SOMClassMgr class

somUnloadClassFile Method

Pu rpose
Unloads a dynamically loaded class and frees the class’s object.

IDL Syntax

long somUnloadClassFile (in SOMClass class);

Note: For backward compatibility, this method does not take an Environment parameter.

Description

The somUnregisterClass method uses the somUnloadClassFile method to unload a dynam-
ically loaded class. This releases the class’s code and unregisters all classes in the same affinity
group. (Use somGetRelatedClasses to find out which other classes are in the same affinity

group.)

The class objectis freed whether or not the class’ s shared library could be unloaded. If the class
was not registered, an error condition is raised and SOMError is invoked. This method is
provided to permit user-created subclasses of SOMClassMgr to handle the unloading of
classes by overriding this method. Do not invoke this method directly; instead, invoke
somUnregisterClass.

Parameters

receiver Usually SOMClassMgrObject (or a pointer to an instance of a user-supplied
subclass of SOMClassMgr).

class A pointer to the class to be unloaded.

Return Value

The somUnloadClassFile method returns O if the class was successfully unloaded; otherwise,
it returns a system-specific non-zero error code from either the OS/2 DosFreeModule or the
AlX unload system call or the Windows FreeLibrary system call.

Original Class
SOMClassMgr

Related Information

Methods: somLoadClassFile, somRegisterClass,
somUnregisterClass, somGetRelatedClasses

Ref — 122 SOM kernel SOMobjects Developer Toolkit

SOMClassMgr class

somUnreqisterClass Method
Purpose

Removes a class object from the SOM run-time class registry.

IDL Syntax

long somUnregisterClass (in SOMClass class);

Note: For backward compatibility, this method does not take an Environment parameter.

Description

The somUnregisterClass method unregisters a SOM class and frees the class object. If the
class was dynamically loaded, itis also unloaded using somUnloadClassFile (which causesiits
entire affinity group to be unloaded as well).

Parameters
receiver Usually SOMClassMgrObject (or a pointer to an instance of a user-supplied
subclass of SOMClassMgr).
class A pointer to the class to be unregistered.

Return Value

The somUnregisterClass method returns 0 for a successful completion, or non-zero to denote
failure.

Example

#include <som.h>

void main ()

{
long rc; /* Return code */
SOMClass animalClass;

/* The next 2 lines declare a static form of somId */
string animalClassName = ”“Animal”;
somId animalId = &animalClassName;

somEnvironmentNew () ;
animalClass = SOMClassMgr somFindClass (SOMClassMgrObject,
animalId, 0, O0);

if (!animalClass) {
somPrintf (”Could not load class.\n”);
return;
}
rc = SOMClassMgr somUnregisterClass (SOMClassMgrObject,
animalClass) ;
if (re)
somPrintf (”Could not unregister class, error code: %1d.\n”,
rc) ;
else
somPrintf (”Class successfully unloaded.\n”) ;

}

Original Class
SOMClassMgr

Related Information
Methods: somLoadClassFile, somRegisterClass, somUnloadClassFile

Programmers Reference Manual SOM kernel Ref —123

SOMObject class

SOMObject Class

SOMObjectistherootclass forall SOM classes. Thatis, all SOM classes must be subclasses of
SOMObject or of some other class derived from SOMObject. SOMODbject introduces no
instance data, so objects whose classes inherit from SOMObject incur no size increase. They
do inherit a suite of methods that provide the behavior required of all SOM objects. Three of
these methods are typically overridden by any subclass that has instance data —
somDefaultlnit, somDestruct, and somDumpSelfint. See the descriptions of these methods
for more information.

File Stem

somobj

Base
None

Metaclass
SOMClass

Ancestor Classes
None

New Methods

Group: Initialization/Termination
somFree
somDefaultinit
somDestruct
sominit
somuUninit
somDefaultAssign
somDefaultConstAssign
somDefaultConstCopylnit
somDefaultCopylnit

Group: Access
somGetClass
somGetClassName
somGetSize

Group: Testing
somlisA
somlsinstanceOf
somRespondsTo

Group: Dynamic
somDispatchA
somDispatchD
somDispatchL
somDispatchV
somDispatch
somClassDispatch
somCastObj
somResetObj

Ref — 124 SOM kernel SOMobjects Developer Toolkit

Group: Development Support
somDumpSelf
somDumpSelfint
somPrintSelf

Overridden Methods

None

Programmers Reference Manual

SOMObject class

SOM kernel Ref — 125

SOMObject class

somCastObj Method

Purpose

Changes the behavior of an object to that defined by any ancestor of the true class of the object.

IDL Syntax

boolean somCastObj (in SOMClass ancestor);

Description

The somCastObj method changes the behavior of an object so that its behavior will be that of an
instance of the indicated ancestor class (with respect to any method supported by the ancestor).
The behavior of the object on methods not supported by the ancestor remains unchanged.

This operation actually changes the class of the object (since an object’s behavior is defined by
its class). The name of the new class is derived from the initial name of the object’s class and the
name of the ancestor class, as illustrated in the example below.

The somCastObj method may be used on an object multiple times, always with the restriction
that the ancestor class whose behavior is selected is actually an ancestor of the true (original)
class of the object.

Parameters
receiver A pointer to an object of type SOMObject.
ancestor A pointer to a class that is an ancestor of the actual class of the receiver.

Return Value

The somCastObj method returns 1 (TRUE) if the operation is successful and 0 (false) other-
wise. The operation fails if ancestor is not actually an ancestor of the class of the object.

Example
#include <som.h>
main ()
{
SOMClassMgr cm = somEnvironmentNew () ;
SOM Test (1 == somCastObj (cm, SOMObject)) ;
_somDumpSelf (cm, 0));
SOM_Test (1 == _somResetObj (cm)) ;
_somDumpSelf (cm, 0);
!
/* output:
* {An instance of class SOMClassMgr->SOMObject
* at address 20061268
*]
* {An instance of class SOMClassMgr at address 20061268
* <SOMClassMgr State Informations
*)
*/

Original Class
SOMODbject

Related Information
Methods: somResetObj

Ref — 126 SOM kernel SOMobjects Developer Toolkit

SOMObject class

somDefaultAssign Method

Purpose

IDL Syntax

Provides support for an object-assignment operator. May be overridden, but, if appropriate,
somDefaultConstAssign should be overridden instead.

void somDefaultAssign (inout somInitCtrl ctrl,
in SOMObject fromObj);

Description

In C++, assignment to an object of class “X” is accomplished by using (an appropriate overload-
ing of) the assignment operator provided by “X.” To make assignment available on all SOM
objects, SOMObject provides the somDefaultAssign and somDefaultConstAssign meth-
ods. The default behavior of these methods is that they do a shallow copy of data from one object
to another. Users should generally use the somDefaultAssign method for doing object assign-
ment.

