
 35Emitter Framework Guide and Reference

Reference for
Emitter Framework
Classes and Methods

SOMTAttributeEntryC class

 36 SOMobjects Developer Toolkit

SOMTAttributeEntryC Class

Description
A SOMTAttributeEntryC object represents an attribute declaration statement in a class inter-
face definition. It provides attributes for accessing the type of the attribute and whether it is
readonly, and methods for accessing the names of the attributes being declared and their
get/set methods.

File Stem
scattrib

Base
SOMTEntryC

Metaclass
SOMClass

Ancestor Classes
SOMTEntryC, SOMObject

Attributes
Listed below is each available attribute, with its corresponding type in parentheses, followed by
a description of its purpose:

somtIsReadonly (boolean)
 Whether the attribute is defined as readonly.
 This attribute has no “set” method.
somtAttribType (SOMTEntryC)
 A pointer to an entry object representing the base type of the attribute.
 This does not include pointer stars or array declarators; to get the full
 type, get each attribute declarator in turn and get its somtType attribute.
 This attribute has no “set” method.

New Methods
somtGetFirstAttributeDeclarator
somtGetNextAttributeDeclarator
somtGetFirstGetMethod
somtGetNextGetMethod
somtGetFirstSetMethod
somtGetNextSetMethod

Overriding Methods
somtSetSymbolsOnEntry
somDumpSelfInt

SOMTAttributeEntryC class

 37Emitter Framework Guide and Reference

somtGetFirst<Item> Methods

Purpose
These methods get the first declarator, “get” method, or “set” method for an attribute entry.

IDL Syntax
SOMTDataEntryC somtGetFirstAttributeDeclarator ();

SOMTMethodEntryC somtGetFirstGetMethod ();

SOMTMethodEntryC somtGetFirstSetMethod ();

Note: These methods do not take an Environment parameter.

Description
The somtGetFirst<Item> methods return the first item of the type shown above for the entry
specified by receiver. The next item of the same kind can be obtained using the corresponding
somtGetNext<Item> method. For example, the somtGetFirstAttributeDeclarator method
returns the entry representing the first declarator of the specified attribute entry. The
somtGetNextAttributeDeclarator can be used repeatedly to retrieve each successive
declarator.

Note that the same somtGetFirst<Item> and somtGetNext<Item> methods cannot be used in
doubly nested loops. For example, the following doubly nested loop will not work, because after
the first execution of the inner loop, the invocation of somtGetNextAttributeDeclarator in the
outer loop will return NULL:

for (d1 = _somtGetFirstAttributeDeclarator(attrib); d1;
 d1 = _somtGetNextAttributeDeclarator(attrib))
 for (d2 = _somtGetFirstAttributeDeclarator(attrib); d2;
 d2 = _somtGetNextAttributeDeclarator(attrib))
 /* etc. */

Nested loops such as the one above are permissible if the target object (for example, “attrib”) of
the inner loop differs from the target object of the outer loop, or if a different somtGetFirst<Item>
method is used in the inner loop (for instance, a somtGetNextGetMethod loop can be nested
inside a somtGetNextAttributeDeclarator loop).

Parameters
receiver The entry whose first item is to be retrieved.

Return Value
These methods return the first declarator, “get” method, or “set” method for an attribute entry.

Example
To iterate through the declarators of an attribute statement:

SOMTDataEntryC myEntry;
SOMTAttributeClassEntryC attrib;

printf(”List of declarators:\n”);
for (myEntry = _somtGetFirstAttributeDeclarator(attrib); myEntry;
 myEntry = _somtGetNextAttributeDeclarator(attrib))
 printf(”%s\n”, __get_somtEntryName(myEntry));

Related Information
Methods: somtGetNext<Item>

SOMTAttributeEntryC class

 38 SOMobjects Developer Toolkit

somtGetNext<Item> Methods
Purpose

These methods get the next declarator, “get” method, or “set” method for an attribute entry,
relative to the previous call for a similar entry.

IDL Syntax
SOMTDataEntryC somtGetNextAttributeDeclarator ();

SOMTMethodEntryC somtGetNextGetMethod ();

SOMTMethodEntryC somtGetNextSetMethod ();

Note: These methods do not take an Environment parameter.

Description
The somtGetNext<Item> methods return the next declarator, “get” method, or “set” method for
the entry represented by receiver, if it has a next item of that type. Otherwise, it returns NULL.

A call to a somtGetNext<Item> method is relative to the last call of either the same method or
the corresponding somtGetFirst<Item> method, applied to the same entry object.

Note that this implies that the same somtGetFirst<Item> and somtGetNext<Item> methods
cannot be used in doubly nested loops. For example, the following doubly nested loop will
not work, because following the first execution of the inner loop, the invocation of
somtGetNextAttributeDeclarator in the outer loop will return NULL:

for (d1 = _somtGetFirstAttributeDeclarator(attrib); d1;
 d1 = _somtGetNextAttributeDeclarator(attrib))
 for (d2 = _somtGetFirstAttributeDeclarator(attrib); d2;
 d2 = _somtGetNextAttributeDeclarator(attrib))
 /* etc. */

Nested loops such as the one above are permissible if the target object (for example, “attrib”) of
the inner loop differs from the target object of the outer loop, or if a different somtGetFirst<Item>
method is used in the inner loop (for instance, a somtGetNextGetMethod loop can be nested
inside a somtGetNextAttributeDeclarator loop).

Parameters
receiver The entry whose next item is to be retrieved.

Return Value
These methods return the next item (of the type shown above) for the entry represented by
receiver, if it has a next item of that type. Otherwise, it returns NULL. The type of item returned is
specific to the method; see the method call syntax shown above.

Example
To iterate through the declarators of an attribute statement:

SOMTDataEntryC myEntry;
SOMTAttributeClassEntryC attrib;

printf(”List of declarators:\n”);
for (myEntry = _somtGetFirstAttributeDeclarator(attrib); myEntry;
 myEntry = _somtGetNextAttributeDeclarator(attrib))
 printf(”%s\n”, __get_somtEntryName(myEntry));

Related Information
Methods: somtGetFirst<Item>

SOMTBaseClassEntryC class

 39Emitter Framework Guide and Reference

SOMTBaseClassEntryC Class

Description
A SOMTBaseClassEntryC object represents a base class declaration in a class definition. The
entry for the base class itself is accessed via the somtBaseClassDef attribute.

File Stem
scbase

Base
SOMTEntryC

MetaClass
SOMClass

Ancestor Classes
SOMTEntryC, SOMObject

Attributes
Listed below is each available attribute, with its corresponding type in parentheses, followed by
a description of its purpose:

somtBaseClassDef (SOMTClassEntryC)
 An entry object representing the definition of the base class named in
 this entry. This attribute has no “Set” method.

New Methods
None.

Overriding Methods
somDumpSelfInt
somtSetSymbolsOnEntry

SOMTClassEntryC class

 40 SOMobjects Developer Toolkit

SOMTClassEntryC Class

Description
A SOMTClassEntryC object represents a complete class interface definition. A
SOMTClassEntryC object provides methods for accessing the constants, types, structs,
unions, enums, sequences, attributes, and methods defined within an interface statement. It
also provides methods for accessing the instance data, passthrus, and release names defined
in the SOM IDL “implementation” section of the interface statement.

A number of the possible statements in an IDL definition are optional. When they are missing
from the class definition, then methods that would return an entry for that kind of statement will
return NULL.

File Stem
scclass

Base
SOMTEntryC

Metaclass
SOMClass

Ancestor Classes
SOMTEntryC, SOMObject

Attributes
Listed below is each available attribute, with its corresponding type in parentheses, followed by
a description of its purpose:

somtSourceFileName (string)
 The name of the file containing the class definition.
 This attribute has no “Set” method.
somtMetaClassEntry (SOMTMetaClassEntryC)
 A pointer to an entry object representing the metaclass statement in a class
 definition, or NULL if there is none explicitly specified.
 This attribute has no “Set” method.
somtClassModule (SOMTModuleEntryC)
 The module enclosing this class, or NULL if there is not one.
somtNewMethodCount (long)
 The number of methods the class introduces.
 This attribute has no “Set” method.
somtStaticMethodCount (long)
 The number of static methods the class introduces.
 This attribute has no “Set” method.
somtOverrideMethodCount (long)
 The number of methods the class overrides.
 This attribute has no “Set” method.
somtProcMethodCount (long)
 The number of procedure methods the class implements.
 This attribute has no “Set” method.

SOMTClassEntryC class

 41Emitter Framework Guide and Reference

somtVAMethodCount (long)
 The number of methods in the class that take a variable number of arguments.
 This attribute has no “Set” method.
somtBaseCount (int)
 The number of base classes for the class.
 This attribute has no “Set” method.
somtMetaclassFor (SOMTClassEntryC)
 If the class is a metaclass, a pointer to an entry object representing a class for which
 it is a metaclass.
 This attribute has no “Set” method.
somtForwardRef (boolean)
 Whether or not this entry represents a forward reference.
 This attribute has no “Set” method.

New Methods

Group: scanners
somtGetFirstBaseClass
somtGetNextBaseClass
somtGetFirstReleaseName
somtGetNextReleaseName
somtGetReleaseNameList
somtGetFirstPassthru
somtGetNextPassthru
somtGetFirstData
somtGetNextData
somtGetFirstMethod
somtGetNextMethod
somtGetFirstInheritedMethod
somtGetNextInheritedMethod
somtGetFirstAttribute
somtGetNextAttribute
somtGetFirstConstant
somtGetNextConstant
somtGetFirstStruct
somtGetNextStruct
somtGetFirstUnion
somtGetNextUnion
somtGetFirstEnum
somtGetNextEnum
somtGetFirstTypedef
somtGetNextTypedef
somtGetFirstSequence
somtGetNextSequence
somtGetFirstPubdef
somtGetNextPubdef

Group: filters
somtFilterNew
somtFilterOverridden

Overriding Methods
somDumpSelfInt
somtSetSymbolsOnEntry

SOMTClassEntryC class

 42 SOMobjects Developer Toolkit

somtFilterNew Method

Purpose
Determines whether a method is introduced by a particular class.

IDL Syntax
boolean somtFilterNew (

in SOMTMethodEntryC method);

Note: This method does not take an Environment parameter.

Description
The somtFilterNew method returns TRUE if the specified method is introduced by the class
represented by the receiver. Otherwise, it returns FALSE.

Parameters
receiver An object of class SOMTClassEntryC representing a class.

method An object of class SOMTMethodEntryC representing the method to be tested.

Return Value
The somtFilterNew method returns TRUE if the specified method is introduced by the class
represented by the receiver. Otherwise, it returns FALSE.

Example
SOMTClassEntryC cls = __get_somtTargetClass(emitter);
SOMTMethodEntryC method;
method = _somtGetFirstMethod(cls);
if (_somtFilterNew(cls, method))
 printf(”Method %s is introduced by %s.\n”,
 __get_somtEntryName(method),

 __get_somtEntryName(cls));

Original Class
SOMTClassEntryC

Related Information
Methods: somtFilterOverridden, somtNew, somtNewProc, somtNewNoProc

SOMTClassEntryC class

 43Emitter Framework Guide and Reference

somtFilterOverridden Method

Purpose
Determines whether a method is overridden by a particular class.

IDL Syntax
boolean somtFilterOverridden (

 in SOMTMethodEntryC method);

Note: This method does not take an Environment parameter.

Description
The somtFilterOverridden method returns TRUE if the specified method is overridden by the
class represented by the receiver. Otherwise, it returns FALSE.

Parameters
receiver An object of class SOMTClassEntryC representing a class.

method An object of class SOMTMethodEntryC representing the method to be tested.

Return Value
The somtFilterOverridden method returns TRUE if the specified method is overridden by the
class represented by the receiver. Otherwise, it returns FALSE.

Example
SOMTClassEntryC cls = __get_somtTargetClass(emitter);
SOMTMethodEntryC method;
method = _somtGetFirstMethod(cls);
if (_somtFilterOverridden(cls, method))
 printf(”Method %s is an overriding method.\n”,
 __get_somtEntryName(method));

Original Class
SOMTClassEntryC

Related Information
Methods: somtFilterNew, somtOverridden

SOMTClassEntryC class

 44 SOMobjects Developer Toolkit

somtGetFirst<Item> Methods

Purpose
These methods get the first item (such as a parent class, method, constant, etc.) for a class
entry.

IDL Syntax
SOMTAttributeEntryC somtGetFirstAttribute ();

SOMTBaseClassEntryC somtGetFirstBaseClass ();

SOMTConstEntryC somtGetFirstConstant ();

SOMTDataEntryC somtGetFirstData ();

SOMTEnumEntryC somtGetFirstEnum ();

SOMTMethodEntryC somtGetFirstInheritedMethod ();

SOMTMethodEntryC somtGetFirstMethod ();

SOMTPassthruEntryC somtGetFirstPassthru ();

string somtGetFirstReleaseName ();

SOMTSequenceEntryC somtGetFirstSequence ();

SOMTStructEntryC somtGetFirstStruct ();

SOMTTypedefEntryC somtGetFirstTypedef ();

SOMTUnionEntryC somtGetFirstUnion ();

SOMTEntryC somtGetFirstPubdef ();

Note: These methods do not take an Environment parameter.

Description
The somtGetFirst<Item> methods return the first item of the type shown above for the entry
specified by receiver, if it has one. Otherwise, it returns NULL. The next item of the same kind can
be obtained using the corresponding somtGetNext<Item> method. For example, the
somtGetFirstMethod method returns the entry representing the first new or overriding method
of the specified class. If the class has no new or overriding methods, it returns NULL. The
somtGetNextMethod can be used repeatedly to retrieve each successive method. The somt-
GetFirstPubdef method returns the first constant/type definition of the class, whether a
typedef, struct, union, etc. If the class does not explicitly declare a metaclass or include the IDL
specification for SOMClass, then the first “pubdef” will be an entry introducing SOMClass as a
valid type name.

Note that the same somtGetFirst<Item> and somtGetNext<Item> methods cannot be used in
doubly nested loops. For example, the following doubly nested loop will not work, because
following the first execution of the inner loop, the invocation of somtGetNextMethod in the
outer loop will return NULL:

for (m1 = _somtGetFirstMethod(cls); m1;
 m1 = _somtGetNextMethod(cls))
 for (m2 = _somtGetFirstMethod(cls); m2;
 m2 = _somtGetNextMethod(cls))
 /* etc. */

Nested loops such as the one above are permissible if the target object (e.g., “cls”) of the inner
loop differs from the target object of the outer loop, or if a different somtGetFirst<Item> method
is used in the inner loop (for instance, a somtGetNextParameter loop can be nested inside a
somtGetNextMethod loop).

SOMTClassEntryC class

 45Emitter Framework Guide and Reference

Parameters
receiver The entry whose first item is to be retrieved.

Return Value
These methods return the first item (such as a parent class, method, constant, etc.) for a class
entry. The type of item returned is specific to the method; see the method call syntax shown
above.

Example
To iterate through the base classes of a class:

SOMTBaseClassEntryC myEntry;

printf(”List of base classes:\n”);
for (myEntry = _somtGetFirstBaseClass(cls); myEntry;
 myEntry = _somtGetNextBaseClass(cls))
 printf(”%s\n”, __get_somtEntryName(myEntry));

Related Information
Methods: somtGetNext<Item>

SOMTClassEntryC class

 46 SOMobjects Developer Toolkit

somtGetNext<Item> Methods

Purpose
These methods get the next item (such as a parent class, method, constant, etc.) for a class
entry, relative to the previous call for a similar entry.

IDL Syntax
SOMTAttributeEntryC somtGetNextAttribute ();

SOMTBaseClassEntryC somtGetNextBaseClass ();

SOMTConstEntryC somtGetNextConstant ();

SOMTDataEntryC somtGetNextData ();

SOMTEnumEntryC somtGetNextEnum ();

somtMethodEntryC somtGetNextInheritedMethod ();

somtMethodEntryC somtGetNextMethod ();

SOMTPassthruEntryC somtGetNextPassthru ();

string somtGetNextReleaseName ();

SOMTSequenceEntryC somtGetNextSequence ();

SOMTStructEntryC somtGetNextStruct ();

SOMTTypedefEntryC somtGetNextTypedef ();

SOMTUnionEntryC somtGetNextUnion ();

SOMTEntryC somtGetNextPubdef ();

Note: These methods do not take an Environment parameter.

Description
The somtGetNext<Item> methods return the next item (of the type shown above) for the entry
represented by receiver, if it has a next item of that type. Otherwise, it returns NULL. The
somtGetNextPubdef method returns the next constant/type definition of the class, whether a
typedef, struct, union, etc.

A call to a somtGetNext<Item> method is relative to the last call of either the same method or
the corresponding somtGetFirst<Item> method, applied to the same entry object. Note that
this implies that the same somtGetFirst<Item> and somtGetNext<Item> methods cannot be
used in doubly nested loops. For example, the following doubly nested loop will not work,
because following the first execution of the inner loop, the invocation of somtGetNextMethod in
the outer loop will return NULL:

for (m1 = _somtGetFirstMethod(cls); m1;
 m1 = _somtGetNextMethod(cls))
 for (m2 = _somtGetFirstMethod(cls); m2;
 m2 = _somtGetNextMethod(cls))
 /* etc. */

Nested loops such as the one above are permissible if the target object (e.g., “cls”) of the inner
loop differs from the target object of the outer loop, or if a different somtGetFirst<Item> method
is used in the inner loop (for instance, a somtGetNextParameter loop can be nested inside a
somtGetNextMethod loop).

Parameters
receiver The entry whose next item is to be retrieved.

SOMTClassEntryC class

 47Emitter Framework Guide and Reference

Return Value
These methods return the next item (of the type shown above) for the entry represented by
receiver, if it has a next item of that type. Otherwise, it returns NULL. The type of item returned is
specific to the method; see the method call syntax shown above

Example
To iterate through the base classes:

SOMTBaseClassEntryC myEntry;

printf(”List of base classes:\n”);
for (myEntry = _somtGetFirstBaseClass(cls); myEntry;
 myEntry = _somtGetNextBaseClass(cls))
 printf(”%s\n”, __get_somtEntryName(myEntry));

Related Information
Methods: somtGetFirst<Item>

SOMTClassEntryC class

 48 SOMobjects Developer Toolkit

somtGetReleaseNameList Method

Purpose
Gets the release-order list of a class.

IDL Syntax
long somtGetReleaseNameList (

in string buffer);

Note: This method does not take an Environment parameter.

Description
The somtGetReleaseNameList method puts the release-order list of the specified class in
buffer. Names in the list are delimited by newlines so that the list can be used as a symbol value
suitable for list substitution. Users must allocate enough space for the buffer; no tests
are made to assure that adequate space has been allocated. Upon completion,
somtGetReleaseNameList returns the number of release-order names stored in buffer.

Parameters
receiver An object of class SOMTClassEntryC representing a class.

buffer The address of a character buffer in which to store the release-order list.

Return Value
The somtGetReleaseNameList method returns the number of names stored in buffer.

Original Class
SOMTClassEntryC

Related Information
Methods: somtGetFirstReleaseName, somtGetNextReleaseName

SOMTCommonEntryC class

 49Emitter Framework Guide and Reference

SOMTCommonEntryC Class
Description

The SOMTCommonEntryC class defines methods and attributes that are common to its
subclasses — SOMTMethodEntryC, SOMTDataEntryC, SOMTUserDefinedTypeEntryC,
and SOMTParameterEntryC. Entry objects that an emitter uses are actually instances of one
of these subclasses, rather than of SOMTCommonEntryC itself. The SOMTCommonEntryC
class provides attributes and methods for accessing type information.

File Stem
sccommon

Base
SOMTEntryC

Metaclass
SOMClass

Ancestor Classes
SOMTEntryC, SOMObject

Attributes
Listed below is each available attribute, with its corresponding type in parentheses, followed by
a description of its purpose.

somtTypeObj (SOMTEntryC)
 A pointer to the object representing the type of the entry. This attribute may be NULL
 when processing an input file containing an OIDL, rather than an IDL, interface
 specification. This attribute has no “Set” method.

somtType (string)
 The IDL type of the entry, in string form. For methods, this is the return type; for data,
 parameters, or user-defined types, it is the type. It is in the form
 <typename><pointer stars> <array– declarators>.
 This attribute has no “Set” method.

somtPtrs (string)
 The string of stars associated with a pointer type. For example, a type “short *”
 has somtPtrs = “*”, a type “short **” has somtPtrs = “**”, etc.
 If the type of the entry is not a pointer, then somtPtrs = NULL.
 This attribute may be NULL when processing an input file containing an OIDL,
 rather than an IDL, interface specification. This attribute has no “Set” method.

somtArrayDimsString (string)
 The array dimensions, as a string, for entries of array type.
 This attribute has no “Set” method.

New Methods
somtIsArray
somtIsPointer
somtGetFirstArrayDimension
somtGetNextArrayDimension

Overriding Methods
somtSetSymbolsOnEntry
somDumpSelfInt

SOMTCommonEntryC class

 50 SOMobjects Developer Toolkit

somtGetFirstArrayDimension Method

Purpose
The somtGetFirstArrayDimension method gets the first array dimension for a particular entry.

IDL Syntax
unsigned long somtGetFirstArrayDimension ();

Note: This method does not take an Environment parameter.

Description
The somtGetFirstArrayDimension method returns the first array dimension for the entry on
which the method is invoked, if it has one. Otherwise, it returns zero. The next array dimension
can be obtained using the corresponding somtGetNextArrayDimension method.

Note that the somtGetFirstArrayDimension and somtGetNextArrayDimension methods
cannot be used in doubly nested loops. For example, the following doubly nested loop will not
work, because following the first execution of the inner loop, the invocation of
somtGetNextArrayDimension in the outer loop will return zero:

for (ad1 = _somtGetFirstArrayDimension(entry); ad1;
 ad1 = _somtGetNextArrayDimension(entry))
 for (ad2 = _somtGetFirstArrayDimension(entry); ad2;
 ad2 = _somtGetNextArrayDimension(entry))
 /* etc. */

Nested loops such as the one above are permissible if the target object (e.g., “entry”) of the inner
loop differs from the target object of the outer loop, or if a different somtGetFirst<Item> method
is used in the inner loop (for instance, a somtGetNextParameter loop can be nested inside a
somtGetNextArrayDimension loop).

The somtGetFirstArrayDimension method may not be reliable when processing an OIDL,
rather than an IDL, interface specification.

Parameters
receiver The entry whose first array dimension is to be retrieved.

Return Value
The somtGetFirstArrayDimension method returns the first array dimension for a particular
entry (method, parameter, user-defined type, etc.), if it has one; otherwise, it returns zero.

Example
To iterate through the array dimensions of a method:

unsigned long n;

printf(”List of array dimensions:\n”);
for (n = _somtGetFirstArrayDimension(method); n;
 n = _somtGetNextArrayDimension(method))
 printf(”[%lu]”, n);

Related Information
Methods: somtGetNextArrayDimension

SOMTCommonEntryC class

 51Emitter Framework Guide and Reference

somtGetNextArrayDimension Method

Purpose
Gets the next array dimension for a particular entry, relative to the previous call for a similar
entry.

IDL Syntax
unsigned long somtGetNextArrayDimension ();

Note: This method does not take an Environment parameter.

Description
The somtGetNextArrayDimension method returns the next array dimension for the entry
represented by receiver, if it has a next dimension. Otherwise, it returns zero.

A call to a somtGetNextArrayDimension method is relative to the last call of either the same
method or the corresponding somtGetFirstArrayDimension method, applied to the same
entry object. Note that this implies that the same somtGetFirstArrayDimension and
somtGetNextArrayDimension methods cannot be used in doubly nested loops. For example,
the following doubly nested loop will not work, because following the first execution of the inner
loop, the invocation of somtGetNextArrayDimension in the outer loop will return zero:

for (ad1 = _somtGetFirstArrayDimension(entry); ad1;
 ad1 = _somtGetNextArrayDimension(entry))
 for (ad2 = _somtGetFirstArrayDimension(entry); ad2;
 ad2 = _somtGetNextArrayDimension(entry))
 /* etc. */

Nested loops such as the one above are permissible if the target object (e.g., “entry”) of the inner
loop differs from the target object of the outer loop, or if a different somtGetFirst<Item> method
is used in the inner loop (for instance, a somtGetNextParameter loop can be nested inside a
somtGetNextArrayDimension loop).

Parameters
receiver The entry whose next array dimension is to be retrieved.

Return Value
The somtGetNextArrayDimension method returns the next array dimension for the specified
entry (method, parameter, user-defined type, etc.), if it has a next dimension. Otherwise, it
returns zero.

Example
To iterate through the array dimensions of a method:

unsigned long n;

printf(”List of array dimensions:\n”);
for (n = _somtGetFirstArrayDimension(method); n;
 n = _somtGetNextArrayDimension(method))
 printf(”[%lu]”, n);

Related Information
Methods: somtGetFirstArrayDimension

SOMTCommonEntryC class

 52 SOMobjects Developer Toolkit

somtIsArray Method

Purpose
Tests to determine whether the type of a method, data item, user-defined type, attribute
declarator, struct member declarator, or parameter is an array. If so, its size is returned.

IDL Syntax
boolean somtIsArray (

out long *size);

Note: This method does not take an Environment parameter.

Description
The somtIsArray method has a dual purpose. If the type of the receiver involves an array, then
somtIsArray returns TRUE and sets size to the size (in the first dimension) of the array encoun-
tered. If no array is encountered, then somtIsArray returns FALSE.

Parameters
receiver An object of class SOMTCommonEntryC representing a method, data item,

user-defined type, declarator, or parameter to test.

size The address where the size of the array should be stored.

Return Value
If the specified entry’s type is an array, then the somtIsArray method returns TRUE and size is
set to the size (in the first dimension) of the array. Otherwise, somtIsArray returns FALSE.

Original Class
SOMTCommonEntryC

Related Information
Methods: somtIsPointer

SOMTCommonEntryC class

 53Emitter Framework Guide and Reference

somtIsPointer Method

Purpose
Tests whether the type of a method, data item, user-defined type, attribute declarator, struct
member declarator, or parameter is a pointer.

IDL Syntax
boolean somtIsPointer ();

Note: This method does not take an Environment parameter.

Description
The somtIsPointer method returns TRUE if the type of the SOMTCommonEntryC object is a
pointer. Otherwise, it returns FALSE.

Parameters
receiver An object of class SOMTCommonEntryC representing the entry to be tested.

Return Value
The somtIsPointer method returns TRUE if the type of the SOMTCommonEntryC object is a
pointer. Otherwise, it returns FALSE.

Example
SOMTCommonEntryC myEntry;

if(somtIsPointer(myEntry)
 printf(“Saw a pointer.\n”);
else
 printf(”Didn’t see a pointer!\n”);

Original Class
SOMTCommonEntryC

Related Information
Methods: somtIsArray

SOMTConstEntryC class

 54 SOMobjects Developer Toolkit

SOMTConstEntryC Class

Description
A SOMTConstEntryC object represents a constant definition. It provides attributes for acces-
sing the type and value of the constant.

File Stem
scconst

Base
SOMTEntryC

Metaclass
SOMClass

Ancestor Classes
SOMTEntryC, SOMObject

Attributes
Listed below is each available attribute, with its corresponding type in parentheses, followed by
a description of its purpose:

somtConstTypeObj (SOMTEntryC)
 A pointer to an object representing the type of the constant’s value.
 This attribute has no “set” method.

somtConstType (string)
 The type of the constant’s value, as a string. This attribute has no “set” method.

somtConstStringVal (string)
 The (unevaluated) value of the constant, as a string. (Constants within the value
 expression are replaced with their values, however.) The value of constants of
 type string or char do not include the quotes, unlike the somtConstVal attribute.
 This attribute has no “set” method.

somtConstVal (string)
 The (evaluated) value of the constant, as a string. (For constants of type string or char,
 the somtConstVal attribute includes the quotes, while the somtConstStringVal attribute
 does not.) This attribute has no “set” method. The “get” method returns a string whose
 ownership is transferred to the caller.

somtConstIsNegative (boolean)
 Whether the constant’s value is a negative (short or long) integer.

somtConstNumVal (unsigned long)
 The numeric value of the constant. This attribute has no “set” method.
 This attribute should only be used if the value of the constant can be represented
 by an unsigned long (i.e., not if its type is “string,” “float,” or “double,” or if its
 somtConstIsNegative attribute is TRUE).

somtConstNumNegVal (long)
 The numeric value of the constant, if it is a negative (short or long) integer.
 This attribute has no “set” method. This attribute should be used instead of
 somtConstNumVal if the value of the constant is negative (i.e., if its
 somtConstIsNegative attribute is TRUE).

SOMTConstEntryC class

 55Emitter Framework Guide and Reference

New Methods
None.

Overriding Methods
somtSetSymbolsOnEntry
somDumpSelfInt

SOMTDataEntryC class

 56 SOMobjects Developer Toolkit

SOMTDataEntryC Class

Description
A SOMTDataEntryC object represents either an internal instance data declaration in the
“implementation” section of a SOM IDL class interface definition or a declarator of an attribute or
struct member.

File Stem
scdata

Base
SOMTCommonEntryC

Metaclass
SOMClass

Ancestor Classes
SOMTCommonEntryC, SOMTEntryC, SOMObject

Attributes
Listed below is each available attribute, with its corresponding type in parentheses, followed by
a description of its purpose. None of the following attributes has a “set” method.

somtIsSelfRef (boolean)
 Whether a declarator of a structure member is self-referential (pointing to the same type
 of structure for which it is a member).
 This attribute has no “Set” method.

New Methods
None.

Overriding Methods
somtSetSymbolsOnEntry
somDumpSelfInt

SOMTEmitC class

 57Emitter Framework Guide and Reference

SOMTEmitC Class

Description
An object of the SOMTEmitC class represents an emitter. A new type of emitter can be
constructed by subclassing this class and overriding the somtGenerateSections method (and
other methods, if necessary).

An emitter has as attributes (see below): a target file, a target class or target module, and a
template. The target file is the file to which output will be directed. The target class/module (the
class/module about which information will be emitted) is represented by an object of class
SOMTClassEntryC or SOMTModuleEntryC (depending on whether the emitter is being in-
voked for a class or a module). This object is constructed by the SOM Compiler when it compiles
the IDL specification. The SOMTClassEntryC and SOMTModuleEntryC classes provide
methods for accessing information found in the IDL specification of the target class/module.

The template of the emitter defines the format and content of the sections that the emitter
produces. (The emitter itself controls which sections are actually emitted and their order, by its
implementation of the somtGenerateSections method.) The template is represented by an
object of class SOMTTemplateOutputC that is initialized from the template file (typically a .efw
file). The template is defined in terms of symbols that, when emitted, are replaced by values
appropriate for the emitter’s target class/module. The SOMTemplateOutputC class defines
several general-purpose symbols as well as methods through which an emitter can define
special-purpose symbols. An emitter’s template also maintains the emitter’s symbol table.

The SOMTEmitC class provides methods for emitting sections that are common to many
emitter templates (sections for attribute definitions, method definitions, etc.). These methods
are listed in the sections group, below. A subclass of SOMTEmitC can override these methods
to change the way that a particular section is emitted. The SOMTTemplateOutputC class
provides methods for defining and emitting special-purpose sections.

Emitter Sections
The SOMTEmitC class provides methods for emitting the following template sections. The
default section name is given in parentheses. By convention, section names end in S.

Prolog Describes text to be emitted before any other sections (prologS).

Base Includes Determines how base (parent) class #include statements are emitted
(baseIncludesS).

Meta Include Determines how a metaclass #include statement is emitted (metaIncludeS).

Class Determines what information about the class as a whole is emitted (classS).

Base Determines what information about a base (parent) classes of a class is
emitted (baseS).

Meta Determines what information about the class’s metaclass is emitted (metaS).

Constant Determines what information about user-defined constants is emitted
(constantS).

Typedef Determines what information about user-defined types is emitted (typedefS).

Struct Determines what information about user-defined structs is emitted (structS).

Union Determines what information about user-defined unions is emitted (unionS).

Enum Determines what information about user-defined enumerations is emitted
(enumS).

SOMTEmitC class

 58 SOMobjects Developer Toolkit

Attribute Determines what information about the class’s attributes is emitted
 (attributeS).

Methods Determines what information about the methods of a class is emitted
(methodsS). More specialized method sections can be specified using
inheritedMethodsS or overrideMethodsS).

Release Determines how information about the release order statement of a class
definition is emitted (releaseS).

Passthru Determines what information about passthru statements is emitted
(passthruS).

Data Determines what information about internal instance variables of a class is
emitted (dataS).

Interface Determines what information about the interfaces in a module is emitted
(interfaceS).

Module Determines what information about a module is emitted (moduleS).

Epilog Describes text to be emitted after all other sections are emitted (epilogS).

Repeating Sections
Some sections apply to a variable number of items that must be dealt with iteratively. This can be
true of the base section (since a class can have more that one base class), as well as the base
includes, constant, typedef, struct, union, enum, methods, data, passthru, interface and module
sections. These repeating sections can be preceded by a prolog (information to be emitted prior
to iterating over the items), and followed by an epilog (information to be emitted after iterating
over the items). The SOMTEmitC class provides methods for emitting the following prolog and
epilog sections:

basePrologS, baseEpilogS, baseIncludesPrologS, baseIncludesEpilogS,
constantPrologS, constantEpilogS, typedefPrologS, typedefEpilogS,
structPrologS, structEpilogS, unionPrologs, unionEpilogS,
enumPrologS, enumEpilogS, passthruPrologS, passthruEpilogS,
dataPrologS, dataEpilogS, attributePrologS, attributeEpilogS,
methodsPrologS, methodsEpilogS, interfacePrologS, interfaceEpilogS,
modulePrologS, moduleEpilogS.

An emitter typically emits a repeating section as follows:

1. The prolog section, if any, is emitted.

2. The emitter iterates over each item to be described, emitting the section body for each.

3. The epilog section, if any, is emitted.

To facilitate emitting repeating sections, the SOMTEmitC class provides a set of scanning
methods (listed below under “Scanning”) that perform the above steps for a particular repeating
section.

File Stem
scemit

Base
SOMObject

Metaclass
SOMClass

Ancestor Classes
SOMObject

SOMTEmitC class

 59Emitter Framework Guide and Reference

Attributes
Listed below is each available attribute, with its corresponding type in parentheses, followed by
a description of its purpose:

somtTemplate (SOMTTemplateOutputC)
 The template for the emitter.
somtTargetFile (FILE)
 The target file for the emitter.
somtTargetClass (SOMTClassEntryC)
 The target class for the emitter.
 If the emitter is handling a module rather than a class, then this attribute is NULL.
somtTargetModule (SOMTModuleEntryC)
 The target module for the emitter.
 If the emitter is handling a class rather than a module, then this attribute is NULL.
somtEmitterName (string)
 The name by which the emitter is invoked (using the “–s” option of the “sc” command).
 This is typically the filestem of the emitter’s .idl file.

New Methods
Group: framework

somtGenerateSections
somtOpenSymbolsFile

somtSetPredefinedSymbols
somtFileSymbols
somtGetGlobalModifierValue
somtGetFirstGlobalDefinition
somtGetNextGlobalDefinition

Group: sections
somtEmitProlog
somtEmitBaseIncludesProlog
somtEmitBaseIncludes
somtEmitBaseIncludesEpilog
somtEmitMetaInclude
somtEmitClass
somtEmitMeta
somtEmitBaseProlog
somtEmitBase
somtEmitBaseEpilog
somtEmitConstantProlog
somtEmitConstant
somtEmitConstantEpilog
somtEmitTypedefProlog
somtEmitTypedef
somtEmitTypedefEpilog
somtEmitStructProlog
somtEmitStruct
somtEmitStructEpilog
somtEmitUnionProlog
somtEmitUnion
somtEmitUnionEpilog
somtEmitEnumProlog
somtEmitEnum

SOMTEmitC class

 60 SOMobjects Developer Toolkit

somtEmitEnumEpilog
somtEmitAttributeProlog
somtEmitAttribute
somtEmitAttributeEpilog
somtEmitFullPassthru
somtEmitPassthruProlog
somtEmitPassthru
somtEmitPassthruEpilog
somtEmitRelease
somtEmitDataProlog
somtEmitData
somtEmitDataEpilog
somtEmitMethodsProlog
somtEmitMethod
somtEmitMethods
somtEmitMethodsEpilog
somtEmitInterfaceProlog
somtEmitInterface
somtEmitInterfaceEpilog
somtEmitModuleProlog
somtEmitModule
somtEmitModuleEpilog
somtEmitEpilog

Group: scanning
somtScanBases
somtScanBasesF
somtScanConstants
somtScanTypedefs
somtScanStructs
somtScanUnions
somtScanEnums
somtScanAttributes
somtScanMethods
somtScanData
somtScanDataF
somtScanPassthru
somtScanInterfaces
somtScanModules

Group: filters
somtNew
somtImplemented
somtOverridden
somtInherited
somtAll
somtNewProc
somtNewNoProc
somtVA

Overriding Methods
somInit,
somUninit,
somDumpSelfInt

SOMTEmitC class

 61Emitter Framework Guide and Reference

somtAll Method

Purpose
Checks whether the target class of an emitter supports a specified instance method.

IDL Syntax
boolean somtAll (

in SOMTMethodEntryC method);

Note: This method does not take an Environment parameter.