When a shallow copy is not appropriate for the data introduced by a class, and it is possible to
perform the copy without modifying fromObj, it is recommended that the class implementor
override the somDefaultConstAssign method for that class.

The considerations important to overriding somDefaultAssign are similar to those described in
the SOMobjects Users Guide for overriding somDefaultInit. (See “Initializing and Uninitializing
Objects” in Chapter 5, “Implementing Classes in SOM.”) The basic difference between
somDefaultinit and somDefaultAssign is that the latter method takes an object (fromObj) as a
source argument for assignment of values to the receiver.

Parameters

receiver A pointer to an object of an arbitrary SOM class, S.
ctrl A pointer to a somlInitCtrl structure, or NULL.
fromObj A pointer to an object of class S or some class descended from S.

Return Value

Example

None.

// C++ SOMObjects Toolkit Code
#include <Y.xh>

main ()
{
X *x = new X;
Y *y = new Y; // assume Y is derived from X
x->somDefaultAssign (0,vy)
// the x object has now been assigned values from y

}

Original Class

Related Inf

SOMObject

ormation

Methods: somDefaultinit, somDefaultConstAssign, somDefaultCopyiInit,
somDefaultConstCopylnit

Programmers Reference Manual SOM kernel Ref —127

SOMObject class

somDefaultConstAssign Method

Purpose

Provides support for a “const” object-assignment operator. Designed to be overridden.

IDL Syntax

void somDefaultConstAssign (inout somiInitCtrl ctrl,
in SOMObject fromObj);

Description

In C++, assignment to an object of class “X” is accomplished by using (an appropriate overload-
ing of) the assignment operator provided by “X.” To make assignment available on all SOM
objects, SOMObject introduces the somDefaultAssign and somDefaultConstAssign meth-
ods. The default behavior of these methods is to perform a shallow copy of data from one object
to another. When this default is not appropriate for a class, and it is possible to perform the copy
without modifying fromObj, it is recommended that the class implementor override the
somDefaultConstAssign method.

Generally, an object user should use the somDefaultAssign method to perform object assign-
ment.

The considerations important to overriding somDefaultConstAssign are similar to those de-
scribed in the SOMobjects Users Guide for overriding somDefaultlnit. (See “Initializing and
Uninitializing Objects” in Chapter 5, “Implementing Classes in SOM.”) The basic difference
between somDefaultlnit and somDefaultConstAssign is that the latter method takes an
object (fromObj) as an argument that is to be copied.

Parameters
receiver A pointer to an object of an arbitrary SOM class, S.
ctrl A pointer to a somInitCtrl structure, or NULL.

fromObj A pointer to an object of class S or some class descended from S.

Return Value
None.

Example

// IDL for a class that overrides somDefaultConstAssign
#include <x.idl>

interface Y : X {
implementation ({
somDefaultConstAssign: override, init;

}i
Original Class

SOMObject
Related Information

Methods: somDefaultinit, somDefaultAssign, somDefaultCopylnit,
somDefaultConstCopylnit

Ref — 128 SOM kernel SOMobjects Developer Toolkit

SOMObject class

somDefaultConstCopylnit Method

Purpose

IDL Syntax

Provides support for passing objects as call-by-value object parameters in methods introduced
by DTS C++ classes. Designed to be overridden.

void somDefaultConstCopylnit (inout somInitCtrl ctrl,
in SOMObject fromObj);

Description

The somDefaultConstCopylnit method would be called a “copy constructor” in C++. In SOM,
this concept is supported using an object initializer that accepts the object to be copied as an
argument. Copy constructors are used in C++to pass objects by value. They initialize one object
by making it be a copy of another object. In SOM, objects are always passed by reference, so
arguments to DTS C++ methods that receive call-by-value object parameters are actually
passed by reference. But, to correctly support the semantics of DTS C++ call-by-value argu-
ments, it is necessary to actually pass a copy of the intended argument. A copy constructor can
be used to make this copy.

The default behavior provided by somDefaultConstCopylnit is to do a shallow copy of each
ancestor class’s introduced instance variables. The object being copied is not changed. When a
shallow copy is not appropriate, and it is possible to avoid changing fromObj, a class implemen-
tor should override somDefaultConstCopylnit (for example, to do a deep copy for certain
variables), but should respect the constraint of not modifying the object being copied.

In general, object users should use somDefaultCopylnit to copy an object.

The considerations important to overriding somDefaultConstCopylnit are similar to those
described in the SOMobjects Users Guide for overriding somDefaultlnit. (See “Initializing and
Uninitializing Objects” in Chapter 5, “Implementing Classes in SOM.”) The basic difference
between somDefaultinit and somDefaultConstCopylnit is that the latter method takes an
object (fromObj) as an argument that is to be copied.

Parameters

receiver A pointer to an uninitialized object of an arbitrary SOM class, S.
ctrl A pointer to a somInitCtrl structure, or NULL.
fromObj A pointer to an object of class S or some class descended from S.

Return Value

Example

None.

// IDL for a class that overrides somDefaultConstCopyInit
interface X : SOMObject

{

implementation {
somDefaultConstCopyInit: override, init;

}i

Original Class

SOMObject

Related Information

Methods: somDefaultinit, somDefaultCopylnit, somDefaultAssign,
somDefaultConstAssign

Programmers Reference Manual SOM kernel Ref —129

SOMObject class

somDefaultCopylnit Method

Purpose

IDL Syntax

Provides support for call-by-value object parameters in methods introduced by DTS C++
classes. May be overridden, but, if appropriate, somDefaultConstCopylInit should be overrid-
den instead.

void somDefaultCopylnit (inout somInitCtrl ctrl,
in SOMObject fromODbj);

Description

The somDefaultCopylInit method would be called a “copy constructor” in C++. In SOM, this
concept is supported using an object initializer that accepts the object to be copied as an
argument. Copy constructors are used in C++to pass objects by value. They initialize one object
by making it be a copy of another object. In SOM, objects are always passed by reference, so
arguments to DTS C++ methods that receive call-by-value object parameters are actually
passed by reference. But, to correctly support the semantics of DTS C++ call-by-value
arguments, it is necessary to actually pass a copy of the intended argument. In general,
somDefaultCopylnit should be used to make this copy.

The default behavior provided by somDefaultCopylnitis to do a shallow copy of each ancestor
class’sintroduced instance variables. However, a class may always override this default behav-
ior (for example, to do a deep copy for certain variables). If it is possible to avoid modification of
fromObj when doing the copy, the method somDefaultConstCopylInit should be overridden for
this purpose. Only if this is not possible (and shallow copy is not appropriate) would it be
appropriate to override somDefaultCopyInit.

The considerations important to overriding somDefaultCopylnit are similar to those described
in the SOMobjects Users Guide for overriding somDefaultlnit. (See “Initializing and Uninitializ-
ing Objects” in Chapter 5, “Implementing Classes in SOM.”) The basic difference between
somDefaultinit and somDefaultCopylnit is that the latter method takes an object (fromObj) as
an argument that is to be copied.

Parameters

receiver A pointer to an uninitialized object of an arbitrary SOM class, S.
ctrl A pointer to a somInitCtrl structure, or NULL.

fromObj A pointer to an object of class S or some class descended from S.

Return Value

None.

Ref — 130 SOM kernel SOMobjects Developer Toolkit

SOMObject class

Example

// IDL produced by a DTS C++ compiler for a DTS C++ class
interface X : SOMObject

{

void foo(in SOMClass arg) ;
implementation {

foo: cxxdecl = ”"void foo(SOMClass arg)”; // !! call-by-value
¥

}i

// C++ SOMObjects Toolkit Code
#include <X.xh>

#include <somcls.xh>

main ()

{
X *x = new X;
SOMClass *arg = _SOMClass->somNewNoInit () ;
// make arg be a copy of the X class object
arg->somDefaultCopyInit (0, X);
x->foo(arg); // call foo with the copy

Original Class
SOMObject

Related Information

Methods: somDefaultinit, somDefaultConstCopylnit, somDefaultAssign,
somDefaultConstAssign

Programmers Reference Manual SOM kernel Ref —131

SOMObject class

somDefaultlnit Method

Purpose

Initializes instance variables and attributes in a newly created object. Replaces somiInit as the
preferred method for default object initialization. For performance reasons, it is recommended
that somDefaultlnit always be overridden by classes.

IDL Syntax

void sombDefaultlnit (inout somInitCtrl ctrl);

Description

Every SOM class is expected to support a set of initializer methods. This set will always include
somDefaultlnit, whether or not the class explicitly overrides somDefaultinit. All other initializer
methods for a class must be explicitly introduced by the class. See Section 5.5, “Initializing and
Uninitializing Objects,” of the SOMobjects Developer Toolkit Users Guide for complete informa-
tion on introducing new initializers.

The purpose of an initializer method supported by a class is first to invoke initializer methods of
ancestor classes (those ancestors that are the class’s directinitclasses) and then to place the
instance variables and attributes introduced by the class into some consistent state by loading
them with appropriate values. The result is that, when an object is initialized, each class that
contributes to its implementation will run some initializer method. The somDefaultinit method
may or may not be among the initializers used to initialize a given object, but itis always available
for this purpose.

Thus, the somDefaultinit method may be invoked on a newly created object to initialize its
instance variables and attributes. The somDefaultinit method is more efficient than sominit
(the method it replaces), and it also prevents multiple initializer calls to ancestor classes. The
somlInit method is now considered obsolete when writing new code, although sominit is still
supported.

To override somDefaultinit, the implementation section of the class’s .idl file should include
somDefaultlnit with the override and init modifiers specified. (The init modifier signifies that
the method is an initializer method.) No additional coding is required for the resulting
somDefaultlnit stub procedure in the implementation template file, unless the class imple-
mentor wishes to customize object initialization in some way.

If the .idl file does not explicitly override somDefaultInit, then by default a generic method pro-
cedure for somDefaultInit will be provided by the SOMobjects Toolkit. If invoked, this generic
method procedure firstinvokes somDefaultlnit on the appropriate ancestor classes, and then
(for consistency with earlier versions of SOMobijects) calls any somlnit code that may have
been provided by the class (if somInit was overridden). Because the generic procedure for
somDefaultlnit is less efficient than the stub procedure that is provided when somDefaultInit
is overridden, it is recommended that the .idl file always override somDefaultInit.

Note: It is not appropriate to override both somDefaultinit and sominit. If this is done, the
sominit code will not be executed. The best way to convert an old class that overrides sominit
to use of the more efficient somDefaultInit (if this is desired) is as follows: (1) Replace the
somlnit override in the class’s .idl file with an override for somDefaultlnit, (2) run the imple-
mentation template emitter to produce a stub procedure for somDefaultInit, and then (3) simply
call the class’s sominit procedure directly (not using a method invocation) from the
somDefaultinit method procedure.

As mentioned above, the object-initialization framework supported by SOMaobjects allows a
class to support additional initializer methods besides somDefaultlnit. These additional initial-
izers will typically include special-purpose arguments, so that objects of the class can be

Ref — 132 SOM kernel SOMobjects Developer Toolkit

SOMObject class

initialized with special capabilities or characteristics. For each new initializer method, the
implementation section must include the method name with the init modifier. Also, the
directinitclasses modifier can be used if, for some reason, the class implementor wants to
control the order in which ancestor initializers are executed.

Notes: It is recommended that the method name for an initializer method include the class
name as a prefix. A newly defined initializer method will include an implicit Environment argu-
ment if the class does not use a callstyle=oidl modifier.

Important: There are important constraints associated with modification of the procedure stubs
forinitializers. These are documented in Section 5.5 of the SOMobjects Developer Toolkit Users

Guide.
Parameters
receiver A pointer to an object.
ctrl A pointer to a somInitCtrl data structure. SOMobjects uses this data structure

to control the initialization of the ancestor classes, thereby ensuring that no
ancestor class receives multiple initialization calls.

Return Value
None.

Example

// SOM IDL
#include <Animal.idl>

interface Dog : Animal

implementation {
releaseorder: ;
somDefaultInit: override, init;

Original Class
SOMObject

Related Information
Methods: somDestruct

Programmers Reference Manual SOM kernel Ref — 133

SOMObject class

somDestruct Method

Purpose

IDL Syntax

Uninitializes the receiving object, and (if so directed) frees object storage after uninitialization
has been completed. Replaces somUninit as the preferred method for uninitializing objects.
For performance reasons, it is recommended that somDestruct always be overridden. Not
normally invoked directly by object clients.

void somDestruct (in octet dofree, inout somDestructCtrl ctrl);

Description

Every class must support the somDestruct method. This is accomplished either by overriding
somDestruct (in which case a specialized stub procedure will be generated in the implementa-
tion template file), or else SOMobjects will automatically provide a generic procedure that
implements somDestruct for the class. The generic procedure calls somUninit (if this was
overridden) to perform local uninitialization, then completes execution of the method appropri-
ately.