Description
The somtAll method checks whether the target class of an emitter supports a specified instance
method (whether the method can be invoked on instances of the class).

Parameters
receiver An object of class SOMTEmitC representing an emitter.

method An object of class SOMTMethodEntryC representing a method to be tested.

Return Value
The somtAll method returns TRUE if the emitter’s target class supports the specified method.
Otherwise, it returns FALSE.

Example
_somtScanMethods(emitter, ”somtAll”, ”somtEmitMethodsProlog”,

”somtEmitMethod”, ”somtEmitMethodsEpilog”,TRUE);

Original Class
SOMTEmitC

Related Information
Methods: somtOverridden, somtInherited, somtImplemented, somtNew, somtNewProc,
somtNewNoProc, somtVA, somtScanMethods

SOMTEmitC class

 62 SOMobjects Developer Toolkit

somtEmit<Section> Methods

Purpose
These methods emit a particular section from an emitter’s template.

IDL Syntax
void somtEmitAttribute (in SOMTAttributeEntryC entry);

void somtEmitAttributeEpilog ();

void somtEmitAttributeProlog ();

void somtEmitBase (in SOMTBaseClassEntryC entry);

void somtEmitBaseEpilog ();

void somtEmitBaseIncludes (in SOMTBaseClassEntryC entry);

void somtEmitBaseIncludesEpilog ();

void somtEmitBaseIncludesProlog ();

void somtEmitBaseProlog ();

void somtEmitClass ();

void somtEmitConstant (in SOMTConstEntryC entry);

void somtEmitConstantEpilog ();

void somtEmitConstantProlog ();

void somtEmitData (in SOMTDataEntryC entry);

void somtEmitDataEpilog ();

void somtEmitDataProlog ();

void somtEmitEnum (in SOMTEnumEntryC entry);

void somtEmitEnumEpilog ();

void somtEmitEnumProlog ();

void somtEmitEpilog ();

void somtEmitInterface (in SOMTClassEntryC entry);

void somtEmitInterfaceEpilog ();

void somtEmitInterfaceProlog ();

void somtEmitMeta ();

void somtEmitMetaInclude ();

void somtEmitMethod (in SOMTMethodEntryC entry);

void somtEmitMethods (in SOMTMethodEntryC entry);

void somtEmitMethodsEpilog ();

void somtEmitMethodsProlog ();

void somtEmitModule (in SOMTModuleEntryC entry);

void somtEmitModuleEpilog ();

void somtEmitModuleProlog ();

void somtEmitPassthru (in SOMTPassthruEntryC entry);

void somtEmitPassthruEpilog ();

SOMTEmitC class

 63Emitter Framework Guide and Reference

void somtEmitPassthruProlog ();

void somtEmitProlog ();

void somtEmitRelease ();

void somtEmitStruct (in SOMTStructEntryC entry);

void somtEmitStructEpilog ();

void somtEmitStructProlog ();

void somtEmitTypedef (in SOMTTypedefEntryC entry);

void somtEmitTypedefEpilog ();

void somtEmitTypedefProlog ();

void somtEmitUnion (in SOMTUnionEntryC entry);

void somtEmitUnionEpilog ();

void somtEmitUnionProlog ();

Note: These methods do not take an Environment parameter.

Description
The somtEmit<section> methods emit a particular section from an emitter’s template, using the
somtOutputSection method. In the case of a repeating section, an entry object is passed as a
parameter; prior to emitting the section, the somtSetSymbolsOnEntry method is invoked on
that entry so that the template symbols used in the section to be emitted will correspond to that
entry.

The section emitted by each of these methods is determined by a section-name symbol, as
shown in the adjacent table. To change the section to be emitted by a particular method, change
the value of the corresponding section-name symbol (using somtSetSymbolCopyValue) prior
to invoking the section-emitting method. For example, to have the somtEmitBase method emit
the “mybaseS” section of the template instead of the “baseS” section, which is the default, set
the “baseSN” symbol to “mybaseS” prior to invoking somtEmitBase.

The somtEmitMethod method emits a specialized methods section for the specified method,
according to whether the method is new, inherited, or overriding. (The specialized sections are,
by default, methodsS, inheritedMethodsS, and overrideMethodsS, depending on the value
of section-name symbols “methodsSN,” “inheritedMethodsSN,” and “overrideMethodsSN.”)
The somtEmitMethods method, by contrast, emits the generic methods section for the speci-
fied method. The generic methods section is determined by the value of the “methodsSN”
symbol, which is by default methodsS.

Parameters
receiver An object of class SOMTEmitC representing an emitter.

entry An entry object to be used to set the values of the symbols used in the template
section to be emitted.

Return Value
None.

Original Class
SOMTEmitC

Related Information
Methods: somtEmitFullPassthru, somtScan<Section>

SOMTEmitC class

 64 SOMobjects Developer Toolkit

Symbol Name Initial Value (Section Name) Used by Method
attributeSN attributeS somtEmitAttribute
attributeEpilogSN attributeEpilogS somtEmitAttributeEpilog
attributePrologSN attributePrologS somtEmitAttributeProlog
baseSN baseS somtEmitBase
baseEpilogSN baseEpilogS somtEmitBaseEpilog
baseIncludesSN baseIncludesS somtEmitBaseIncludes
baseIncludesEpilogSN baseIncludesEpilogS somtEmitBaseIncludesEpilog
baseIncludesPrologSN baseIncludesPrologS somtEmitBaseIncludesProlog
basePrologSN basePrologS somtEmitBaseProlog
classSN classS somtEmitClass
constantSN constantS somtEmitConstant
constantPrologSN constantPrologS somtEmitConstantProlog
constantEpilogSN constantEpilogS somtEmitConstantEpilog
dataSN dataS somtEmitData
dataEpilogSN dataEpilogS somtEmitDataEpilog
dataPrologSN dataPrologS somtEmitDataProlog
enumSN enumS somtEmitEnum
enumEpilogSN enumEpilogS somtEmitEnumEpilog
enumPrologSN enumPrologS somtEmitEnumProlog
epilogSN epilogS somtEmitEpilog
inheritedMethodsSN inheritedMethodsS somtEmitMethod
interfaceSN interfaceS somtEmitInterface
interfaceEpilogSN interfaceEpilogS somtEmitInterfaceEpilog
interfacePrologSN interfacePrologS somtEmitInterfaceProlog
metaSN metaS somtEmitMeta
metaIncludeSN metaIncludeS somtEmitMetaIncludes
methodsSN methodsS somtEmitMethod
methodsSN methodsS somtEmitMethods
methodsEpilogSN methodsEpilogS somtEmitMethodsEpilog
methodsPrologSN methodsPrologS somtEmitMethodsProlog
moduleSN moduleS somtEmitModule
moduleEpilogSN moduleEpilogS somtEmitModuleEpilog
modulePrologSN modulePrologS somtEmitModuleProlog
overrideMethodsSN overrideMethodsS somtEmitMethod
passthruSN passthruS somtEmitPassthru
passthruEpilogSN passthruEpilogS somtEmitPassthruEpilog
passthruPrologSN passthruPrologS somtEmitPassthruProlog
prologSN prologS somtEmitProlog
releaseSN releaseS somtEmitRelease
structSN structS somtEmitStruct
structEpilogSN structEpilogS somtEmitStructEpilog
structPrologSN structPrologS somtEmitStructProlog
typedefSN typedefS somtEmitTypedef
typedefEpilogSN typedefEpilogS somtEmitTypedefEpilog
typedefPrologSN typedefPrologS somtEmitTypedefProlog
unionEpilogSN unionEpilogS somtEmitUnionEpilog
unionSN unionS somtEmitUnion
unionPrologsN unionPrologs somtEmitUnionProlog

SOMTEmitC class

 65Emitter Framework Guide and Reference

somtEmitFullPassthru Method

Purpose
Emits the passthru section for each of a class’s passthrus having a particular target and
before/after classification.

IDL Syntax
void somtEmitFullPassthru (

in boolean before,
in string language);

Note: This method does not take an Environment parameter.

Description
The somtEmitFullPassthru method emits the passthru section for each passthru item defined
for an emitter’s target class that has the specified target language and the specified before/after
setting and whose target is the emitter on which the method is invoked.

The somtIsBeforePassthru method is used to check that passthru entries match the before
parameter. The somtPassthruLanguage attribute of each passthru entry is matched against
the language parameter. The somtPassthruTarget attribute of each passthru entry is matched
against the somtEmitterName attribute of the emitter on which the method is invoked.

This method first invokes the somtEmitPassthruProlog method. Then, for each passthru entry
that satisfies the above requirements, this method invokes the somtEmitPassthru method.
Finally, it invokes the somtEmitPassthruEpilog method.

Parameters
receiver An object of class SOMTEmitC representing an emitter.

before Whether before (TRUE) or after (FALSE) passthrus are to be emitted.

language The target language of the passthrus for which sections are to be emitted (in
upper case only). “C” is used for both C and C++.

Return Value
None.

Example
__set_somtEmitterName(emitter, ”mine”);
__set_somtTargetClass(emitter, oCls);
__set_somtTargetFile(emitter, fp);
_somtEmitFullPassthru(emitter, TRUE, ”C”);

Original Class
SOMTEmitC

Related Information
Methods: somtEmitPassthruProlog, somtEmitPassthruEpilog, somtEmitPassthru,
somtIsBeforePassthru

SOMTEmitC class

 66 SOMobjects Developer Toolkit

somtFileSymbols Method

Purpose
Sets predefined symbols that have a single value in all sections of the output template.

IDL Syntax
void somtFileSymbols ();

Description
The somtFileSymbols method sets predefined symbols that have a single value in all sections
of the output template. This includes symbols for the target class or target module, symbols for
the metaclass of the target class, if any, and special symbols like <timeStamp>.

Parameters
receiver An object of class SOMTEmitC representing an emitter.

Return Value
None.

Example
emitter = MyEmitterNew();
__set_somtTargetFile(emitter, fp);
__set_somtTargetClass(emitter, oCls);
_somtFileSymbols(emitter);

Original Class
SOMTEmitC

SOMTEmitC class

 67Emitter Framework Guide and Reference

somtGenerateSections Method

Purpose
Calls each of the section-emitting methods.

IDL Syntax
boolean somtGenerateSections ();

Note: This method does not take an Environment parameter.

Description
The default implementation of somtGenerateSections method calls each of the section-emit-
ting methods in the following order:

For emitters having a target class:

somtEmitProlog
somtEmitBaseIncludesProlog
somtEmitBaseIncludes — For each base class.
somtEmitBaseIncludesEpilog
somtEmitMetaInclude
somtEmitClass
somtEmitBaseProlog
somtEmitBase — For each base class.
somtEmitBaseEpilog
somtEmitMeta
somtEmitConstantProlog
somtEmitConstant –– For each constant.
somtEmitConstantEpilog
somtEmitTypedefProlog
somtEmitTypedef –– For each typedef.
somtEmitTypedefEpilog
somtEmitStructProlog
somtEmitStruct –– For each struct.
somtEmitStructEpilog
somtEmitUnionProlog
somtEmitUnion –– For each union.
somtEmitUnionEpilog
somtEmitEnumProlog
somtEmitEnum –– For each enum.
somtEmitEnumEpilog
somtEmitAttributeProlog
somtEmitAttribute –– For each attribute.
somtEmitAttributeEpilog
somtEmitMethodsProlog
somtEmitMethod — For each method.
somtEmitMethodsEpilog
somtEmitRelease
somtEmitPassthruProlog
somtEmitPassthru — For each passthru item.
somtEmitPassthruEpilog
somtEmitDataProlog
somtEmitData — For each data item.
somtEmitDataEpilog
somtEmitEpilog

SOMTEmitC class

 68 SOMobjects Developer Toolkit

For emitters that have a target module:

somtEmitProlog
somtEmitConstantProlog
somtEmitConstant –– For each constant.
somtEmitConstantEpilog
somtEmitTypedefProlog
somtEmitTypedef –– For each typedef.
somtEmitTypedefEpilog
somtEmitStructProlog
somtEmitStruct –– For each struct.
somtEmitStructEpilog
somtEmitUnionProlog
somtEmitUnion –– For each union.
somtEmitUnionEpilog
somtEmitEnumProlog
somtEmitEnum –– For each enum.
somtEmitEnumEpilog
somtEmitInterfaceProlog
somtEmitInterface –– For each interface.
somtEmitInterfaceEpilog
somtEmitModuleProlog
somtEmitModule –– For each embedded module.
somtEmitModuleEpilog
somtEmitEpilog

Repeating sections (such as somtEmitBase) are emitted using the corresponding
somtScan<Section> method.

To rearrange the order of sections, or to add or delete sections in your emitter, override the
somtGenerateSections method.

Parameters
receiver An object of class SOMTEmitC representing an emitter.

Return Value
The somtGenerateSections method returns TRUE.

Original Class
SOMTEmitC

Related Information
Methods: somtEmit<Section>, somtEmitFullPassthru, somtScan<Section>

SOMTEmitC class

 69Emitter Framework Guide and Reference

somtGetFirstGlobalDefinition Method

Purpose
Returns the first type, constant, exception, or forward declaration that is not associated with
any interface or module.

IDL Syntax
SOMTEntryC somtGetFirstGlobalDefinition ();

Note: This method does not take an Environment parameter.

Description
The somtGetFirstGlobalDefinition method returns the first type, constant, exception, or
forward declaration that is not associated with any interface or module. Note that type declara-
tions also include struct and union declarations. In the IDL source file, these global declara-
tions must be surrounded by #pragma somemittypes statements for them to be visible via this
method. For example:

#pragma somemittypes on
 typedef sequence <long,10> vec10;
 exception BAD_FLAG { long ErrCode; char Reason[80]; };
 typedef long long_t;
#pragma somemittypes off

Parameters
receiver A pointer to an object of class SOMTEmitC representing an emitter.

Return Value
The somtGetFirstGlobalDefinition method returns a pointer to an object of class
SOMTEntryC representing the first global type, constant, exception, or forward declaration
in the receiver.

Example
SOMTEntryC entry;

for (entry = _somtGetFirstGlobalDefinition(emitter);
 entry; entry = _somtGetNextGlobalDefinition(emitter))
 if ((__get_somtElementType(entry) == SOMTClassE) &&
 __get_somtForwardRef(entry))
 /* ”entry” represents a forward declaration for
 * a class; handle it appropriately
 */
 else
 /* ”entry” represents something else, such as a
 * constant, typedef, etc. Determine what it
 * represents using __get_somtElementType as above
 * and handle it appropriately.
 */

Original Class
SOMTEmitC

Related Information
Methods: somtGetNextGlobalDefinition

SOMTEmitC class

 70 SOMobjects Developer Toolkit

somtGetGlobalModifierValue Method

Purpose
Gets the value of a global modifier specified via the –m option when the SOM Compiler is
invoked.

IDL Syntax
string somtGetGlobalModifierValue (in string modifierName);

Note: This method does not take an Environment parameter.

Description
The somtGetGlobalModifierValue method gets the value of a global modifier specified via the
–m option when the SOM Compiler is invoked. For example,

 sc –m“foo=bar” file.idl

specifies to the SOM Compiler that the global modifier “foo” has the value “bar.” Values of global
modifiers are transient; they last only for the duration of the compile for which they were
specified. If a modifier is specified with no value (for modifiers that are boolean), as in

 sc –mfoo file.idl

then the result of this method will be non-NULL. If the requested modifier was not specified in the
sc command, then the result of this method is NULL.

Parameters
receiver An object of class SOMTEmitC representing an emitter.

modifierName The name of the global modifier whose value is needed.

Return Value
The value of the global modifier is returned. If the modifier is present but has no value (for
modifiers that are boolean), the result of this method will be non-NULL. If the requested modifier
was not specified in the sc command, then the result of this method is NULL.

Original Class
SOMTEmitC

SOMTEmitC class

 71Emitter Framework Guide and Reference

somtGetNextGlobalDefinition Method

Purpose
Returns the next type, constant, exception, or forward declaration that is not associated with
any interface or module, relative to a similar, preceding call.

IDL Syntax
SOMTEntryC somtGetNextGlobalDefinition ();

Note: This method does not take an Environment parameter.

Description
The somtGetNextGlobalDefinition method returns the next type, constant, exception, or
forward declaration that is not associated with any interface or module, relative to a prior call to
method somtGetFirstGlobalDefinition or somtGetNextGlobalDefinition. In the IDL source
file, these global declarations must be surrounded by #pragma somemittypes statements for
them to be visible via this method.

Parameters
receiver A pointer to an object of class SOMTEmitC representing an emitter.

Return Value
The somtGetNextGlobalDefinition method returns a pointer to an object of class
SOMTEntryC representing the next global type, constant, exception, or forward declaration
in the receiver, relative to a previous call to either method somtGetFirstGlobalDefinition or
somtGetNextGlobalDefinition.

Example
SOMTEntryC entry;

for (entry = _somtGetFirstGlobalDefinition(emitter);
 entry; entry = _somtGetNextGlobalDefinition(emitter))
 if ((__get_somtElementType(entry) == SOMTClassE) &&
 __get_somtForwardRef(entry))
 /* ”entry” represents a forward declaration for
 * a class; handle it appropriately
 */
 else
 /* ”entry” represents something else, such as a
 * constant, typedef, etc. Determine what it
 * represents using __get_somtElementType as above
 * and handle it appropriately.
 */

Original Class
SOMTEmitC

Related Information
Methods: somtGetFirstGlobalDefinition

SOMTEmitC class

 72 SOMobjects Developer Toolkit

somtImplemented Method

Purpose
Checks whether the target class of an emitter introduces or overrides a specified method.

IDL Syntax
boolean somtImplemented (

in SOMTMethodEntryC method);

Note: This method does not take an Environment parameter.

Description
The somtImplemented method checks whether the target class of the receiver introduces or
overrides the method specified by method.

Parameters
receiver An object of class SOMTEmitC representing an emitter.

method An object of class SOMTMethodEntryC representing the method to be tested.

Return Value
The somtImplemented method returns TRUE if the emitter’s target class introduces or over-
rides the specified method. Otherwise, it returns FALSE.

Example
_somtScanMethods(emitter, ”somtImplemented”,
 ”somtEmitMethodsProlog”, ”somtEmitMethod”,
 ”somtEmitMethodsEpilog”,TRUE);

Original Class
SOMTEmitC

Related Information
Methods: somtAll, somtInherited, somtOverridden, somtNew, somtNewNoProc,
somtNewProc, somtVA, somtScanMethods

SOMTEmitC class

 73Emitter Framework Guide and Reference

somtInherited Method

Purpose
Checks whether the target class of an emitter inherits a specified method.

IDL Syntax
boolean somtInherited (

in SOMTMethodEntryC method);

Note: This method does not take an Environment parameter.