Because the specialized stub procedure generated by the template emitter is more efficient than
the generic procedure provided when somDestruct is not overridden, it is recommended that
somDestruct always be overridden. The stub procedure that is generated in this case requires
no modification for correct operation. The only modification appropriate within this stub proce-
dure is to uninitialize locally introduced instance variables. See Section 5.5, “Initializing and
Uninitializing Objects,” of the SOMobjects Developer Toolkit Users Guide for further details.

Uninitialization with somDestruct executes as follows: For any given class in the ancestor
chain, somDestruct first uninitializes that class’s introduced instance variables (if this is ap-
propriate), and then calls the next ancestor class’s implementation of somDestruct, passing 0
(that is, false) as the interim dofree argument. Then, after all ancestors of the given class have
been uninitialized, if the class’s own somDestruct method were originally invoked with dofree
as 1 (that is, true), then that object’s storage is released.

Note: It is not appropriate to override both somDestruct and somUninit. If this is done, the
somUninit code will not be executed. The best way to convert an old class that overrides
somUninit to use of the more efficient somDestruct (if this is desired) is as follows: (1) Replace
the somUninit override in the class’s .idl file with an override for somDestruct, (2) run the
emitter to produce a stub procedure for somDestruct in the implementation template file, and
then (3) simply call the class’s somUninit procedure directly (not using a method invocation)
from the somDestruct procedure.

Parameters

receiver A pointer to an object.

dofree A boolean indicating whether the caller wants the object storage freed after
uninitialization of the current class has been completed. Passing 1 (true) indi-
cates the object storage should be freed.

ctrl A pointer to a somDestructCtrl data structure. SOMobjects uses this data
structure to control the uninitialization of the ancestor classes, thereby ensur-
ing that no ancestor class receives multiple uninitialization calls. If a user
invokes somDestruct on an object directly, a NULL (that is, zero) ctrl pointer
can be passed. This instructs the receiving code to obtain a somDestructCtrl
data structure from the class of the object.

Ref — 134 SOM kernel SOMobjects Developer Toolkit

Return Value
None.

Example

// SOM IDL
#include <Animal.idls>

interface Dog : Animal

{

implementation {
releaseorder: ;

}i

somDestruct:

}i

Original Class
SOMObject

Related Information
Methods: somDefaultinit

Programmers Reference Manual

override;

SOMObject class

SOM kernel Ref — 135

SOMObject cla

SS

somDispatch, somClassDispatch Methods

Purpose

IDL Syntax

Invokes a method using dispatch method resolution. The somDispatch method is designed to
be overridden. The somClassDispatch method is not generally overridden.

boolean somDispatch (
out somToken retValue,
in somld methodld,
in va_list args);

boolean somClassDispatch (
in SOMClass clsObj,
out somToken retValue,
in somld methodld,
in va_list args);

Note: For backward compatibility, these methods do not take an Environment parameter.

Description

Both somDispatch and somClassDispatch perform method resolution to select a method
procedure, and then invoke this procedure on args. The “somSelf’ argument for the selected
method procedure (called the “target object,” below, to distinguish it from the receiver of the
somDispatch or somClassDispatch method call) is the first argument included in the va_list,
args.

For somDispatch, method resolution is performed using the class of the receiver; for
somClassDispatch, method resolution is performed using the argument class, clsObj. Be-
cause somcClassDispatch uses clsObj for method resolution, a programmer invoking
somDispatch or somClassDispatch should assure that the class of the target object is either
derived from or is identical to the class used for method resolution; otherwise, a run-time error
will likely result when the target object is passed to the resolved procedure. Although not
necessary, the receiver is usually also the target object.

The somDispatch and somClassDispatch methods supersede the somDispatchX methods.
Unlike the somDispatchX methods, which are restricted to few return types, the somDispatch
and somClassDispatch methods make no assumptions concerning the result returned by the
method to be invoked. Thus, somDispatch and somClassDispatch can be used to invoke
methods that return structures. The somDispatchX methods now invoke somDispatch, so
overriding somDispatch serves to override the somDispatchX methods as well.

Parameters

receiver A pointer to the object whose class will be used for method resolution by
somDispatch.

clsObj A pointer to the class that will be used for method resolution by
somClassDispatch.

retValue The address of the area in memory where the result of the invoked method
procedure is to be stored. The caller is responsible for allocating enough
memory to hold the result of the specified method. When dispatching methods
that return no result (that is, void), a NULL may be passed as this argument.

methodld A somld identifying the method to be invoked. A string representing the meth-
od name can be converted to a somld using the somIldFromString function.

Ref — 136 SOM kernel SOMobjects Developer Toolkit

SOMObject class

args A va_list containing the arguments to be passed to the method identified by
methodld. The arguments mustinclude a pointer to the target object as the first
entry. As a convenience for C and C++ programmers, SOM’s language bind-
ings provide a varargs invocation macro for va_list methods (such as
somDispatch and somClassDispatch). The example below illustrates this.

Return Value

Aboolean representing whether or not the method was successfully dispatched is returned. The
reason for this is that somDispatch and somClassDispatch use the function somApply to
invoke the resolved method procedure, and somApply requires an apply stub for successful
execution. In support of old class binaries SOM does not consider a NULL apply stub to be an
error. As a result, somApply may fail. If this happens, then false is returned; otherwise, true is
returned.

C Example

Given class Key that has an attribute keyval of type long and an overridden method for
somPrintSelf that prints the value of the attribute (as well as the information printed by
SOMObject’s implementation of somPrintSelf), the following client code invokes methods on
Key objects using somDispatch and somClassDispatch. (The Key class was defined with the
callstyle=oidl class modifier, so the Environment argument is not required of its methods.)

#include <key.h>

main ()
{
SOMObject obj;
long k1 = 7, k2;
Key myKey = KeyNew() ;
va_list push, args = SOMMalloc (8) ;
somId setId = somIdFromString(” set keyval”);
somId getId somIdFromString (”_ get keyval”);
somId prtId = somIdFromString (”somPrintSelf”) ;

/* va_list invocation of setkey and getkey : */
push = args;

va_arg(push, SOMObject) = myKey;

va_arg(push, long) = kl1;

SOMObject somDispatch (myKey, (somToken*) 0, setId,args) ;
push = args;

va_arg (push, SOMObject) = myKey;

SOMObject somDispatch (myKey, (somToken*) &k2,getId, args) ;
printf (“va_list set keyval and get keyval: %i\n”, k2);

/* varargs invocation of setkey and getkey : */
_somDispatch (myKey, (somToken*)0, setId, myKey, kl);
_somDispatch (myKey, (somToken*)&k2, getId, myKey) ;
printf ("varargs _set keyval and get keyval: %i\n”, k2);

/* illustrate somclassDispatch ”“casting” (use varargs form) */
printf ("somPrintSelf on myKey as a Key:\n”);
_somClassDispatch (myKey, Key, (somToken*)&obj2,prtId,myKey,0) ;

printf ("somPrintSelf on myKey as a SOMObject:\n”);
_somClassDispatch (myKey, SOMObject, (somToken*) &obj,prtId,myKey,0) ;
SOMFree (args) ; SOMFree (setId); SOMFree(getId); SOMFree (prtId);
__somFree (myKey) ;

Programmers Reference Manual SOM kernel Ref — 137

SOMObject class

This program produces the following output:

va_list set keyval and _get keyval: 7

varargs _set keyval and get keyval: 7

somPrintSelf on myKey as a Key:

{An instance of class Key at address 2005B2F8}
-— with key value 7

somPrintSelf on myKey as a SOMObject:

{An instance of class Key at address 2005B2F8}

Original Class
SOMObject

Related Information

Functions: somApply

Ref — 138 SOM kernel SOMobjects Developer Toolkit

SOMObject class

somDispatchX Methods (Obsolete)

Pu rpose
Invoke a method using dispatch method resolution. These methods are obsolete.
IDL Syntax
somToken somDispatchA (
in somld methodid,
in somld descriptor,
in va_list args);
double somDispatchD (
in somld methodid,
in somld descriptor,
in va_list args);
long somDispatchlL (
in somld methodld,
in somld descriptor,
in va_list args);
void somDispatchV (
in somld methodid,
in somld descriptor,
in va_list args);
Note: For backward compatibility, these methods do not take an Environment parameter.
Description
The somDispatchX methods are superseded by the more general somDispatch method, and
are retained solely for backward compatibility.
The somDispatchX methods invoke on the receiving object the method identified by methodid,
with arguments specified by args. The target object for the method invocation is the receiving
object, which is not included in the arguments.
Parameters
receiver A pointer to the object on which the dispatched method is invoked.
methodid A somld that represents the method to be invoked.
descriptor Asomld that represents the types of the arguments being passed in the args

va_list. This parameter is not used in the current implementation, so a
NULL value can be substituted.

args A va_list containing the arguments to be passed to the method identified by
methodld. The arguments do not include the target for the dispatched method.

Return Value

Four families of return values are supported, corresponding to the four forms of the
somDispatchX method. The somDispatchX method chosen should have a return type com-

Programmers Reference Manual SOM kernel Ref — 139

SOMObject class

patible with the result of the method identified by methodId. Within each of the four families, only
the largest representation is supported. The four families are:

Pointer somDispatchA returns an address as a somToken.
Floating point somDispatchD returns a floating point number as a double.
Integer somDispatchlL returns an integer as a long.

Void somDispatchV returns void. Itis used for methods that do not return a result.

Original Class
SOMObject

Related Information
Functions: somApply

Methods: somDispatch

Ref — 140 SOM kernel SOMobjects Developer Toolkit

SOMObject class

somDumpSelf Method

Pu rpose
Writes out a detailed description of the receiving object. Intended for use by object clients. Not
generally overridden.
IDL Syntax
void somDumpSelf (in long level);
Note: For backward compatibility, this method does not take an Environment parameter.
Description
The somDumpSelf method performs some initial setup, and then invokes the
somDumpSelfint method to write a detailed description of the receiver, including its state.
Parameters
receiver A pointer to the object to be dumped.
level The nesting level for describing compound objects. It must be greater than or

equal to 0. All lines in the description will be preceded by “2 * level” spaces.

Return Value
None.

Example
See somDumpSelfint.

Original Class
SOMObject

Related Information
Methods: somDumpSelfint

Programmers Reference Manual SOM kernel Ref —141

SOMObject class

somDumpSelfint Method

Purpose

Outputs the internal state of an object. Intended to be overridden by class implementors. Not
intended to be directly invoked by object clients.

IDL Syntax

void somDumpSelfint (in long level);

Note: For backward compatibility, this method does not take an Environment parameter.

Description

The somDumpSelfint method should be overridden by a class implementor, to write out the
instance data stored in an object. This method is invoked by the somDumpSelf method, which
is used by object clients to output the state of an object.

The procedure used to override this method for a new class should begin by calling the parent
class form of this method on each of the class parents, and should then write a description of the
instance variables introduced by new class. This will result in a description of all the class’s
instance variables. The C and C++ implementation bindings provide a convenient macro for
performing parent method calls on all parents, as illustrated below.

The character output routine pointed to by SOMOutCharRoutine should be used for output.
The somLPrintf function is especially convenient for this, since level is handled appropriately.

Parameters

receiver

level

Return Value

None.

C Example

A pointer to the object to be dumped.

The nesting level for describing compound objects. It must be greater than or
equal to 0. All lines in the description should be preceded by “2 * level” spaces.

Below is a method overriding somDumpSelfint for class “List”, which has two attributes, val
(which is along) and next (which is a pointer to a “List” object).

SOM_Scope void SOMLINK somDumpSelfInt (List somSelf, int level)

{

Ref — 142 SOM kernel

ListData *somThis = ListGetData (somSelf) ;
Environment *ev = somGetGlobalEnvironment () ;

List parents somDumpSelfInt (somSelf, level);

somLPrintf (level, ”This item: %i\n”, _ get val(somSelf, ev);
somLPrintf (level, ”Next item: \n”);
if (_ get next (somSelf, ev) != (List) NULL)

_somDumpSelfInt (get next (somSelf, ev), level+l);
else
somLPrintf (level+1l, ”NULL\n”);

SOMobjects Developer Toolkit

SOMObject class

Below is a client program that invokes the somDumpSelf method on “List” objects:

#include <list.h>

main ()

List L1, L2;
long x = 7, y = 13;

Environment *ev = somGetGlobalEnvironment () ;

L1l = ListNew() ;

L2 = ListNew() ;

__set val(Ll, ev, x);

__set next(Ll, ev, (List) NULL);
__set val(L2, ev, y);

__set next (L2, ev, L1);

_somDumpSelf (L2, 0) ;

_somFree (L1) ;
__somFree (L2) ;

}

Below is the output produced by this program:

{An instance of class List at 0x2005EAS8
This item: 13
Next item:
1 This item: 7
1 Next item:
2 NULL

Original Class
SOMObject

Related Information
Methods: somDumpSelf, somPrintSelf

Programmers Reference Manual

SOM kernel

Ref — 143

SOMObject class

somFree Method

Purpose

Releases the storage used by an object and frees the object. Intended for use by object clients.
Not generally overridden.