Description
The somtInherited method checks whether the target class of an emitter inherits a specified
method.

Parameters
receiver An object of class SOMTEmitC representing an emitter.

method An object of class SOMTMethodEntryC representing the method to be tested.

Return Value
The somtInherited method returns TRUE if the emitter’s target class inherits the specified
method. Otherwise, it returns FALSE.

Example
_somtScanMethods(emitter, ”somtInherited”,

 ”somtEmitMethodsProlog”,
”somtEmitMethod”,
”somtEmitMethodsEpilog”,TRUE);

Original Class
SOMTEmitC

Related Information
Methods: somtAll, somtOverridden, somtImplemented, somtNew, somtNewNoProc,
somtNewProc, somtVA, somtScanMethods

SOMTEmitC class

 74 SOMobjects Developer Toolkit

somtNew Method

Purpose
Checks whether a method is newly defined (introduced) by an emitter’s target class.

IDL Syntax
boolean somtNew (

in SOMTMethodEntryC method);

Note: This method does not take an Environment parameter.

Description
The somtNew method tests whether a method is newly defined (introduced) by an emitter’s
target class.

Parameters
receiver An object of class SOMTEmitC representing an emitter.

method An object of class SOMTMethodEntryC representing the method to be
tested.

Return Value
The somtNew method returns TRUE if the specified method is introduced by the emitter’s target
class.

Example
SOMTMethodEntryC mp;
mp = _somtGetFirstMethod(__get_somtTargetClass(emitter));
if (_somtNew(emitter, mp)) /* Check to see if method is new. */
{
 _somtSetSymbolsOnEntry(mp, emitter, ”method”);
 _somtEmitMethod(emitter, mp);
}

Original Class
SOMTEmitC

Related Information
Methods: somtAll, somtInherited, somtImplemented, somtOverridden,
somtNewNoProc, somtNewProc, somtVA, somtScanMethods, somtFilterNew

SOMTEmitC class

 75Emitter Framework Guide and Reference

somtNewNoProc Method

Purpose
Checks whether a method is newly defined (introduced) by an emitter’s target class and whether
the method is a true method, and not a direct-call procedure.

IDL Syntax
boolean somtNewNoProc (

in SOMTEntryC method);

Note: This method does not take an Environment parameter.

Description
The somtNewNoProc method tests whether a method is newly defined (introduced) by an
emitter’s target class and whether the method is a true method, and not a direct-call procedure
(as determined by the absence of the “procedure” SOM IDL method modifier in the .idl file).

Parameters
receiver An object of class SOMTEmitC representing an emitter.

method An object of class SOMTEntryC representing the method to be tested.

Return Value
The somtNewNoProc method returns TRUE if the specified method is introduced by the
emitter’s target class and the method is not a direct-call procedure. Otherwise, it returns FALSE.

Example
SOMTClassEntryC cls = __get_somtTargetClass(emitter);
SOMTMethodEntryC method;
method = _somtGetFirstMethod(cls);
if (_somtNewNoProc(emitter, method))
 printf(”Method %s is really a method!.\n”,
 __get_somtEntryName(method));

Original Class
SOMTEmitC

Related Information
Methods: somtOverridden, somtInherited, somtImplemented, somtNew, somtNewProc,
somtOverridden, somtVA, somtScanMethods, somtFilterNew

SOMTEmitC class

 76 SOMobjects Developer Toolkit

somtNewProc Method

Purpose
Checks whether a method is newly defined (introduced) by an emitter’s target class and whether
the method is a direct-call procedure.

IDL Syntax
boolean somtNewProc (

in SOMTEntryC method);

Note: This method does not take an Environment parameter.

Description
The somtNewProc method tests whether a method is newly defined (introduced) by an emit-
ter’s target class and whether the method is a direct-call procedure (i.e., it has the “procedure”
SOM IDL method modifier in the .idl file).

Parameters
receiver An object of class SOMTEmitC representing an emitter.

method An object of class SOMTEntryC representing the method to be tested.

Return Value
The somtNewProc method returns TRUE if the specified method is introduced by the emitter’s
target class and the method is a direct-call procedure. Otherwise, it returns FALSE.

Example
SOMTClassEntryC cls = __get_somtTargetClass(emitter);
SOMTMethodEntryC method;
method = _somtGetFirstMethod(cls);
if (_somtNewProc(emitter, method))
 printf(”Method %s is really a direct–call procedure.\n”,
 __get_somtEntryName(method));

Original Class
SOMTEmitC

Related Information
Methods: somtAll, somtInherited, somtOverridden, somtImplemented, somtNew,
somtNewNoProc, somtVA, somtScanMethods, somtFilterNew

SOMTEmitC class

 77Emitter Framework Guide and Reference

somtOpenSymbolsFile Method

Purpose
Opens the symbols file of an emitter.

IDL Syntax
FILE *somtOpenSymbolsFile (

 in string fileName,
 in string mode);

Note: This method does not take an Environment parameter.

Description
The somtOpenSymbolsFile method opens an emitter’s symbol file (the file containing the
template definitions). If the specified file does not exist in the current working directory, then the
method attempts to find the file in the directories specified in the SMINCLUDE environment
variable.

Parameters
receiver An object of class SOMTEmitC representing an emitter.

fileName A string representing the name of the file to be opened.

mode A string indicating the mode in which the file should be opened (usually “r” for
read only). This parameter is passed to the standard C library fopen function.

Return Value
A pointer to the open file is returned. If the file is not found, NULL is returned.

Example
FILE *fp;
SOMTTemplateOutputC template = __get_somtTemplate(emitter);
fp = _somtOpenSymbolsFile(emitter, ”myfile.efw”, ”r”);
_somtReadSectionDefinitions(template, fp);
fclose(fp);

Original Class
SOMTEmitC

Related Information
Methods: somtReadSectionDefinitions

SOMTEmitC class

 78 SOMobjects Developer Toolkit

somtOverridden Method

Purpose
Checks whether the specified method is an overriding method of the target class of an emitter.

IDL Syntax
boolean somtOverridden (

in SOMTMethodEntryC method);

Note: This method does not take an Environment parameter.

Description
The somtOverridden method checks whether method represents an overriding method of the
target class of the emitter on which the method is invoked.

Parameters
receiver An object of class SOMTEmitC representing an emitter.

method An object of class SOMTMethodEntryC representing the method to be tested.

Return Value
The somtOverridden method returns TRUE if the emitter’s target class overrides the specified
method. Otherwise, it returns FALSE.

Example
SOMTClassEntryC cls = __get_somtTargetClass(emitter);
SOMTMethodEntryC method;
method = _somtGetFirstMethod(cls);
if (_somtOverridden(emitter, method))
 printf(”Method %s is an overriding method.\n”,
 __get_somtEntryName(method));

Original Class
SOMTEmitC

Related Information
Methods: somtAll, somtInherited, somtImplemented, somtNew, somtNewNoProc,
 somtNewProc, somtVA, somtScanMethods, somtFilterOverridden

SOMTEmitC class

 79Emitter Framework Guide and Reference

somtScan<Section> Methods

Purpose
These methods emit a particular repeating section of an emitter’s template for each item to
which that section applies, preceded by the appropriate prolog section and followed by the
appropriate epilog section.

IDL Syntax
boolean somtScanBases (in string prolog,

 in string each, in string epilog);

boolean somtScanBasesF (in string filter,
 in string prolog, in string each,

 in string epilog, in boolean forceProlog);

boolean somtScanData (in string prolog,
 in string each, in string epilog);

boolean somtScanDataF (in string filter,
 in string prolog, in string each,

 in string epilog, in boolean forceProlog);

boolean somtScanMethods (in string filter,
in string prolog, in string each,

 in string epilog, in boolean forceProlog);

boolean somtScanPassthru (in boolean before,
 in string prolog, in string each,

 in string epilog);

boolean somtScanConstants (in string prolog,
 in string each, in string epilog);

boolean somtScanTypedefs (in string prolog,
 in string each, in string epilog);

boolean somtScanStructs (in string prolog,
 in string each, in string epilog);

boolean somtScanUnions (in string prolog,
 in string each, in string epilog);

boolean somtScanEnums (in string prolog,
 in string each, in string epilog);

boolean somtScanAttributes (in string prolog,
 in string each, in string epilog);

boolean somtScanInterfaces (in string prolog,
 in string each, in string epilog);

boolean somtScanModules (in string prolog,
 in string each, in string epilog);

Note: These methods do not take an Environment parameter.

Description
The somtScan<Section> scanning methods iterate through a repeating section for each item of
the emitter’s target class/module to which the repeating section applies. For instance, the
somtScanBases method iterates through the base classes of the emitter’s target class, calling
the section-emitting method whose name is specified by each for each one.

Prior to emitting the first repeating section, the specified prolog-emitting method (prolog) is
invoked. After emitting the final repeating section, the specified epilog-emitting method (epilog)

SOMTEmitC class

 80 SOMobjects Developer Toolkit

is called. Methods whose names are suitable for passing as values of the prolog, each, and
epilog parameters are the somtEmit<Section> methods provided by the Emitter Framework;
user-written methods having the same signature as those methods can also be used.

For scanning methods that have a filter parameter, a section is emitted only for entries that
satisfy the specified filter method. The following methods are suitable for passing as a filter:
somtNew, somtImplemented, somtOverridden, somtInherited, somtAll, somtNewProc,
somtNewNoProc, and somtVA. User-written methods having the same signature as those
methods can also be used. For methods that have a forceProlog parameter, if forceProlog is
FALSE, the prolog and epilog sections are emitted only if there is at least one entry that satisfies
the specified filter method.

The somtScanPassthru method only emits sections for passthru items for which the
somtIsBeforePassthru method returns the same value as given for somtScanPassthru’s
before parameter.

The somtScanBases, somtScanBasesF, somtScanAttributes, somtScanMethods,
somtScanData, somtScanDataF, and somtScanPassthru methods must only be invoked on
an emitter whose target class is not NULL. The somtScanInterfaces and somtScanModules
methods must only be invoked on an emitter whose target module is not NULL.

Parameters
receiver An object of class SOMTEmitC representing an emitter.

prolog A string representing the name of a prolog-emitting method.

each A string representing the name of a repeating-section emitting method.

epilog A string representing the name of an epilog-emitting method.

filter A string representing the name of a filter method.

forceProlog A boolean indicating whether or not to emit the prolog and epilog sections if
the emitter’s target class/module has no entries that satisfy the specified filter.

before A boolean indicating whether to emit passthru sections for “before” passthru
items (TRUE) or for “after” passthru items (FALSE).

Return Value
The somtScan<Section> methods return TRUE.

Example
To scan the new methods of a class:

_somtScanMethods(emitter,
 ”somtNew”,
 ”somtEmitMethodsProlog”,
 ”somtEmitMethod”,
 ”somtEmitMethodsEpilog”,
 FALSE);

Original Class
SOMTEmitC

Related Information
Methods: somtEmit<Section>, somtNew, somtImplemented, somtOverridden,
somtInherited, somtAll, somtNewProc, somtNewNoProc, somtVA

SOMTEmitC class

 81Emitter Framework Guide and Reference

somtSetPredefinedSymbols Method

Purpose
Sets predefined symbols used for section names.

IDL Syntax
void somtSetPredefinedSymbols ();

Note: This method does not take an Environment parameter.

Description
The somtSetPredefinedSymbols method sets predefined symbols used for section names.
These symbols are used by the section-emitting methods of SOMTEmitC to determine which
section to emit. For example, the somtEmitProlog method uses the value of the “prologSN”
symbol to determine what section to emit. The somtSetPredefinedSymbols method sets the
“prologSN” symbol to the value “prologS,” so that the somtEmitProlog method by default emits
the “prologS” section.

Parameters
receiver A pointer to an object of class SOMTEmitC representing an emitter.

Return Value
None.

Original Class
SOMTEmitC

Related Information
Methods: somtFileSymbols, somtEmit<Section>

SOMTEmitC class

 82 SOMobjects Developer Toolkit

somtVA Method

Purpose
Checks whether a method accepts a variable number of arguments.

IDL Syntax
boolean somtVA (

in SOMTEntryC method);

Note: This method does not take an Environment parameter.

Description
The somtVA method checks whether the specified method is a varargs method (that is, whether
it accepts a variable number of arguments).

Parameters
receiver An object of class SOMTEmitC representing an emitter.

method An object of class SOMTEntryC representing the method to be tested.

Return Value
The somtVA method returns TRUE if the specified method accepts a variable number of
arguments. Otherwise, it returns FALSE.

Example
SOMTClassEntryC cls = __get_somtTargetClass(emitter);
SOMTMethodEntryC method;
method = _somtGetFirstMethod(cls);
if (_somtVA(emitter, method))
 printf(”Method %s takes a variable number of arguments.\n”,
 __get_somtEntryName(method));

Original Class
SOMTEmitC

Related Information
Methods: somtOverridden, somtInherited, somtImplemented, somtNew, somtNewProc,
somtNewNoProc, somtOverridden, somtScanMethods

SOMTEntryC class

 83Emitter Framework Guide and Reference

SOMTEntryC Class
Description

The SOM Compiler compiles a class interface definition (in IDL) to produce a graph structure
whose nodes are instances of SOMTEntryC or its subclasses. Each entry (each node in the
graph structure) is derived from some portion of the IDL definition, to which the attributes defined
in SOMTEntryC and its subclasses refer. Thus, a SOMTEntryC object serves to hide the syntax
of the class interface definition language.

The SOMTEntryC class provides methods for accessing information about particular portions
of a class definition, such as the line number on which it occurs, its accompanying comment, its
SOM IDL modifiers, its name (both scoped and unscoped), and the kind of entity represented.

File Stem
scentry

Base
SOMObject

Metaclass
SOMClass

Ancestor Classes
SOMObject

Attributes
Listed below is each available attribute, with its corresponding type in parentheses, followed by
a description of its purpose:

somtEntryName (string)
 The (unscoped) name of the entry. This attribute has no “Set” method.
somtIDLScopedName (string)
 The scoped name of the entry, in IDL form (using “::” as the delimiter).
 This attribute has no “Set” method.
somtCScopedName (string)
 The scoped name of the entry, in C form (with underscore as the delimiter).
 This attribute has no “set” method.
somtElementType (SOMTTypes)
 The type of the entry (class, method, attribute, typedef, etc.).
 This attribute has no “Set” method.
somtElementTypeName (string)
 The string form of somtElementType. This attribute has no “set” method.
somtEntryComment (string)
 The comment associated with the entry, or NULL if it has none.
 Comments will have comment delimiters removed, but will retain
 newline characters. This attribute has no “Set” method.
somtSourceLineNumber (unsigned long)
 The line number in the source file where this entry’s syntactic form ends.
 This attribute has no “Set” method.
somtTypeCode (TypeCode)
 The type code, if appropriate, otherwise NULL. This attribute has no “Set” method.
somtIsReference (boolean)
 Whether this entry represents just a reference to a type, rather than a
 declaration of it. This attribute has no “Set” method.

SOMTEntryC class

 84 SOMobjects Developer Toolkit

New Methods
somtGetModifierValue
somtGetFirstModifier
somtGetNextModifier
somtFormatModifier
somtGetModifierList
somtSetSymbolsOnEntry

Overriding Methods
somInit
somUninit
somPrintSelf
somDumpSelfInt
somDumpSelf

SOMTEntryC class

 85Emitter Framework Guide and Reference

somtFormatModifier Method

Purpose
Formats a SOM IDL modifier name/value pair into a buffer.

IDL Syntax
long somtFormatModifier (

in string buffer,
in string name,
in string value);

Note: This method does not take an Environment parameter.

Description
The somtFormatModifier method formats the specified SOM IDL modifier name/value pair
into the specified buffer. The buffer must be large enough to hold the formatted pair; no checks
are made to ensure that it is large enough. The method returns the number of characters stored
in the buffer, not including the terminating NULL character.

The somtFormatModifier method is not intended to be invoked directly, but it can be overrid-
den by subclasses of SOMTEntryC to control the format returned by the method somtGetMo-
difierList.

Parameters
receiver An object of class SOMTEntryC.

buffer The address of a character buffer where the formatted output will be stored.

name A character string representing the modifier name.

value A character string representing the modifier value.

Return Value
The somtFormatModifier method stores the formatted modifier name/value pair in the speci-
fied buffer and returns the number of characters stored in the buffer, not including the terminat-
ing NULL character.

Original Class
SOMTEntryC

Related Information
Methods: somtGetModifierValue, somtGetFirstModifier, somtGetNextModifier,
somtGetModifierList

SOMTEntryC class

 86 SOMobjects Developer Toolkit

somtGetFirstModifier Method

Purpose
The somtGetFirstModifier method gets the first modifier for a particular entry (class, attribute,
method, etc.).

IDL Syntax
boolean somtGetFirstModifier (

inout string modifierName,
inout string modifierValue);

Note: This method does not take an Environment parameter.

Description
The somtGetFirstModifier method gets the first modifier for the entry specified by receiver, if it
has one. Otherwise, it returns FALSE. The next modifier can be obtained using the correspond-
ing somtGetNextModifier method.

Note that the somtGetFirstModifier and somtGetNextModifier methods cannot be used in
doubly nested loops. For example, the following doubly nested loop will not work, because
following the first execution of the inner loop, the invocation of somtGetNextModifier in the
outer loop will return FALSE:

for (m1 = _somtGetFirstModifier(cls, &name, &value); m1;
 m1 = _somtGetNextModifier(cls, &name, &value))
 for (m2 = _somtGetFirstModifier(cls, &name, &value); m2;
 m2 = _somtGetNextModifier(cls, &name, &value))
 /* etc. */

Nested loops such as the one above are permissible if the target object (e.g., “cls”) of the inner
loop differs from the target object of the outer loop, or if a different somtGetFirst<item> method
is used in the inner loop (for instance, a somtGetNextParameter loop can be nested inside a
somtGetNextModifier loop).

The somtGetFirstModifier method accesses the first SOM IDL modifier of the specified entry.
The address of a buffer containing the name of the modifier is stored in the location pointed to by
modifierName, and the address of a buffer containing the value of the modifier is stored in the
location pointed to by modifierValue.

Parameters
receiver The entry whose first modifier is to be retrieved.

modifierName A pointer to a location where the address of a buffer containing the modifier
name will be placed.

modifierValue A pointer to a location where the address of a buffer containing the modifier
value will be placed.

Return Value
This method returns TRUE if a modifier name/value pair was retrieved, or FALSE if the specified
entry has no modifiers.

SOMTEntryC class

 87Emitter Framework Guide and Reference

Example
To iterate through the modifiers of a class:

boolean done;
string name, value;

printf(”List of modifiers:\n”);
for (done = _somtGetFirstModifier(cls, &name, &value); done;
 done = _somtGetNextModifier(cls, &name, &value))
 printf(” modifier %s has value %s.\n”, name, value);

Related Information
Methods: somtGetNextModifier

SOMTEntryC class

 88 SOMobjects Developer Toolkit

somtGetModifierList Method

Purpose
Gets the SOM IDL modifiers for an entry.

IDL Syntax
long somtGetModifierList (

in string buffer);

Note: This method does not take an Environment parameter.

Description
The somtGetModifierList method stores the SOM IDL modifiers for the specified
SOMTEntryC object in the specified buffer, separated by newline characters. The buffer must
be large enough to hold all the modifiers; no checks are made to ensure that the buffer is large
enough. The method returns the number of modifiers stored in the buffer.

Parameters
receiver An object of class SOMTEntryC representing the entry whose modifiers are

needed.

buffer A pointer to a character buffer where the modifier list will be stored.

Return Value
The somtGetModifierList method stores the modifiers for the specified SOMTEntryC object in
the specified buffer and returns the number of modifiers stored in the buffer.

Original Class
SOMTEntryC

Related Information
Methods: somtGetModifierValue, somtGetFirstModifier, somtGetNextModifier,
somtFormatModifier

SOMTEntryC class

 89Emitter Framework Guide and Reference

somtGetModifierValue Method

Purpose
Gets the value of a SOM IDL modifier for an entry.

IDL Syntax
string somtGetModifierValue (

 in string modifierName);

Note: This method does not take an Environment parameter.

Description
The somtGetModifierValue method returns the value of the SOM IDL modifier named
modifierName if the entry has that modifier in the .idl file. Otherwise, it returns NULL.

Parameters
receiver An object of class SOMTEntryC representing the entry whose modifier is

needed.

modifierName A string representing the name of the modifier whose value is needed.

Return Value
The somtGetModifierValue method returns a string representing the value of the specified
modifier, if the receiver has that modifier. Otherwise, it returns NULL. If the modifier is present but
has no value, then a non-NULL value is returned.

Original Class
SOMTEntryC

Related Information
Methods: somtGetFirstModifier, somtGetNextModifier, somtFormatModifier,
somtGetModifierList

SOMTEntryC class

 90 SOMobjects Developer Toolkit

somtGetNextModifier Method

Purpose
This method gets the next modifier for a particular entry (class, attribute, method, etc.), relative
to the previous call for a modifier.

IDL Syntax
boolean somtGetNextModifier (

inout string modifierName,
 inout string modifierValue);

Note: This method does not take an Environment parameter.

Description
The somtGetNextModifier methods return the next modifier for the entry on which the method
was invoked, if it has a next modifier. Otherwise, it returns FALSE.

A call to a somtGetNextModifier method is relative to the last call of either the same method or
the corresponding somtGetFirstModifier method, applied to the same entry object. Note that
this implies that the somtGetFirstModifier and somtGetNextModifier methods cannot be
used in doubly nested loops. For example, the following doubly nested loop will not work,
because following the first execution of the inner loop, the invocation of somtGetNextModifier
in the outer loop will return FALSE:

for (m1 = _somtGetFirstModifier(cls, &name, &value); m1;
 m1 = _somtGetNextModifier(cls, &name, &value))
 for (m2 = _somtGetFirstModifier(cls, &name, &value); m2;
 m2 = _somtGetNextModifier(cls, &name, &value))
 /* etc. */

Nested loops such as the one above are permissible if the target object (e.g., “cls”) of the inner
loop differs from the target object of the outer loop, or if a different somtGetFirst<item> method
is used in the inner loop (for instance, a somtGetNextParameter loop can be nested inside a
somtGetNextModifier loop).

The somtGetNextModifier method accesses the next SOM IDL modifier of the specified entry,
relative to the last call to somtGetFirstModifier or somtGetNextModifier on the same entry.
The address of a buffer containing the name of the modifier is stored in the location pointed to by
modifierName, and the address of a buffer containing the value of the modifier is stored in the
location pointed to by modifierValue. If the specified entry had at least one more modifier, the
method returns TRUE. Otherwise, it returns FALSE.

Parameters
receiver The entry whose next modifier is to be retrieved.

modifierName A pointer to a location where the address of a buffer containing the modifier
name will be placed.

modifierValue A pointer to a location where the address of a buffer containing the modifier
value will be placed.

Return Value
This method returns TRUE if a modifier name/value pair was retrieved, or FALSE is the specified
entry has no next modifier.

SOMTEntryC class

 91Emitter Framework Guide and Reference

Example
To iterate through the modifiers of a class:

boolean done;
string name, value;

printf(”List of modifiers:\n”);
for (done = _somtGetFirstModifier(cls, &name, &value); done;
 done = _somtGetNextModifier(cls, &name, &value))
 printf(” modifier %s has value %s.\n”, name, value);

Related Information
Methods: somtGetFirstModifier

SOMTEntryC class

 92 SOMobjects Developer Toolkit

somtSetSymbolsOnEntry Method
Purpose

Places predefined symbol/value pairs for an entry into the symbol table.

IDL Syntax
long somtSetSymbolsOnEntry (

in SOMTEmitC emitter,
in string prefix);

Note: This method does not take an Environment parameter.

Description
The somtSetSymbolsOnEntry method places predefined symbol/value pairs for the specified
entry in the specified emitter’s symbol table. In the default implementation, all symbol names
begin with the string specified in prefix (e.g., “class,” “method,” “data,” “passthru”). For example,
SOMTEntryC’s implementation of somtSetSymbolsOnEntry defines the <prefix>Name and
<prefix>Comment symbols. Hence, when invoked on a SOMTClassEntryC object with prefix =
“class,” this method defines symbols “className” and “classComment” for that entry.

This method is invoked by the somtEmit<Section> methods that take an entry as an additional
parameter, so that symbols will be defined for that entry when the section is emitted. For
example, the somtEmitBase method invokes somtSetSymbolsOnEntry on the
SOMTBaseClassEntryC object passed to it (using a prefix of “base”) prior to emitting the
“baseS” section, so that the symbols baseName, baseComment, baseLineNumber, etc., used
within the “baseS” section will have values appropriate for that base-class entry.

This method can be overridden in subclasses of SOMTEntryC (or subclasses of any of its
subclasses) to define additional symbols or to change the default symbol settings. Overriding
methods should invoke the parent method either before or after defining new symbols.

Parameters
receiver An object of class SOMTEntryC for which symbols are to be defined.

emitter An object of class SOMTEmitC representing an emitter.

prefix A string representing the symbol-name prefix to be used.

Return Value
The somtSetSymbolsOnEntry method returns 1.

Example
SOMTMethodEntryC method;
SOMTClassEntryC class = __get_somtTargetClass(emitter);
SOMTTemplateOutputC template = __get_somtTemplate(emitter);
for (method = _somtGetFirstMethod(class); method;
 method = _somtGetNextMethod(class))
{
 _somtSetSymbolsOnEntry(method, emitter, “method”);
 _somtOutputSection(template, “myMethodSection”);
}

Original Class
SOMTEntryC

Related Information
Method: somtExpandSymbol, somtCheckSymbol, somtSetSymbolCopyBoth,
somtSetSymbolCopyValue, somtGetSymbol, somtSetSymbol,
somtSetSymbolCopyName

SOMTEnumEntryC class

 93Emitter Framework Guide and Reference

SOMTEnumEntryC Class

Description
A SOMTEnumEntryC object represents an enumeration definition. It provides methods for
accessing the enumerator names within the enumeration.

File Stem
scenum

Base
SOMTEntryC

Metaclass
SOMClass

Ancestor Classes
SOMTEntryC, SOMObject

Attributes
None.

New Methods
somtGetFirstEnumName
somtGetNextEnumName

Overriding Methods
somtSetSymbolsOnEntry
somDumpSelfInt

SOMTEnumEntryC class

 94 SOMobjects Developer Toolkit

somtGetFirstEnumName Method

Purpose
Gets the first enumerator name for a SOMTEnumEntryC object.

IDL Syntax
SOMTEnumNameEntryC somtGetFirstEnumName ();

Note: This method does not take an Environment parameter.

Description
The somtGetFirstEnumName method returns the first enumerator name for the entry on which
the method was invoked. The next enumerator name can be obtained using the corresponding
somtGetNextEnumName method.

Note that the somtGetFirstEnumName and somtGetNextEnumName methods cannot be
used in doubly nested loops. For example, the following doubly nested loop will not work, be-
cause following the first execution of the inner loop, the invocation of somtGetNextEnumName
in the outer loop will return NULL:

for (e1 = _somtGetFirstEnumName(enum); e1;
 e1 = _somtGetNextEnumName(enum))
 for (e2 = _somtGetFirstEnumName(enum); e2;
 e2 = _somtGetNextEnumName(enum))
 /* etc. */

Parameters
receiver The enumeration entry whose first enumerator name is to be retrieved.

Return Value
This method returns the first enumerator name for the specified enumeration entry.

Example
To iterate through the enumerator names of an enumeration entry:

SOMTEnumNameEntryC myEntry;

printf(”List of enumerator names:\n”);
for (myEntry = _somtGetFirstEnumName(enum); myEntry;
 myEntry = _somtGetNextEnumName(enum))
 printf(”%s\n”, __get_somtEntryName(myEntry));

Related Information
Methods: somtGetNextEnumName

SOMTEnumEntryC class

 95Emitter Framework Guide and Reference

somtGetNextEnumName Method

Purpose
Gets the next enumerator name for an enumeration entry, relative to the previous call for an
enumerator name.

IDL Syntax
SOMTEnumNameEntryC somtGetNextEnumName ();

Note: This method does not take an Environment parameter.

Description
The somtGetNextEnumName method returns the next enumerator name for the entry on
which the method was invoked, if it has a next enumerator name. Otherwise, it returns NULL.

A call to a somtGetNextEnumName method is relative to the last call of either the same method
or the corresponding somtGetFirstEnumName method, applied to the same entry object. Note
that this implies that the somtGetFirstEnumName and somtGetNextEnumName methods
cannot be used in doubly nested loops. For example, the following doubly nested loop will not
work, because following the first execution of the inner loop, the invocation of
somtGetNextEnumName in the outer loop will return NULL:

for (e1 = _somtGetFirstEnumName(enum); e1;
 e1 = _somtGetNextEnumName(enum))
 for (e2 = _somtGetFirstEnumName(enum); e2;
 e2 = _somtGetNextEnumName(enum))
 /* etc. */

Parameters
receiver The entry whose next enumerator name is to be retrieved.

Return Value
This method returns the next enumerator name for the entry represented by receiver, if it has a
next enumerator. Otherwise, it returns NULL.

Example
To iterate through the enumerator names of an enumeration entry:

SOMTEnumNameEntryC myEntry;

printf(”List of enumerator names:\n”);
for (myEntry = _somtGetFirstEnumName(enum); myEntry;
 myEntry = _somtGetNextEnumName(enum))
 printf(”%s\n”, __get_somtEntryName(myEntry));

Related Information
Methods: somtGetFirstEnumName

SOMTEnumNameEntryC class

 96 SOMobjects Developer Toolkit

SOMTEnumNameEntryC Class

Description
A SOMTEnumNameEntryC object represents an enumerator name. It provides attributes for
accessing the enumeration in which it is defined and its value.

File Stem
scenumnm

Base
SOMTEntryC

Metaclass
SOMClass

Ancestor Classes
SOMTEntryC, SOMObject

Attributes
Listed below is each available attribute, with its corresponding type in parentheses, followed by
a description of its purpose:

somtEnumPtr (SOMTEnumEntryC)
 A pointer to the enumeration that defines this enumerator name.
 This attribute has no “set” method.

somtEnumVal (unsigned long)
 The value of the enumerator. This attribute has no “set” method.

New Methods
None.

Overriding Methods
somtSetSymbolsOnEntry
somDumpSelfInt

SOMTMetaClassEntryC class

 97Emitter Framework Guide and Reference

SOMTMetaClassEntryC Class

Description
A SOMTMetaClassEntryC object represents the metaclass statement in the implementation
section of a SOM IDL class interface definition. The actual metaclass is represented by a
SOMTClassEntryC object accessed via the somtMetaClassDef attribute.

File Stem
scmeta

Parent
SOMTEntryC

Metaclass
SOMClass

Ancestor Classes
SOMTEntryC, SOMObject

Attributes
Listed below is each available attribute, with its corresponding type in parentheses, followed by
a description of its purpose:

somtMetaFile (string)
 The name of the file containing the definition of this metaclass.
 This attribute has no “Set” method.
somtMetaClassDef (SOMTClassEntryC)
 A pointer to an entry object representing the class definition entry for this metaclass.
 This attribute has no “Set” method.

New Methods
None.

Overriding Methods
somtSetSymbolsOnEntry,
somDumpSelfInt

SOMTMethodEntryC class

 98 SOMobjects Developer Toolkit

SOMTMethodEntryC Class

Description
A SOMTMethodEntryC object represents a method declaration within a class interface defini-
tion. It provides attributes and methods for accessing the method’s type, arguments, context,
exceptions, and parameters. For overriding methods, it also provides attributes for accessing
the overridden method and the overridden method’s class.

File Stem
scmethod

Base
SOMTCommonEntryC

Metaclass
SOMClass

Ancestor Classes
SOMTCommonEntryC, SOMTEntryC, SOMObject

Attributes
Listed below is each available attribute, with its corresponding type in parentheses, followed by
a description of its purpose:

somtCReturnType (string)
 The C/C++ return type of the method.
 This attribute has no “Set” method.

somtIsVarargs (boolean)
 TRUE if the method definition includes a va_list parameter, and FALSE otherwise.
 This attribute has no “Set” method.

somtOriginalMethod (SOMTMethodEntryC)
 For an overriding method definition, the entry for the method being overridden.
 This attribute has no “Set” method.

somtOriginalClass (SOMTClassEntryC)
 For an overriding method, the entry for the class whose method is being overridden.
 For a new method, the entry for the class that introduced the method.
 This attribute has no “Set” method.

somtIsOneway (boolean)
 Whether the method is defined as oneway. This attribute has no “Set” method.

somtArgCount (short)
 The number of explicit arguments of the method (not including the method’s receiver,
 the Environment parameter, or the Context parameter, if any).
 This attribute has no “Set” method.

somtContextArray (string *)
 An array of the context string–literals for the method (given in the “context” expression
 in the method’s IDL definition). This attribute has no “set” method.

SOMTMethodEntryC class

 99Emitter Framework Guide and Reference

New Methods
somtGetFirstParameter
somtGetNextParameter
somtGetIDLParamList
somtGetShortCParamList
somtGetFullCParamList
somtGetShortParamNameList
somtGetFullParamNameList
somtGetNthParameter
somtGetFirstException
somtGetNextException

Overriding Methods
somtSetSymbolsOnEntry
somDumpSelfInt

SOMTMethodEntryC class

 100 SOMobjects Developer Toolkit

somtGetFirst<Item> Methods
Purpose

These methods get the first exception or parameter for a method entry.

IDL Syntax
SOMTStructEntryC somtGetFirstException ();
SOMTParameterEntryC somtGetFirstParameter ();

Note: These methods do not take an Environment parameter.

Description
The somtGetFirst<Item> methods return the first exception or parameter for the entry on which
the method was invoked, if it has one. Otherwise, it returns NULL. The next item of the same kind
can be obtained using the corresponding somtGetNext<Item> method. For example, the
somtGetFirstException method returns the entry representing the first exception of the speci-
fied method. If the method has no exceptions, it returns NULL. The somtGetNextException
method can be used repeatedly to retrieve each successive exception.

Note that the same somtGetFirst<Item> and somtGetNext<Item> methods cannot be used in
doubly nested loops. For example, the following doubly nested loop will not work, because
following the first execution of the inner loop, the invocation of somtGetNextException in the
outer loop will return NULL:

for (e1 = _somtGetFirstException(method); e1;
 e1 = _somtGetNextException(method))
 for (e2 = _somtGetFirstException(method); e2;
 e2 = _somtGetNextException(method))
 /* etc. */

Nested loops such as the one above are permissible if the target object (e.g., “method”) of the
inner loop differs from the target object of the outer loop, or if a different somtGetFirst<Item>
method is used in the inner loop (for instance, a somtGetNextParameter loop can be nested
inside a somtGetNextException loop).

Note that for the somtGetFirstParameter method, only explicit method parameters are re-
turned. In other words, the method’s receiver, the Environment parameter, and the Context
parameter are not included as parameters.

Parameters
receiver The method entry whose first item is to be retrieved.

Return Value
These methods return the first exception or parameter for a method entry. The type of item
returned is specific to the method; see the method call syntax shown above.

Example
To iterate through the parameters of a method:

SOMTParameterEntryC myEntry;

printf(”List of parameters:\n”);
for (myEntry = _somtGetFirstParameter(method); myEntry;
 myEntry = _somtGetNextParameter(method))
 printf(”%s\n”, __get_somtEntryName(myEntry));

Related Information
Methods: somtGetNext<Item>

SOMTMethodEntryC class

 101Emitter Framework Guide and Reference

somtGetFullCParamList Method

Purpose
Gets the formal parameter list, including the type and name of each parameter, of a method’s C
procedure.

IDL Syntax
string somtGetFullCParamList (

in string buffer,
in string varargsParm);

Note: This method does not take an Environment parameter.

Description
The somtGetFullCParamList method returns the formal parameter list for the specified meth-
od’s C procedure. The list includes both the type and the name of each parameter (unlike
somtGetShortParamNameList, which includes only the parameter names). The parameter
list is built in buffer and the address of buffer is returned. The list is delimited by newlines rather
than commas so that it can be used as a symbol value suitable for list substitution in the
template.

Unlike the somtGetIDLParamList method, this method gives the types of the parameters as
they appear in the method’s C procedure, which may differ from the IDL types. For example, an
out or inout parameter may have pointer stars added in the C form. Unlike the method
somtGetShortCParamList, this method does include in the result the method’s receiver, the
Environment parameter, or the Context parameter, if any.

If the method takes a variable number of arguments, then the va_list parameter is replaced by
the string specified in varargsParm, unless varargsParm is NULL, in which case the va_list
parameter is removed.

Parameters
receiver An object of class SOMTMethodEntryC representing a method entry whose

parameter list is needed.

buffer The address of a character buffer to receive the argument list.

varargsParm A string representing the variable arguments parameter, or NULL to remove
the variable arguments parameter.

Return Value
The somtGetFullCParamList method returns a string representing the formal argument list of
the method’s C procedure, including the type and name of each argument. This string is stored
in buffer. The list is delimited by newlines rather than commas so that it can be used as a symbol
value suitable for list substitution in the template.