IDL Syntax

void somFree ();

Note: For backward compatibility, this method does not take an Environment parameter.

Description

The somFree method releases the storage containing the receiver object by calling the method
sombDeallocate. No future references should be made to the receiver once this is done. The
somFree method calls somDestruct to allow storage pointed to by the object to be freed.

The somFree method should not be called on objects created by somRenew, thus the method
is normally only used by code that also created the object.

Note: SOM also supplies a function, SOMFree, which is used to free a block of memory. This
function should not be used on objects.

Parameters

receiver A pointer to the object to be freed.

Return Value
None.

C Example

#include <animal.h>

void main()

{
Animal myAnimal;
/*
* Create an object.
*/
myAnimal = AnimalNew () ;
/* ... */
/* Free it when finished. */
_somFree (myAnimal) ;
!

Original Class
SOMObject

Related Information
Methods: somNew, somNewNolnit, somDestruct
Functions: SOMFree

Ref — 144 SOM kernel SOMobjects Developer Toolkit

SOMObject class

somGetClass Method

Purpose

Returns a pointer to an object’s class object. Not generally overridden.

IDL Syntax
SOMClass somGetClass ();

Note: For backward compatibility, this method does not take an Environment parameter.

Description

somGetClass obtains a pointer to the receiver’s class object. The somGetClass method is
typically not overridden.

Important Note: For C and C++ programmers, SOM provides a SOM_GetClass macro that
performs the same function. This macro should only be used only when absolutely necessary
(thatis, when a method call on the object is not possible), since it bypasses whatever semantics
may be intended for the somGetClass method by the implementor of the receiver’s class. Even
class implementors do not know whether a special semantics for this method is inherited from
ancestor classes. If you are unsure of whether the method or the macro is appropriate, you
should use the method call.

Parameters

receiver A pointer to the object whose class is desired.

Return Value

A pointer to the object’s class object.

C Example

#include <animal.h>
main ()
{
Animal myAnimal;
int numMethods;
SOMClass animalClass;

myAnimal = AnimalNew () ;

animalClass = _somGetClass (myAnimal) ;
SOM_Test (animalClass == Animal) ;
}
Original Class
SOMObject

Related Information
Macros: SOM_GetClass

Programmers Reference Manual SOM kernel Ref — 145

SOMObject class

somGetClassName Method

Pu rpose
Returns the name of the class of an object. Not generally overridden.
IDL Syntax
string somGetClassName ();
Note: For backward compatibility, this method does not take an Environment parameter.
Description
The somGetClassName method returns a pointer to a zero-terminated string that gives the
name of the class of an object.
This method is not generally overridden; it simply invokes somGetName on the class of the
receiver. Refer to somGetName for more information on the returned string,
Parameters

receiver A pointer to the object whose class hame is desired.

Return Value

The somGetClassName method returns a pointer to the name of the class.

C Example

#include <animal.h>
main ()
Animal myAnimal;
SOMClass animalClass;
char *className;

myAnimal = AnimalNew () ;

className = somGetClassName (myAnimal) ;
somPrintf (”“Class name: %s\n”, className) ;
_somFree (myAnimal) ;

}

/*

Output from this program:
Class name: Animal

*/

Original Class
SOMObject

Related Information
Methods: somGetName

Ref — 146 SOM kernel SOMobjects Developer Toolkit

SOMObject class

somGetSize Method

Purpose

Returns the size of an object. Not generally overridden.

IDL Syntax

long somGetSize ();

Note: For backward compatibility, this method does not take an Environment parameter.

Description

The somGetSize method returns the total amount of contiguous space used by the receiving
object.

The value returned reflects only the amount of storage needed to hold the SOM representation
of the object. The object might actually be using or managing additional space outside of this
area.

The somGetSize method is not generally overridden.

Parameters

receiver A pointer to the object whose size is desired.

Return Value

The somGetSize method returns the size, in bytes, of the receiver.

C Example

#include <animal.h>
void main()
{
Animal myAnimal;
long animalSize;

myAnimal = AnimalNew () ;
animalSize = somGetSize (myAnimal) ;
somPrintf ("Size of animal (in bytes): %d\n”, animalSize) ;

_somFree (myAnimal) ;

}

/*

Output from this program:
Size of animal (in bytes): 8

*/

Original Class
SOMObject

Related Information

Methods: somGetinstancePartSize, somGetlnstanceSize

Programmers Reference Manual SOM kernel Ref — 147

SOMObject class

somlnit Method

Purpose

IDL Syntax

Initializes instance variables or attributes in a newly created object. Designed to be overridden.
Note: The newer somDefaultinit method is suggested instead.

void sominit ();

Note: For backward compatibility, this method does not take an Environment parameter.

Description

The somInit method is invoked to cause a newly created object to initialize its instance variables
or attributes.

Note: The newer somDefaultinit method performs object initialization more efficiently and is
now the preferred approach for overriding initialization in an implementation file. (The somiInit
method still executes correctly as before.)

Because instances of SOMObject do not have any instance data, the default implementation
does nothing. It is provided as a convenience to class implementors so that initialization of
objects can be done in a uniform way across all classes (by overriding somInit). This method is
called automatically by somNew during object creation.

A companion method, somUninit, is called whenever an object is freed. These two methods
should be designed to work together, with somInit priming an object for its first use, and
somUninit preparing the object for subsequent release.

If objects of your class contain instance variables or attributes, override the somInit method to
initialize the instance variables or attributes when instances of the class are created. When
overriding this method, always call all parent (base) classes’ versions of this method before
doing your own initialization, as follows:

1. The overriding implementation should invoke the parent method for each parent. For
users of the C or C++ implementation bindings, this can be done in either of two ways:
(a) by calling a <className>_parents_<methodName> macro (which automatically
invokes all parent methods) or
(b) by calling the <className>_ parent_<parentName>_<methodName> macro on
each parent separately.

For more information on parent method calls, see the topic “Extending the Implementa-
tion Template” in Chapter 5, “Implementing Classes in SOM,” of the SOM Toolkit User’s
Guide.