Example
char buf[MAX_BUFFER];
SOMTMethodEntryC method;
SOMTClassEntryC class = __get_somtTargetClass(emitter);
SOMTTemplateOutputC template = __get_somtTemplate(emitter);
method = _somtGetFirstMethod(class);
_somtGetFullCParamList(method, buf, ”va_list ap”);
_somtSetSymbolCopyBoth(template, ”methodFullCParmList”, buf);

SOMTMethodEntryC class

 102 SOMobjects Developer Toolkit

Original Class
SOMTMethodEntryC

Related Information
Methods: somtGetFirstParameter, somtGetNextParameter, somtGetIDLParamList,
somtGetShortCParamList, somtGetShortParamNameList,
somtGetFullParamNameList, somtGetNthParameter

SOMTMethodEntryC class

 103Emitter Framework Guide and Reference

somtGetFullParamNameList Method
Purpose

Gets the list of parameter names for a method’s procedure.

IDL Syntax
string somtGetFullParamNameList (

in string buffer,
in string varargsParm);

Note: This method does not take an Environment parameter.

Description
The somtGetFullParamNameList method returns a list of parameter names (but not their
corresponding types, as for somtGetFullCParamList) for a specified method’s procedure.
Unlike the somtGetShortParamNameList, the method’s receiver, the Environment parame-
ter, and the Context parameter, if present, are included in the list.

The argument list is built in buffer and the address of buffer is returned. The list is delimited by
newlines rather than commas so that it can be used as a symbol value suitable for list substitu-
tion in the template.

If the method takes a variable number of arguments, then the va_list parameter is replaced by
the string specified by varargsParm, unless varargsParm is NULL, in which case the va_list
parameter is removed.

Parameters
receiver A SOMTMethodEntryC object representing a method whose parameter

names are needed.

buffer The address of a buffer in which to build the parameter list.

varargsParm A string representing the variable arguments parameter, or NULL to remove
the variable arguments parameter.

Return Value
The somtGetFullParamNameList returns a pointer to the string representing the parameter
list for the specified method’s procedure.

Example
To get the parameter list of a method’s procedure:

char buf[MAX_BUFFER];
SOMTMethodEntryC method;
SOMTClassEntryC class = __get_somtTargetClass(emitter);
SOMTTemplateOutputC template = __get_somtTemplate(emitter);
method = _somtGetFirstMethod(class);
_somtGetFullParamNameList(method, buf, ”ap”);
_somtSetSymbolCopyBoth(template, ”methodFullParmNameList”, buf);

Original Class
SOMTMethodEntryC

Related Information
Methods: somtGetFirstParameter, somtGetNextParameter, somtGetShortCParamList,
somtGetFullCParamList, somtGetIDLParamList, somtGetShortParamNameList,
somtGetNthParameter

SOMTMethodEntryC class

 104 SOMobjects Developer Toolkit

somtGetIDLParamList Method

Purpose
Gets the formal parameter list, including the type and name of each parameter, of a method, in
IDL syntax.

IDL Syntax
string somtGetIDLParamList (

 in string buffer);

Note: This method does not take an Environment parameter.

Description
The somtGetIDLParamList method returns the formal parameter list (in IDL form) for the
specified method. The list includes both the type and the name of each parameter; for example,
”in int x\n in float y\n in char z”. The parameter list is built in buffer and the
address of buffer is returned. The list is delimited by newlines rather than commas so that it can
be used as a symbol value suitable for list substitution in the template.

Parameters
receiver An object of class SOMTMethodEntryC representing a method entry whose

parameter list is needed.

buffer The address of a character buffer to receive the parameter list.

Return Value
The somtGetIDLParamList method returns a string representing the formal parameter list of
the method, including the type and name of each parameter, in IDL syntax. This string is stored
in buffer. The list is delimited by newlines rather than commas so that it can be used as a symbol
value suitable for list substitution in the template.

Example
char buf[MAX_BUFFER];
SOMTMethodEntryC method;
SOMTClassEntryC class = __get_somtTargetClass(emitter);
SOMTTemplateOutputC template = __get_somtTemplate(emitter);
method = _somtGetFirstMethod(class);
_somtGetIDLParamList(method, buf);
_somtSetSymbolCopyBoth(template, ”methodIDLParmList”, buf);

Original Class
SOMTMethodEntryC

Related Information
Methods: somtGetFirstParameter, somtGetNextParameter, somtGetShortCParamList,
somtGetFullCParamList, somtGetShortParamNameList, somtGetFullParamNameList,
somtGetNthParameter

SOMTMethodEntryC class

 105Emitter Framework Guide and Reference

somtGetNext<Item> Methods
Purpose

These methods get the next exception or parameter for a method entry, relative to the previous
call for a similar entry.

IDL Syntax
SOMTStructEntryC somtGetNextException ();
SOMTParameterEntryC somtGetNextParameter ();

Note: These methods do not take an Environment parameter.

Description
The somtGetNext<Item> methods return the next item (of the type shown above) for the entry
on which the method was invoked, if it has a next item of that type. Otherwise, it returns NULL.

A call to a somtGetNext<Item> method is relative to the last call of either the same method or
the corresponding somtGetFirst<Item> method, applied to the same entry object. Note that
this implies that the same somtGetFirst<Item> and somtGetNext<Item> methods cannot be
used in doubly nested loops. For example, the following doubly nested loop will not work,
because following the first execution of the inner loop, the invocation of
somtGetNextException in the outer loop will return NULL:

for (e1 = _somtGetFirstException(method); e1;
 e1 = _somtGetNextException(method))
 for (e2 = _somtGetFirstException(method); e2;
 e2 = _somtGetNextException(method))
 /* etc. */

Nested loops such as the one above are permissible if the target object (e.g., “method”) of the
inner loop differs from the target object of the outer loop, or if a different somtGetFirst<Item>
method is used in the inner loop (for instance, a somtGetNextParameter loop can be nested
inside a somtGetNextMethod loop).

Note that for the somtGetNextParameter method, only explicit method parameters are re-
turned. In other words, the method’s receiver, the Environment parameter, and the Context
parameter are not included as parameters.

Parameters
receiver The method entry whose next item is to be retrieved.

Return Value
These methods return the next exception or parameter for the entry on which the method was
invoked, if it has a next item of that type. Otherwise, it returns NULL. The type of item returned is
specific to the method; see the method call syntax shown above.

Example
To iterate through the parameters of a method:

SOMTParameterEntryC myEntry;

printf(”List of parameters:\n”);
for (myEntry = _somtGetFirstParameter(method); myEntry;
 myEntry = _somtGetNextParameter(method))
 printf(”%s\n”, __get_somtEntryName(myEntry));

Related Information
Methods: somtGetFirst<Item>

SOMTMethodEntryC class

 106 SOMobjects Developer Toolkit

somtGetNthParameter Method

Purpose
Gets the entry representing a particular parameter of a method.

IDL Syntax
SOMTParameterEntryC somtGetNthParameter (

in short n);

Note: This method does not take an Environment parameter.

Description
The somtGetNthParameter method returns the entry object representing the specified explicit
parameter of the receiver. The first argument is numbered zero. Note that the receiver of the
method, the Environment parameter, and the Context parameter, if any, are not returned and
are not counted.

Parameters
receiver A SOMTMethodEntryC object representing a method whose parameter is

needed.

n The number of the parameter to return, starting from zero.

Return Value
The somtGetNthParameter returns the SOMTParameterEntryC object representing the nth
parameter of receiver.

Original Class
SOMTMethodEntryC

Related Information
Methods: somtGetFirstParameter, somtGetNextParameter, somtGetShortCParamList,
somtGetFullCParamList, somtGetIDLParamList, somtGetFullParamNameList,
somtGetShortParamNameList

SOMTMethodEntryC class

 107Emitter Framework Guide and Reference

somtGetShortCParamList Method

Purpose
Gets the formal parameter list, including the type and name of each parameter, of a method’s C
procedure.

IDL Syntax
string somtGetShortCParamList (

in string buffer,
in string selfParm,
in string varargsParm);

Note: This method does not take an Environment parameter.

Description
The somtGetShortCParamList method returns the formal parameter list for the specified
method’s C procedure. The list includes both the type and the name of each parameter (unlike
somtGetShortParamNameList, which includes only the parameter names). The parameter
list is built in buffer and the address of buffer is returned. The list is delimited by newlines rather
than commas so that it can be used as a symbol value suitable for list substitution in the
template.

Unlike the somtGetIDLParamList method, this method gives the types of the parameters as
they appear in the method’s C procedure, which may differ from the IDL types. For example, an
out or inout parameter may have pointer stars added in the C form. Unlike the method
somtGetFullCParamList, this method does not include in the result the method’s receiver, the
Environment parameter, or the Context parameter, if any.

If selfParm is not null, then it is added as an initial parameter. The selfParm value can contain
multiple parameters, delimited by newlines.

If the method takes a variable number of parameters, then the va_list parameter is replaced by
the string specified by varargsParm, unless varargsParm is NULL, in which case the va_list
parameter is removed.

Parameters
receiver An object of class SOMTMethodEntryC representing a method entry whose

parameter list is needed.

buffer The address of a character buffer to receive the parameter list.

selfParm A string representing a parameter (or list of newline-separated parameters) to
be inserted at the start of the list.

varargsParm A string representing the variable arguments parameter, or NULL to remove
the variable arguments parameter.

Return Value
The somtGetShortCParamList method returns a string representing the formal parameter list
of the method’s C procedure, including the type and name of each parameter. This string is
stored in buffer. The list is delimited by newlines rather than commas so that it can be used as a
symbol value suitable for list substitution in the template.

SOMTMethodEntryC class

 108 SOMobjects Developer Toolkit

Example
char buf[MAX_BUFFER];
SOMTMethodEntryC method;
SOMTClassEntryC class = __get_somtTargetClass(emitter);
SOMTTemplateOutputC template = __get_somtTemplate(emitter);
method = _somtGetFirstMethod(class);
_somtGetShortCParamList(method, buf, NULL, ”va_list ap”);
_somtSetSymbolCopyBoth(template, ”methodShortCParmList”, buf);

Original Class
SOMTMethodEntryC

Related Information
Methods: somtGetFirstParameter, somtGetNextParameter, somtGetIDLParamList,
somtGetFullCParamList, somtGetShortParamNameList, somtGetFullParamNameList,
somtGetNthParameter

SOMTMethodEntryC class

 109Emitter Framework Guide and Reference

somtGetShortParamNameList Method

Purpose
Gets the list of explicit parameter names for a method.

IDL Syntax
string somtGetShortParamNameList (

in string buffer,
in string selfParm,
in string varargsParm);

Note: This method does not take an Environment parameter.

Description
The somtGetShortParamNameList method returns a list of explicit parameter names (but not
their corresponding types, as for somtGetIDLParamList) for a specified method. Unlike
somtGetFullParamNameList, the method’s receiver, the Environment parameter, and the
Context parameter are not included in the list; only the explicit method parameters (as declared
in IDL) are present in the result of this method.

The parameter list is built in buffer and the address of buffer is returned. The list is delimited by
newlines rather than commas so that it can be used as a symbol value suitable for list substitu-
tion in the template.

If selfParm is not null, then it is added as an initial parameter. The selfParm value can contain
multiple parameters, delimited by newlines.

If the method takes a variable number of arguments, then the va_list parameter is replaced by
the string specified by varargsParm, unless varargsParm is NULL, in which case the va_list
parameter is removed.

Parameters
receiver A SOMTMethodEntryC object representing the method whose parameter

names are needed.

buffer The address of a buffer in which to build the parameter list.

selfParm A string representing a parameter (or list of newline-separated parameters) to
be inserted at the start of the list.

varargsParm A string representing the variable arguments parameter, or NULL to remove
the variable arguments parameter.

Return Value
The somtGetShortParamNameList returns a pointer to the string representing the parameter
list for the specified method.

Example
To get the parameter list of a method:

char buf[MAX_BUFFER];
SOMTMethodEntryC method;
SOMTClassEntryC class = __get_somtTargetClass(emitter);
SOMTTemplateOutputC template = __get_somtTemplate(emitter);
method = _somtGetFirstMethod(class);
_somtGetShortParamNameList(method, buf, NULL, ”ap”);
_somtSetSymbolCopyBoth(template, ”methodShortParmNameList”, buf);

SOMTMethodEntryC class

 110 SOMobjects Developer Toolkit

Original Class
SOMTMethodEntryC

Related Information
Methods: somtGetFirstParameter, somtGetNextParameter, somtGetShortCParamList,
somtGetFullCParamList, somtGetIDLParamList, somtGetFullParamNameList,
somtGetNthParameter

SOMTModuleEntryC class

 111Emitter Framework Guide and Reference

SOMTModuleEntryC Class

Description
A SOMTModuleEntryC object represents an IDL module definition. It provides methods for
accessing the structs, unions, enums, types, sequences, constants, interfaces, and nested
modules within the module.

File Stem
scmodule

Base
SOMTEntryC

Metaclass
SOMClass

Ancestor Classes
SOMTEntryC, SOMObject

Attributes
Listed below is each available attribute, with its corresponding type in parentheses, followed by
a description of its purpose:

somtModuleFile (string)
 The name of the file in which the module is defined.
 This attribute has no “Set” method.
somtOuterModule (SOMTModuleEntryC)
 The module enclosing this module, or NULL if there is none.

New Methods
somtGetFirstModuleStruct
somtGetNextModuleStruct
somtGetFirstModuleTypedef
somtGetNextModuleTypedef
somtGetFirstModuleUnion
somtGetNextModuleUnion
somtGetFirstModuleEnum
somtGetNextModuleEnum
somtGetFirstModuleConstant
somtGetNextModuleConstant
somtGetFirstModuleSequence
somtGetNextModuleSequence
somtGetFirstInterface
somtGetNextInterface
somtGetFirstModule
somtGetNextModule
somtGetFirstModuleDef
somtGetNextModuleDef

Overriding Methods
somDumpSelfInt
somtSetSymbolsOnEntry

SOMTModuleEntryC class

 112 SOMobjects Developer Toolkit

somtGetFirst<Item> Methods

Purpose
The somtGetFirst<Item> methods get the first item (such as a constant, typedef, union, etc.) for
a module entry.

IDL Syntax
SOMTClassEntryC somtGetFirstInterface ();

SOMTModuleEntryC somtGetFirstModule ();

SOMTConstEntryC somtGetFirstModuleConstant ();

SOMTEnumEntryC somtGetFirstModuleEnum ();

SOMTSequenceEntryC somtGetFirstModuleSequence ();

SOMTStructEntryC somtGetFirstModuleStruct ();

SOMTTypedefEntryC somtGetFirstModuleTypedef ();

SOMTUnionEntryC somtGetFirstModuleUnion ();

SOMTEntryC somtGetFirstModuleDef ();

Note: These methods do not take an Environment parameter.

Description
The somtGetFirst<Item> methods return the first item of the type shown above for the entry on
which the method was invoked, if it has one. Otherwise, it returns NULL. The next item of the
same kind can be obtained using the corresponding somtGetNext<Item> method. For exam-
ple, the somtGetFirstInterface method returns the entry representing the first interface of the
specified module. If the module has no interfaces, it returns NULL. The somtGetNextInterface
can be used repeatedly to retrieve each successive interface. The somtGetFirstModuleDef
method returns the first constant/type definition of the module, whether a typedef, struct, union,
interface name etc.

Note that the same somtGetFirst<Item> and somtGetNext<Item> methods cannot be used in
doubly nested loops. For example, the following doubly nested loop will not work, because
following the first execution of the inner loop, the invocation of somtGetNextInterface in the
outer loop will return NULL:

for (m1 = _somtGetFirstInterface(mod); m1;
 m1 = _somtGetNextInterface(mod))
 for (m2 = _somtGetFirstInterface(mod); m2;
 m2 = _somtGetNextInterface(mod))
 /* etc. */

Nested loops such as the one above are permissible if the target object (e.g., “mod”) of the inner
loop differs from the target object of the outer loop, or if a different somtGetFirst<Item> method
is used in the inner loop (for instance, a somtGetNextModuleConstant loop can be nested
inside a somtGetNextInterface loop).

Parameters
receiver The entry whose first item is to be retrieved.

Return Value
These methods return the first item (such as a constant, union, typedef, etc.) for a module entry.
The type of item returned is specific to the method; see the method call syntax shown above.

SOMTModuleEntryC class

 113Emitter Framework Guide and Reference

Example
To iterate through the nested modules of a module:

SOMTModuleEntryC myEntry;

printf(”List of nested modules:\n”);
for (myEntry = _somtGetFirstModule(mod); myEntry;
 myEntry = _somtGetNextModule(mod))
 printf(”%s\n”, __get_somtEntryName(myEntry));

Related Information
Methods: somtGetNext<Item>

SOMTModuleEntryC class

 114 SOMobjects Developer Toolkit

somtGetNext<Item> Methods

Purpose
These methods get the next item (such as a constant, union, typedef, etc.) for a module entry,
relative to the previous call for a similar entry.

IDL Syntax
SOMTClassEntryC somtGetNextInterface ();

SOMTModuleEntryC somtGetNextModule ();

SOMTConstEntryC somtGetNextModuleConstant ();

SOMTEnumEntryC somtGetNextModuleEnum ();

SOMTSequenceEntryC somtGetNextModuleSequence ();

SOMTStructEntryC somtGetNextModuleStruct ();

SOMTTypedefEntryC somtGetNextModuleTypedef ();

SOMTUnionEntryC somtGetNextModuleUnion ();

SOMTEntryC somtGetNextModuleDef ();

Note: These methods do not take an Environment parameter.

Description
The somtGetNext<Item> methods return the next item (of the type shown above) for the entry
on which the method was invoked, if it has a next item of that type. Otherwise, it returns NULL.
The somtGetNextModuleDef method returns the next constant/type definition of the module,
whether a typedef, struct, union, interface name etc.

A call to a somtGetNext<Item> method is relative to the last call of either the same method or
the corresponding somtGetFirst<Item> method, applied to the same entry object. Note that
this implies that the same somtGetFirst<Item> and somtGetNext<Item> methods cannot be
used in doubly nested loops. For example, the following doubly nested loop will not work,
because following the first execution of the inner loop, the invocation of somtGetNextInterface
in the outer loop will return NULL:

for (m1 = _somtGetFirstInterface(mod); m1;
 m1 = _somtGetNextInterface(mod))
 for (m2 = _somtGetFirstInterface(mod); m2;
 m2 = _somtGetNextInterface(mod))
 /* etc. */

Nested loops such as the one above are permissible if the target object (e.g., “mod”) of the inner
loop differs from the target object of the outer loop, or if a different somtGetFirst<Item> method
is used in the inner loop (for instance, a somtGetNextModuleConstant loop can be nested
inside a somtGetNextInterface loop).

Parameters
receiver The entry whose next item is to be retrieved.

Return Value
These methods return the next item (of the type shown above) for the entry represented by
receiver, if it has a next item of that type. Otherwise, it returns NULL. The type of item returned is
specific to the method; see the method call syntax shown above.

SOMTModuleEntryC class

 115Emitter Framework Guide and Reference

Example
To iterate through the nested modules of a module:

SOMTModuleEntryC myEntry;

printf(”List of nested modules:\n”);
for (myEntry = _somtGetFirstModule(mod); myEntry;
 myEntry = _somtGetNextModule(mod))
 printf(”%s\n”, __get_somtEntryName(myEntry));

Related Information
Methods: somtGetFirst<Item>

SOMTParameterEntryC class

 116 SOMobjects Developer Toolkit

SOMTParameterEntryC Class

Description
A SOMTParameterEntryC object represents a parameter of a method.

File Stem
scparm

Base
SOMTCommonEntryC

Metaclass
SOMClass

Ancestor Classes
SOMTCommonEntryC, SOMTEntryC, SOMObject

Types
enum somtParameterDirectionT { somtInE, somtOutE, somtInOutE }

Attributes
somtParameterDirection (somtParameterDirectionT)
 The I/O direction for the parameter.
 There are three possible parameter directions:
 somtInE: The parameter is for input.
 somtOutE: The parameter is for output.
 somtInOutE The parameter is for both input and output.

somtIDLParameterDeclaration (string)
 The IDL declaration of the parameter, including its type and name.

somtCParameterDeclaration (string)
 The declaration for the parameter within a C/C++ method procedure prototype.
 This may differ from the IDL declaration; in particular, pointer stars may be added,
 depending on the direction of the parameter.

New Methods
None.

Overriding Methods
somtSetSymbolsOnEntry
somDumpSelfInt

SOMTPassthruEntryC class

 117Emitter Framework Guide and Reference

SOMTPassthruEntryC Class

Description
An object of class SOMTPassthruEntryC represents a passthru item in a class definition. It
provides attributes for accessing the target, language, and body of the passthru, as well as
whether the passthru is a “before” or “after” passthru.

File Stem
scpass

Base
SOMTEntryC

Metaclass
SOMClass

Ancestor Classes
SOMTEntryC, SOMObject

Attributes
Listed below is each available attribute, with its corresponding type in parentheses, followed by
a description of its purpose:

somtPassthruTarget (string)
 The target emitter (h, xh, ih, etc.) for a passthru entry.
 This attribute has no “Set” method.

somtPassthruLanguage (string)
 The name of the language for which a passthru entry is intended.
 Language names are always in upper case.
 (“C” is used for both C and C++.”)
 This attribute has no “Set” method.

somtPassthruBody (string)
 The source text of a passthru entry, without modification.
 Newlines present in the source are retained.

New Methods
somtIsBeforePassthru

Overriding Methods
somtSetSymbolsOnEntry
somDumpSelfInt

SOMTPassthruEntryC class

 118 SOMobjects Developer Toolkit

somtIsBeforePassthru Method

Purpose
Tests whether a passthru entry represents a “before” or “after” passthru.

IDL Syntax
boolean somtIsBeforePassthru (SOMTPassthruEntryC receiver);

Note: This method does not take an Environment parameter.

Description
The somtIsBeforePassthru method tests whether a passthru entry represents a passthru
intended to be put at the beginning of the output file or inserted after the #include statements, as
specified in the .idl file.

Parameters
receiver An object of class SOMTPassthruEntryC representing a passthru item to be

tested.

Return Value
The somtIsBeforePassthru method returns TRUE if this passthru entry is a “before” passthru
(intended to be put at the beginning of the emitted file), or it returns FALSE if this passthru entry is
an “after” passthru (intended to be put after the #include statements in the emitted file).

Original Class
SOMTPassthruEntryC

Related Information
Methods: somtEmitFullPassthru, somtGetFirstPassthru, somtGetNextPassthru,
somtEmitPassthru

SOMTSequenceEntryC class

 119Emitter Framework Guide and Reference

SOMTSequenceEntryC Class

Description
A SOMTSequenceEntryC object represents a sequence type definition. It provides attributes
for accessing the type and length of the sequence.

File Stem
scseqnce

Base
SOMTEntryC

Metaclass
SOMClass

Ancestor Classes
SOMTEntryC, SOMObject

Attributes
Listed below is each available attribute, with its corresponding type in parentheses, followed by
a description of its purpose:

somtSeqLength (long)
 The length of the sequence, as specified in the .idl file. If unspecified, this attribute is zero.
 This attribute has no “set” method.
somtSeqType (SOMTEntryC)
 A pointer to an object representing the type of the sequence.
 This attribute has no “set” method.

New Methods
None.

Overriding Methods
somtSetSymbolsOnEntry
somDumpSelfInt

SOMTStringEntryC class

 120 SOMobjects Developer Toolkit

SOMTStringEntryC Class

Description
A SOMTStringEntryC object represents a string type definition.

File Stem
scstring

Base
SOMTEntryC

Metaclass
SOMClass

Ancestor Classes
SOMTEntryC, SOMObject

Attributes
Listed below is each available attribute, with its corresponding type in parentheses, followed by
a description of its purpose:

somtStringLength (long)
 The length of the string, as specified in the .idl file. If unspecified, this attribute is zero.
 This attribute has no “set” method.

New Methods
None.

Overriding Methods
somtSetSymbolsOnEntry
somDumpSelfInt

SOMTStructEntryC class

 121Emitter Framework Guide and Reference

SOMTStructEntryC Class

Description
A SOMTStructEntryC object represents a struct definition or an exception.

Every class entry holds a pointer to a struct entry (SOMTStructEntryC object) for each struct
defined within the class’s interface specification. Each struct entry has attributes that represent
the class in which the struct was defined (somtStructClass) and whether the struct actually
represents an exception (somtIsException), and methods for accessing the members of the
struct (somtGetFirstMember and somtGetNextMember). The members of the struct are
represented by SOMTTypedefEntryC objects whose attributes and methods give the member
types and declarator names.

File Stem
scstruct

Base
SOMTEntryC

Metaclass
SOMClass

Ancestor Classes
SOMTEntryC, SOMObject

Attributes
Listed below is each available attribute, with its corresponding type in parentheses, followed by
a description of its purpose:

somtStructClass (SOMTClassEntryC)
 A pointer to an object representing the class in which this struct was defined.
 This attribute has no “set” method.
somtIsException (boolean)
 Whether the struct actually represents an exception. This attribute has no “set” method.

New Methods
somtGetFirstMember
somtGetNextMember

Overriding Methods
somtSetSymbolsOnEntry
somDumpSelfInt

SOMTStructEntryC class

 122 SOMobjects Developer Toolkit

somtGetFirstMember Method

Purpose
The somtGetFirstMember method gets the first member for a struct entry.

IDL Syntax
SOMTTypedefEntryC somtGetFirstMember ();

Note: This method does not take an Environment parameter.

Description
The somtGetFirstMember method returns the first member for the struct entry on which the
method was invoked. The next member can be obtained using the corresponding
somtGetNextMember method.

Note that the somtGetFirstMember and somtGetNextMember methods cannot be used in
doubly nested loops. For example, the following doubly nested loop will not work, because
following the first execution of the inner loop, the invocation of somtGetNextMember in the
outer loop will return NULL:

for (m1 = _somtGetFirstMember(struct); m1;
 m1 = _somtGetNextMember(struct))
 for (m2 = _somtGetFirstMember(struct); m2;
 m2 = _somtGetNextMember(struct))
 /* etc. */

Parameters
receiver The struct entry whose first member is to be retrieved.

Return Value
This method returns the first member for a struct entry.

Related Information
Methods: somtGetNextMember

SOMTStructEntryC class

 123Emitter Framework Guide and Reference

somtGetNextMember Method

Purpose
Get the next member for a struct entry, relative to the previous call for a similar entry.

IDL Syntax
SOMTTypedefEntryC somtGetNextMember ();

Note: This method does not take an Environment parameter.

Description
The somtGetNextMember method returns the next member for the struct entry on which the
method was invoked, if it has a next member. Otherwise, it returns NULL.

A call to a somtGetNextMember method is relative to the last call of either the same method or
the corresponding somtGetFirstMember method, applied to the same entry object. Note that
this implies that the somtGetFirstMember and somtGetNextMember methods cannot be
used in doubly nested loops. For example, the following doubly nested loop will not work,
because following the first execution of the inner loop, the invocation of somtGetNextMember
in the outer loop will return NULL:

for (m1 = _somtGetFirstMember(struct); m1;
 m1 = _somtGetNextMember(struct))
 for (m2 = _somtGetFirstMember(struct); m2;
 m2 = _somtGetNextMember(struct))
 /* etc. */

Parameters
receiver The struct entry whose next item is to be retrieved.

Return Value
This method returns the next member for the struct entry represented by receiver, if it has a next
member. Otherwise, it returns NULL.

Related Information
Methods: somtGetFirstMember

SOMTTemplateOutputC class

 124 SOMobjects Developer Toolkit

SOMTTemplateOutputC Class

Description
An object of class SOMTTemplateOutputC represents the output template for an emitter. The
template controls the format and content of the sections that an emitter emits. (The emitter itself
controls which sections are actually emitted and their order, through its implementation of
somtGenerateSections.) The template is initialized from the template (.efw) file. The template
consists of a set of section names and corresponding text templates containing symbols that,
when emitted, are replaced by values appropriate for the emitter’s target class/module. For
example, the following fragment of a template file specifies the format of the class section for a
particular emitter:

 :classS
 The class name is <className>.

Lines that begin with a colon introduce a section. (By convention, section names end with S.)
Symbols are contained in angle brackets (e.g., <className>). When the SOM Compiler com-
piles the definition of class Foo and invokes the emitter with the above template, the emitter will
produce the following text when it emits the class section:

 The class name is Foo.

Lines in a template that begin with “?” are emitted only if at least one symbol appearing on that
line is defined with a non-NULL value. In addition to simple symbol substitution, two forms of
complex substitution are also supported, list substitution and comment substitution.

Comment substitution is specified by two dashes before the symbol name. For example,

 <– – methodComment>

indicates that the value of the symbol methodComment should be emitted in comment form.
The comment form used depends on the somtCommentStyle and somtCommentNewline
attributes of the template.

List substitution is specified by “...” preceding the closing angle bracket. In addition, any charac-
ters preceding the symbol name indicate the prefix for non-empty lists, and any characters after
the symbol name and before the “...” indicate the delimiter for list items. For example,

 <:methodShortParamNameList, ...>

indicates that the items that constitute the value of symbol methodShortParamNameList should
be emitted with a preceding colon and with a comma and a space between each item, as in

 :x, y, z

Items are delimited in the symbol’s value by newline characters. The somtLineLength attribute
of the template controls how many list items appear on each line.

The SOMTTemplateOutputC class provides methods for maintaining the emitter’s symbol
table. The SOMTTemplateOutputC class defines several general-purpose symbols as well as
methods through which an emitter can define special-purpose symbols. It also provides meth-
ods whereby an emitter can define and emit special-purpose sections in addition to those
defined by the SOMTEmitC class. The general-purpose symbols predefined by the
SOMTemplateOutuptC class are as follows:

SOMTTemplateOutputC class

 125Emitter Framework Guide and Reference

classMajorVersion, classMinorVersion, classSourceFile, classSourceFileStem,
classReleaseOrder, classInclude, className, classComment, classLineNumber,
classMods, classIDLScopedName, classCScopedName,

baseMajorVersion, baseMinorVersion, baseSourceFile, baseSourceFileStem, baseInclude,
baseName, baseIDLScopedName, baseCScopedName, baseComment, baseLineNumber,

metaMajorVersion, metaMinorVersion, metaSourceFile, metaSourceFileStem, metaInclude,
metaName, metaIDLScopedName, metaCScopedName, metaComment,
metaLineNumber,

dataName, dataIDLScopedName, dataCScopedName, dataComment, dataLineNumber,
dataMods, dataType, dataArrayDimensions, dataPointer,

methodName, methodIDLScopedName, methodIDLCScopedName, methodComment,
methodLineNumber, methodMods, methodType, methodCReturnType, methodContext,
methodRaises, methodClassName, methodCParamList, methodCParamListVA,
methodIDLParamList, methodShortParamNameList, methodFullParamNameList,

parameterType, parameterDirection, parameterCDeclaration, parameterIDLDeclaration,
parameterName, parameterMods, parameterLineNumber, parameterComment,
parameterIDLScopedName, parameterCScopedName,

constantName, constantIDLScopedName, constantCScopedName, constantComment,
constantLineNumber, constantMods, constantType, constantValueUnevaluated,
constantEvaluated,

typedefComment, typedefLineNumber, typedefBaseType, typedefDeclarators,

structName, structIDLScopedName, structCScopedName, structComment,
structLineNumber, structMods,

unionName, unionIDLScopedName, unionCScopedName, unionComment,
unionLineNumber, unionMods,

enumName, enumIDLScopedName, enumCScopedName, enumComment,
enumLineNumber, enumMods, enumNames,

stringLength, sequenceLength,

attributeDeclarators, attributeBaseType, attributeComment, attributeLineNumber,
attributeMods,

passthruName, passthruComment, passthruLineNumber, passthruMods,
passthruLanguage, passthruTarget, passthruBody,

moduleName, moduleIDLScopedName, moduleCScopedName, moduleComment,
moduleLineNumber, moduleMods, and timeStamp.

The SOMTTemplateOutputC class also defines the following symbols, which are used by the
somtEmit<section> methods (defined by the SOMTEmitC class) to determine what section
names correspond to different sections. For example, the somtEmitProlog method uses the
symbol prologSN to determine what section name corresponds to the prolog section. (The
suffix SN denotes “section name.”) The default value of prologSN is “prologS”. The remainder of
the symbols below follow the same convention:

prologSN, baseIncludesPrologSN, baseIncludesSN, baseIncludesEpilogSN,
metaIncludeSN, classSN, metaSN, basePrologSN, baseSN, baseEpilogSN,
constantPrologSN, constantSN, constantEpilogSN, typedefPrologSN, typedefSN,
typedefEpilogSN, structPrologSN, structSN, structEpilogSN, unionPrologSN, unionSN,
unionEpilogSN, enumPrologSN, enumSN, enumEpilogSN, attributePrologSN,
attributeSN, attributeEpilogSN, interfacePrologSN, interfaceSN, interfaceEpilogSN,
modulePrologSN, moduleSN, moduleEpilogSN, passthruPrologSN, passthruSN,
passthruEpilogSN, releaseSN, dataPrologSN, dataSN, dataEpilogSN, methodsPrologSN,
methodsSN, overrideMethodsSN, overriddenMethodsSN, inheritedMethodsSN,
methodsEpilogSN, epilogSN

SOMTTemplateOutputC class

 126 SOMobjects Developer Toolkit

File Stem
sctmplt

Base
SOMObject

Metaclass
SOMClass

Ancestor Classes
SOMObject

Types
enum somtCommentStyleT {somtDashesE, somtCPPE, somtCSimpleE, somtCBlockE }

Attributes
Listed below is each available attribute, with its corresponding type in parentheses, followed by
a description of its purpose:

somtCommentStyle (somtCommentStyleT)
 The style in which comments are emitted, as follows:
 somtDashesE: “––” at the start of each line
 somtCPPE: “//” at the start of each line
 somtCSimpleE: simple C style, each line wrapped in “/*” and “*/”
 somtCBlockE: block C style, a leading “/*”, then a “*” on each line and a final “*/”
somtLineLength (long)
 Controls the length of emitted lines, for list output only. The default line length is 72.
 At least one list item will be output on each line, so making this value very small causes
 list items to be emitted one per line.
somtCommentNewline (boolean)
 If TRUE, each line of comments that are emitted (using the somtOutputComment method
 or by comment substitution in the output template) is preceded by a newline.

New Methods
somtGetSymbol
somtSetSymbol
somtSetSymbolCopyName
somtSetSymbolCopyValue
somtSetSymbolCopyBoth
somtCheckSymbol
somtSetOutputFile
somto
somtOutputComment
somtOutputSection
somtAddSectionDefinitions
somtReadSectionDefinitions
somtExpandSymbol

Overriding Methods
somInit
somUninit
somPrintSelf
somDumpSelfInt

SOMTTemplateOutputC class

 127Emitter Framework Guide and Reference

somtAddSectionDefinitions Method

Purpose
Reads section definitions from a string and adds them to a specified template.

IDL Syntax
void somtAddSectionDefinitions (

in string defString);

Note: This method does not take an Environment parameter.

Description
The somtAddSectionDefinitions method adds the section definitions specified in defString to
the template represented by receiver. The section definitions in defString must be in the follow-
ing form:

:section1
value 1 line 1
value 1 line 2
:section2
value 2 line 1
:section3
value 3 line 1

where each line containing “:” in column 1 introduces a new section. The section name is the text
immediately following the colon. (A backslash in column one can be used to escape a colon that
is not used to start a new section.)

Parameters
receiver An object of class SOMTTemplateOutputC representing a template.

defString A string that specifies the section definitions to add to the template.

Return Value
None.

Original Class
SOMTTemplateOutputC

Related Information
Method: somtExpandSymbol, somtReadSectionDefinitions, somtCheckSymbol,
somtSetSymbolCopyBoth, somtSetSymbolCopyValue, somtSetSymbolCopyName

SOMTTemplateOutputC class

 128 SOMobjects Developer Toolkit

somtCheckSymbol Method

Purpose
Checks whether a symbol has been set in a specified template’s symbol table.

IDL Syntax
boolean somtCheckSymbol (

in string name);

Note: This method does not take an Environment parameter.

Description
The somtCheckSymbol method checks whether the specified symbol has a non-NULL, non-
zero length value in the template’s symbol table.

Parameters
receiver An object of class SOMTTemplateOutputC representing a template.

name A string representing the name of the symbol to be tested.

Return Value
The somtCheckSymbol method returns TRUE if the indicated symbol has a non-NULL, non-
zero length value. Otherwise, it returns FALSE.

Example
SOMTTemplateOutputC template;
template = __get_somtTemplate(emitter);
if (_somtCheckSymbol(template, ”className”))
 printf(”The <className> symbol is set.\n”);

Original Class
SOMTTemplateOutputC

Related Information
Methods: somtExpandSymbol, somtReadSectionDefinitions,
 somtAddSectionDefinitions, somtSetSymbolCopyBoth,
somtSetSymbolCopyValue, somtSetSymbolCopyName, somtGetSymbol

SOMTTemplateOutputC class

 129Emitter Framework Guide and Reference

somtExpandSymbol Method

Purpose
Expands a section from a template file.

IDL Syntax
string somtExpandSymbol (

in string s,
in string buf);

Note: This method does not take an Environment parameter.

Description
The somtExpandSymbol method expands a section from a template file, given a symbol
representing the name of the section, by substituting symbol values for symbol names in the
template. This expansion can then be assigned as the value of another symbol, using one of the
somtSetSymbol... methods. In this way, the values of emitter symbols can be defined
declaratively in the template file, rather than procedurally within the emitter’s code.