2. The code must be written so that it can be executed multiple times without harm on the
same object. This is necessary because, under multiple inheritance, parent method calls
that progress up the inheritance hierarchy may encounter the same ancestor class more
than once (where different inheritance paths “join” when followed backward). A check can
be made to determine whether a particular invocation of sominit is the first on a given
object by examining the contents of its instance variables; all the instance variables of a
newly created SOM object are set to zero before somlInit is invoked on that object.

More information and examples on object initialization (especially regarding the
somDefaultinit method) are given in the topic “Initializing and Uninitializing Objects” in Chapter
5, “Implementing Classes in SOM,” of the SOM Toolkit User’s Guide.

Parameters

receiver A pointer to the object to be initialized.

Ref — 148 SOM kernel SOMobjects Developer Toolkit

SOMObject class

Return Value
None

C Example

Below is the implementation for a class Animal that introduces an attribute sound of type string
and overrides somInit and somUninit, along with a main program that creates and then frees
an instance of class Animal:

#define Animal Class_ Source
#include <animal.ih>
#include <string.h>

SOM_Scope void SOMLINK somInit (Animal somSelf)

{
AnimalData *somThis = AnimalGetData (somSelf) ;
Environment *ev = somGetGlobalEnvironment () ;
Animal parents somInit (somSelf) ;
if (! get sound(somSelf, ev)) {
___set sound(somSelf, ev, SOMMalloc(100)) ;
strcpy (_ get sound(somSelf, ev), ”Unknown Noise”) ;

somPrintf (”New Animal Initialized\n”);

}

SOM_Scope void SOMLINK somUninit (Animal somSelf)
{
AnimalData *somThis = AnimalGetData (somSelf) ;
Environment *ev = somGetGlobalEnvironment () ;
if (__get sound(somSelf, ev)) {
SOMFree (_ get sound(somSelf, ev);
___set sound(somSelf, ev, (char*)o0);
somPrintf (”“Animal Uninitialized\n”) ;
Animal parents somUninit (somSelf) ;

}

/* main program */
#include <animal.h>
void main ()

{
Animal myAnimal;
myAnimal = AnimalNew () ;
_somFree (myAnimal) ;

!

/*

Program output:

New Animal Initialized
Animal Uninitialized

*/

Original Class
SOMObject

Related Information
Methods: somDefaultlnit, somNew, somRenew, somDestruct, somUninit

Programmers Reference Manual SOM kernel Ref — 149

SOMObject class

somlIsA Method

Pu rpose
Tests whether an object is an instance of a given class or of one of its subclasses. Not generally
overridden.
IDL Syntax
boolean somlisA (in SOMClass aClass);
Note: For backward compatibility, this method does not take an Environment parameter.
Description
Use the somIsA method to determine if an object can be treated like an instance of aClass.
SOM guarantees that if somIsA returns true, then the receiver will respond to all (static or
dynamic) methods supported by aClass.
Parameters
receiver A pointer to the object to be tested.
aClass A pointer to the class that the object should be tested against.

Return Value

The somIsA methods returns 1 (true) if the receiving object is an instance of the specified class
or (unlike somlsinstanceOf) of any of its descendant classes, and 0 (false) otherwise.

C Example
#include <dog.h>
/* ________________________________
Note: Dog is derived from Animal.
________________________________ */
main ()
{
Animal myAnimal;
Dog myDog;
SOMClass animalClass;
SOMClass dogClass;
myAnimal = AnimalNew () ;
myDog = DogNew () ;
animalClass = _somGetClass (myAnimal) ;
dogClass = _somGetClass (myDog) ;
if (_somIsA (myDog, animalClass))
somPrintf (“myDog IS an Animal\n”);
else
somPrintf (”myDog IS NOT an Animal\n”) ;
if (_somIsA (myAnimal, dogClass))
somPrintf ("myAnimal IS a Dog\n”);
else

somPrintf (“myAnimal IS NOT a Dog\n”) ;
_somFree (myAnimal) ;
_somFree (myDog) ;
1
/*
Output from this program:
myDog IS an Animal
myAnimal IS NOT a Dog
*/

Ref — 150 SOM kernel SOMobjects Developer Toolkit

SOMObject class

Original Class
SOMObject

Related Information

Methods: somDescendedFrom, somlsinstanceOf, somRespondsTo,
somSupportsMethod

Programmers Reference Manual SOM kernel Ref — 151

SOMObject class

somlsinstanceOf Method
Purpose

Determines whether an object is an instance of a specific class. Not generally overridden.

IDL Syntax

boolean somlsinstanceOf (in SOMClass aClass);

Note: For backward compatibility, this method does not take an Environment parameter.

Description

Use the somisinstanceOf method to determine if an object is an instance of a specific class.
This method tests an object for inclusion in one specific class. It is equivalent to the expression:

(aClass == somGetClass (receiver))
Parameters
receiver A pointer to the object to be tested.
aClass A pointer to the class that the object should be an instance of.

Return Value

The somlisinstanceOf method returns 1 (true) if the receiving object is an instance of the
specified class, and 0 (false) otherwise.

C Example
#include <dog.h>

Note: Dog is derived from Animal.

________________________________ */

Animal myAnimal;

Dog myDog;

SOMClass animalClass;
SOMClass dogClass;

myAnimal = AnimalNew () ;

myDog = DogNew () ;

animalClass = _somGetClass (myAnimal) ;

dogClass = _somGetClass (myDog) ;

if (somIsInstanceOf (myDog, animalClass))
somPrintf (“myDog is an instance of Animal\n”);

if (somIsInstanceOf (myDog, dogClass))
somPrintf ("myDog is an instance of Dog\n”) ;

if (_somIsInstanceOf (myAnimal, animalClass))
somPrintf ("myAnimal is an instance of Animal\n”) ;
if (somIsInstanceOf (myAnimal, dogClass))

somPrintf (“myAnimal is an instance of Dog\n”) ;
_somFree (myAnimal) ;
_somFree (myDog) ;
e
Output from this program:
myDog is an instance of Dog
myAnimal is an instance of Animal

*/

Ref — 152 SOM kernel SOMobjects Developer Toolkit

SOMObject class

Original Class
SOMObject

Related Information
Methods: somDescendedFrom, somIsA

Programmers Reference Manual SOM kernel Ref — 153

SOMObject class

somPrintSelf Method

Purpose

Outputs a brief description that identifies the receiving object. Designed to be overridden.

IDL Syntax
SOMObject somPrintSelf ();

Note: For backward compatibility, this method does not take an Environment parameter.

Description

somPrintSelf should output a brief string containing key information useful to identify the
receiver object, rather than a complete dump of the receiver object state as provided by
somDumpSelfint. The somPrintSelf method should use the character output routine
SOMOutCharRoutine (or any of the somPrintf functions) for this purpose. The default imple-
mentation outputs the name of the receiver object’s class and the receiver’s address in memory.

Because the most specific identifying information for an object will often be found within instance
data introduced by the class of an object, it is likely that a class implementor that overrides this
method will not need to invoke parent methods in order to provide a useful string identifying the
receiver object.

Parameters

receiver A pointer to the object to be described.

Return Value

The somPrintSelf method returns a pointer to the receiver object as its result.

C Example

#include <animal.h>
main ()

{

Animal myAnimal;

myAnimal = AnimalNew () ;
/* ... %/

_somPrintSelf (myAnimal) ;
_somFree (myAnimal) ;

}
/*

Output from this program:

{An instance of class Animal at address 0001CECO}
*/

Original Class
SOMObject

Related Information

Methods: somDumpSelf, somDumpSelfint

Ref — 154 SOM kernel SOMobjects Developer Toolkit

SOMObject class

somResetObj Method

Pu rpose
Resets an object’s class to its true class after use of the somCastObj method.
IDL Syntax
boolean somResetObj ();
Description
The somResetObj method resets an object’s class toits true class after use ofthe somCastObj
method.
Parameters
receiver A pointer to a SOM object.

Return Value
The somResetObj method returns 1 (TRUE) always.

Example

#include <som.h>
main ()

{

SOMClassMgr cm = somEnvironmentNew () ;

SOM_Test (1 == _somCastObj (cm, SOMObject)) ;
_somDumpSelf (cm, 0));
SOM_Test (1 == _somResetObj (cm)) ;

_somDumpSelf (cm, 0);

}

/* output:
{An instance of class SOMClassMgr->SOMObject
at address 20061268

An instance of class SOMClassMgr at address 20061268
<SOMClassMgr State Informations>

* ok X X ok X X
—~

Original Class
SOMObject

Related Information
Methods: somCastObj

Programmers Reference Manual SOM kernel Ref — 155

SOMObject class

somRespondsTo Method

Pur pose
Tests whether the receiving object supports a given method. Not generally overridden.

IDL Syntax

boolean somRespondsTo (in somld methodld);

Note: For backward compatibility, this method does not take an Environment parameter.

Description

The somRespondsTo method tests whether a specific (static or dynamic) method can be
invoked on the receiver object. This test is equivalent to determining whether the class of the
receiver supports the specified method on its instances.

Parameters
receiver A pointer to the object to be tested.
methodld A somld that represents the name of the desired method.

Return Value

The somRespondsTo method returns TRUE if the specified method can be invoked on the
receiving object, and FALSE otherwise.

C Example

Note: Animal supports a setSound method;
Animal does not support a doTrick method.

___ */
#include <animal.h>
main ()
Animal myAnimal;
char *methodNamel = “setSound”;
char *methodName2 = ”"doTrick”;

myAnimal = AnimalNew () ;
if (_somRespondsTo (myAnimal, SOM IdFromString (methodNamel)))
somPrintf ("“myAnimal responds to %s\n”, methodNamel) ;
if (somRespondsTo (myAnimal, SOM_IdFromString (methodName2)))
somPrintf ("myAnimal responds to %$s\n”, methodName2) ;
_somFree (myAnimal) ;
1
/*
Output from this program:
myAnimal responds to setSound

*/

Original Class
SOMObject

Related Information
Methods: somSupportsMethod

Ref — 156 SOM kernel SOMobjects Developer Toolkit

somUnini

SOMObject class

t Method

Purpose

IDL Syntax

Un-initializes the receiving object. Designed to be overridden by class implementors. Not
normally invoked directly by object clients.

void somUninit ();

Note: For backward compatibility, this method does not take an Environment parameter.

Description

The somUninit method performs the inverse of object initialization. Class implementors that
introduce instance data that points to allocated storage should override somUninit so allocated
storage can be freed when an object is freed.

This method is called automatically by somFree to clean up anything necessary (such as extra
storage dynamically allocated to the object) before somFree releases the storage allocated to
the object itself.

Code responsible for freeing an object must first know that there will be no further references to
this object. Once this is known, this code would normally invoke somFree (which calls
somuUninit). In cases where somRenew was used to create an object instance, however,
somFree cannot be called (for example, the storage containing the object may simply be a
location on the stack), and in this case, somUninit must be called explicitly.

When overriding this method, always call the parent-class versions of this method after doing
your own un-initialization. Furthermore, just as with somlinit, because your method may be
called multiple times (due to multiple inheritance), you should zero out references to memory
that is freed, and check for zeros before freeing memory and calling the parent methods.

Parameters

receiver A pointer to the object to be un-initialized.

Return Value

C Example

None

Following is the implementation for a class Animal that introduces an attribute sound of type
string and overrides somInit and somUninit, along with a main program that creates and then
frees an instance of class Animal:

Programmers Reference Manual SOM kernel Ref — 157

SOMObject class

#define Animal Class_Source
#include <animal.ih>
#include <string.h>

SOM_Scope void SOMLINK somInit (Animal somSelf)
{

AnimalData *somThis = AnimalGetData (somSelf) ;

Environment *ev = somGetGlobalEnvironment () ;

Animal parents somInit (somSelf) ;

if (! __get sound(somSelf, ev)) {
___set sound(somSelf, ev, SOMMalloc(100)) ;
strcpy (__get sound(somSelf, ev), ”Unknown Noise”);
somPrintf (”“New Animal Initialized\n”);

}

SOM_Scope void SOMLINK somUninit (Animal somSelf)
{
AnimalData *somThis = AnimalGetData (somSelf) ;
Environment *ev = somGetGlobalEnvironment () ;
if (_ get sound(somSelf, ev)) ({
SOMFree (_ get sound(somSelf, ev);
___set sound(somSelf, ev, (char*)O0);
somPrintf (”Animal Uninitialized\n”) ;
Animal parents somUninit (somSelf) ;

}

/* main program */
#include <animal.h>
void main()

{

Animal myAnimal;
myAnimal = AnimalNew () ;
_somFree (myAnimal) ;

}
/*

Program output:
New Animal Initialized
Animal Uninitialized

*/

Original Class
SOMObject

Related Information
Methods: somilnit, somNew, somRenew

Ref — 158 SOM kernel SOMobjects Developer Toolkit