Parameters
receiver An object of class SOMTTemplateOutputC representing a template.

s A string representing the name of the section to be expanded.

buf A string representing the buffer which will receive the expanded section.

Return Value
The somtExpandSymbol method expands the specified section in buf and returns buf.

Example
If the template (.efw) file for an emitter contains the following section definition:

:methodPrefixS
<functionprefix>_

then the following code within an overriding implementation of the somtGenerateSections
method (or any other method of SOMTEmitC) will set symbol “methodPrefix” to be the expan-
sion of the methodPrefixS section in the template file (that is, the value of symbol
“functionprefix,” if defined by the emitter, followed by an underscore).

SOMTTemplateOutputC template = __get_somtTemplate(emitter);
char buf[MAX_SYMBOL_SIZE];
...
_somtSetSymbolCopyBoth(template, ”methodPrefix”,
 _somtExpandSymbol(template, ”methodPrefixS”, buf))

Original Class
SOMTTemplateOutputC

Related Information
Methods: somtReadSectionDefinitions, somtAddSectionDefinitions,
somtCheckSymbol, somtSetSymbolCopyBoth, somtSetSymbolCopyValue,
somtSetSymbolCopyName, somtSetSymbol, somtGetSymbol

SOMTTemplateOutputC class

 130 SOMobjects Developer Toolkit

somtGetSymbol Method

Purpose
Gets a symbol value from a template’s symbol table.

IDL Syntax
string somtGetSymbol (

in string name);

Note: This method does not take an Environment parameter.

Description
The somtGetSymbol method gets the value of symbol name from the symbol table of the
template object on which the method was invoked.

Parameters
receiver An object of class SOMTTemplateOutputC representing a template.

name A string representing the name of the symbol whose value is needed.

Return Value
The somtGetSymbol method returns the string representing the value of the symbol. If there is
no associated value, then somtGetSymbol returns NULL.

Example
To set the symbol prefix to the value of externalPrefix (if that symbol has already been
given a value):

SOMTTemplateOutputC template = __get_somtTemplate(emitter);
_somtSetSymbolCopyName(template, ”prefix”,
 _somtGetSymbol(template, ”externalPrefix”));

Original Class
SOMTTemplateOutputC

Related Information
Methods: somtExpandSymbol, somtCheckSymbol, somtSetSymbolCopyBoth,
somtSetSymbolCopyValue, somtSetSymbolCopyName

SOMTTemplateOutputC class

 131Emitter Framework Guide and Reference

somto Method
Purpose

Outputs a template to a file.

IDL Syntax
void somto (in string tmplt);

Note: This method does not take an Environment parameter.

Description
The somto method outputs a template tmplt after substituting for any symbols that occur in it.
(This method is usually not called directly.) Five kinds of symbol substitutions are supported:
simple, list, comment, tab, and conditional.

Substitutable items in the template are bracketed with angle brackets (< >). The backslash (\)
can be used to escape an angle bracket.

Simple substitution replaces a symbol with its value. If the symbol has no value in the symbol
table of the SOMTTemplateOutputC object on which the method was invoked, then the symbol
is replaced by the string “Symbol <...> is not defined.”

List substitution replaces a symbol with a value expressed in list form, using specified delimiters.
The symbol value must consist of a sequence of list items, separated by newline characters.
The list-substitution specification consists of four parts: a prefix, the symbol, a separator, and a
list indicator. The prefix and separator components can only be composed of blanks, com-
mas, colons, and semicolons. The list indicator is “. . .” (three periods). For example, the
list-substitution specification

<, name, ...>

has a prefix of “, ”, a symbol of “name” and a separator of “, ”. The prefix will precede the list
whenever there is at least one item in the list, and the separator will be used between any two list
items. After each item of the list is output, the next item is evaluated to determine whether it
would exceed the maximum line length (set by the receiver’s attribute somtLineLength). If it
would, then a new line is begun and the next value is placed directly under the first item.

Comment substitution replaces a symbol with its value in the form of a comment. A comment
specification consists of the two characters “– –” followed by a symbol name. For example,
<– – classComment> is a valid comment-substitution specification. The lines of the com-
ment are output according to the somtCommentStyle attribute of the receiver, and are aligned
with the starting column of the comment specification.

Tab substitution is specified by <@dd>, where dd is a valid positive integer representing a
column number. Blanks will be inserted into the output stream if necessary to position the next
character of output at the column indicated by dd.

Conditional substitution is specified by putting a question mark (?) in column one of the template
line. The line will not be output unless at least one valid, non-blank symbol substitution occurs on
the line.

Parameters
receiver An object of class SOMTTemplateOutputC representing an emitter’s tem-

plate.

tmplt A string representing the template to be output.

Return Value
The somto method has no return value. The template is output to the file associated with the
SOMTTemplateOutputC object.

SOMTTemplateOutputC class

 132 SOMobjects Developer Toolkit

somtOutputComment Method

Purpose
Inserts a comment into the output file.

IDL Syntax
void somtOutputComment (

in string comment);

Note: This method does not take an Environment parameter.

Description
The somtOutputComment method inserts a comment into the output file. The specified com-
ment must be a string in which each comment line terminates with a newline character.

Parameters
receiver An object of class SOMTTemplateOutputC representing a template.

comment A string representing the comment to be emitted.

Return Value
None.

Example
SOMTTemplateOutputC template = __get_somtTemplate(emitter);
_somtOutputComment(template, ”Here is a comment to emit.”);

Original Class
SOMTTemplateOutputC

Related Information
Methods: somtOutputSection, somto, somtSetOutputFile

SOMTTemplateOutputC class

 133Emitter Framework Guide and Reference

somtOutputSection Method
Purpose

Outputs a section of a template.

IDL Syntax
void somtOutputSection (

in string sectionName);

Note: This method does not take an Environment parameter.

Description
The somtOutputSection method outputs the section named by sectionName after substitut-
ing for any symbols that occur in that section. [The template (.efw) file defines each section.]
Five types of symbol substitution are supported: simple, list, comment, tab, and conditional.

Substitutable items in the template are bracketed with angle brackets (< >). The backslash (\)
can be used to escape an angle bracket.

Simple substitution replaces a symbol with its value. If the symbol has no value for the specified
SOMTTemplateOutputC object, then the symbol is replaced by the string “Symbol <...> is not
defined.”

List substitution replaces a symbol with a value expressed in list form, using specified delimiters.
The symbol value must consist of a sequence of list items, separated by newline characters.
The list-substitution specification consists of four parts: a prefix, the symbol, a separator, and a
list indicator. The prefix and separator components can only be composed of blanks, com-
mas, colons, and semicolons. The list indicator is “. . .” (three periods). For example, the
list-substitution specification

<, name, ...>

has a prefix of “, ”, a symbol of “name” and a separator of “, ”. The prefix will precede the list
whenever there is at least one item in the list, and the separator will be used between any two list
items. After each item of the list is output, the next item is evaluated to determine whether it
would exceed the maximum line length (set by the receiver’s attribute somtLineLength). If it
would, then a new line is begun and the next value is placed directly under the first item.

Comment substitution replaces a symbol with its value in the form of a comment. A comment
specification consists of the two characters “– –” followed by a symbol name. For example,
<– – classComment> is a valid comment-substitution specification. The lines of the com-
ment are output according to the somtCommentStyle attribute of the receiver, and are aligned
with the starting column of the comment specification.

Tab substitution is specified by <@dd>, where dd is a valid positive integer representing a
column number. Blanks will be inserted into the output stream if necessary to position the next
character of output at the column indicated by dd.

Conditional substitution is specified by putting a question mark (?) in column one of the template
line. The line will not be output unless at least one valid, non-blank symbol substitution occurs on
the line.

Parameters
receiver An object of class SOMTTemplateOutputC representing a template.

sectionName A string representing the name of the section to be emitted.

Return Value
The somtOutputSection method has no return value. The section is output to the file asso-
ciated with the SOMTTemplateOutputC object.

SOMTTemplateOutputC class

 134 SOMobjects Developer Toolkit

Example
SOMTTemplateOutputC template = __get_somtTemplate(emitter);
_somtOutputSection(template, ”metaSectionS”);

Original Class
SOMTTemplateOutputC

Related Information
Methods: somtReadSectionDefinitions, somtAddSectionDefinitions, somto,
somtSetOutputFile

SOMTTemplateOutputC class

 135Emitter Framework Guide and Reference

somtReadSectionDefinitions Method

Purpose
Reads section definitions from a file and adds them to the specified template.

IDL Syntax
void somtReadSectionDefinitions (inout FILE *fp);

Note: This method does not take an Environment parameter.

Description
The somtReadSectionDefinitions method reads all section definitions from the file specified
by fp and adds them to the template on which the method was invoked. Section definitions must
be in the following form:

:section1
value 1 line 1
value 1 line 2
:section2
value 2 line 1
:section3
value 3 line 1

where each line containing “:” in column 1 introduces a new section. The section name is the text
immediately following the colon. (A backslash in column one can be used to escape a colon that
is not used to start a new section.)

Parameter
receiver An object of class SOMTTemplateOutputC representing the template to

which the section definitions will be added.

fp A pointer to the file containing the section definitions.

Return Value
None.

Example
To read the section definitions from the myfile.efw template file:

MyEmitter emitter;
SOMTTemplateOutputC template;

emitter = MyEmitterNew();
template = __get_somtTemplate(emitter);

if (deffile = _somtOpenSymbolsFile(emitter, ”myfile.efw”, ”r”))
 _somtReadSectionDefinitions(template, deffile);

Original Class
SOMTTemplateOutputC

Related Information
Methods: somtAddSectionDefinitions, somtOutputSection, somto, somtSetOutputFile,
somtOpenSymbolsFile

SOMTTemplateOutputC class

 136 SOMobjects Developer Toolkit

somtSetOutputFile Method

Purpose
Sets the output file for an emitter.

IDL Syntax
void somtSetOutputFile (

inout FILE *fp);

Note: This method does not take an Environment parameter.

Description
The somtSetOutputFile method specifies the file to which all output will be directed. This
method usually need not be invoked directly, because a template’s output file is set when its
emitter’s target file is set (using _set_somtTargetFile).

The default output file is stdout.

Parameters
receiver An object of class SOMTTemplateOutputC representing the template of the

emitter.

fp A pointer to the output file.

Return Value
None.

Original Class
SOMTTemplateOutputC

Related Information
Methods: somtOutputSection, somto

SOMTTemplateOutputC class

 137Emitter Framework Guide and Reference

somtSetSymbol Method

Purpose
Sets a symbol to a given value in the symbol table of a specified template.

IDL Syntax
void somtSetSymbol (

in string name,
in string value);

Note: This method does not take an Environment parameter.

Description
The somtSetSymbol method sets a symbol name to a specified value in the symbol table of
the template object on which the method was invoked. This adds the name/value pair to the
symbol table or overwrites a previous setting, if necessary.

The symbol table assumes ownership of both the name and value, and these strings must not
be freed by the caller. If the value of the named symbol is changed by subsequent calls to a
somtSetSymbol... method, then the string passed as the value parameter will be freed by the
symbol table. Hence, if the string representing the value is a static string or a string that will be
freed by the caller, or if the symbol value may change during subsequent execution of the emitter
and it is necessary that the string passed as the value parameter not be freed by the symbol
table, then you should use the somtSetSymbolCopyValue or somtSetSymbolCopyBoth
method to define the name/value pair. Likewise, if the string representing the name is a static
string or a string that will be freed by the caller, you should use the somtSetSymbolCopyName
or somtSetSymbolCopyBoth method to define the name/value pair.

Parameters
receiver An object of class SOMTTemplateOutputC, representing the template object

of an emitter.

name A string representing a symbol name.

value A string representing a symbol value.

Return Value
None.

Original Class
SOMTTemplateOutputC

Related Information
Methods: somtExpandSymbol, somtCheckSymbol, somtSetSymbolCopyBoth,
somtSetSymbolCopyValue, somtSetSymbolCopyName, somtGetSymbol,
somtSetSymbol

SOMTTemplateOutputC class

 138 SOMobjects Developer Toolkit

somtSetSymbolCopyBoth Method

Purpose
Sets a symbol to a given value in the symbol table of a specified template, using copies of the
original name and value.

IDL Syntax
void somtSetSymbolCopyBoth (

in string name,
in string value);

Note: This method does not take an Environment parameter.

Description
The somtSetSymbolCopyBoth method sets a symbol name to a specified value in the symbol
table of the template object on which the method is invoked. This adds the name/value pair to
the symbol table or overwrites a previous setting, if necessary.

The somtSetSymbolCopyBoth method makes a copy of both the name and value parame-
ters; it stores in the symbol table (and takes ownership of) the copies, rather than the original
strings. This method is appropriate when the caller wants to maintain ownership of the strings
representing both name and value, or when the name and value are static strings. Because
the method makes a copy of value before storing it in the symbol table, if the value of the symbol
is subsequently changed, only the symbol table’s copy of the original value will be freed, and not
the string passed by the caller.

Parameters
receiver An object of class SOMTTemplateOutputC representing the template object

of an emitter.

name A string representing a symbol name.

value A string representing a symbol value.

Return Value
None.

Example
To set the symbol newMethodLabel to the value ”New Sections”:

SOMTTemplateOutputC t = __get_somtTemplate(emitter);
_somtSetSymbolCopyBoth(t,”newMethodLabel”, ”New Sections”);

Original Class
SOMTTemplateOutputC

Related Information
Methods: somtExpandSymbol, somtCheckSymbol, somtSetSymbolCopyValue,
somtSetSymbolCopyName, somtGetSymbol, somtSetSymbol

SOMTTemplateOutputC class

 139Emitter Framework Guide and Reference

somtSetSymbolCopyName Method
Purpose

Sets a symbol to a given value in the symbol table of a specified template, using a copy of the
original name.

IDL Syntax
void somtSetSymbolCopyName (

in string name,
in string value);

Note: This method does not take an Environment parameter.

Description
The somtSetSymbolCopyName method sets a symbol name to a specified value in the
symbol table of the template object on which the method is invoked. This adds the name/
value pair to the symbol table or overwrites a previous setting, if necessary.

The somtSetSymbolCopyName method makes a copy of the name parameter, but not the
value parameter, before storing the name/value pair in the symbol table. This method is
appropriate when the caller wants to maintain ownership of the string representing the symbol
name or when the name is a static string.

After execution of the somtSetSymbolCopyName method, the symbol table assumes owner-
ship of the string passed as the value parameter. Hence, this string must not be freed by the
caller, and it should not be a static string. If the value of the named symbol is changed by
subsequent calls to a somtSetSymbol... method, then the string passed as the value parame-
ter will be freed by the symbol table. If the string representing the value is a static string or a
string that will be freed by the caller, or if the symbol value may change during subsequent
execution of the emitter and it is necessary that the string passed as the value parameter not be
freed by the symbol table, then you should use the somtSetSymbolCopyBoth method to
define the name/value pair.

Parameters
receiver An object of class SOMTTemplateOutputC representing the template object

of an emitter.

name A string representing a symbol name.

value A string representing a symbol value.

Return Value
None.

Example
To set the “baseNames” variable to the value returned by a function buildbaseNames that
returns ownership of the string it produces to the caller:

SOMTClassEntryC cls = __get_somtTargetClass(emitter);
SOMTTemplateOutputC t = __get_somtTemplate(emitter);

_somtSetSymbolCopyName(t,”baseNames”, buildbaseNames(cls));

Original Class
SOMTTemplateOutputC

Related Information
Method: somtExpandSymbol, somtCheckSymbol, somtSetSymbolCopyBoth,
somtSetSymbolCopyValue, somtGetSymbol, somtSetSymbol

SOMTTemplateOutputC class

 140 SOMobjects Developer Toolkit

somtSetSymbolCopyValue Method
Purpose

Sets a symbol to a given value in the symbol table of a template object, using a copy of the
original value.

IDL Syntax
void somtSetSymbolCopyValue (

in string name,
in string value);

Note: This method does not take an Environment parameter.

Description
The somtSetSymbolCopyValue method sets a symbol name to a specified value in the
symbol table of the template object on which the method is invoked. This adds the name/
value pair to the symbol table or overwrites a previous setting, if necessary.

The somtSetSymbolCopyValue method makes a copy of the value parameter, but not the
name parameter, before storing the name/value pair in the symbol table. This method is
appropriate when the caller wants to maintain ownership of the string representing the symbol
value or when the value is a static string. Because the method makes a copy of the value
before storing it in the symbol table, if the value of the symbol is subsequently changed, only the
symbol table’s copy of the original value will be freed, and not the string passed by the caller.

After execution of this method, the symbol table assumes ownership of the string passed as the
name parameter. Hence, this string must not be freed by the caller, and it should not be a static
string.

Parameters
receiver An object of class SOMTTemplateOutputC representing the template object

of an emitter.

name A string representing the symbol name.

value A string representing the symbol value.

Return Value
None.

Example
To change the default value of the“className” symbol so that it begins with an underscore:

char *s;
SOMTTemplateOutputC t = __get_somtTemplate(emitter);
char buf[MAX_SMALL_STRING];
...
s = _somtGetSymbol(t, “className”);
if (s && *s)
 {
 sprintf(buf, “_%s”, s);
 _somtSetSymbolCopyValue(t, “className”, buf);
 }

Original Class
SOMTTemplateOutputC

Related Information
Methods: somtExpandSymbol, somtCheckSymbol, somtSetSymbolCopyBoth,
somtSetSymbolCopyName, somtGetSymbol, somtSetSymbol

SOMTTypedefEntryC class

 141Emitter Framework Guide and Reference

SOMTTypedefEntryC Class
Description

A SOMTTypedefEntryC object represents a typedef within a class definition or a member of a
user-defined struct. Each typedef entry has an attribute representing the base type
(somtTypedefType) of the new type(s) and methods for accessing the declarator names
(somtGetFirstDeclarator and somtGetNextDeclarator) of the typedef. If the type of a typedef
is a user-defined type, then the somtTypedefType attribute will be a pointer to an instance of
SOMTUserDefinedTypeEntryC. The somtOriginalTypedef attribute of that object will point to
a SOMTTypedefEntryC object that represents the typedef for that user-defined type.

For example, if the following appears in an IDL specification:

typedef long mytype1;
typedef mytype1 mytype2;

the SOMTTypedefEntryC object that represents the typedef of “mytype2” would have a
somtTypedefType attribute whose value is an object of type SOMTUserDefinedTypeEntryC.
That object’s somtOriginalTypedef attribute would point to a somtTypedefEntryC object that
represents the typedef of “mytype1.”

Because a single typedef may have several declarators (that introduce several user-defined
types), the somtTypedefType attribute of a typedef gives only the base type of the user-defined
types; to get the full type, users should access each declarator in turn and get its somtType
attribute.

File Stem
sctdef

Base
SOMTEntryC

Metaclass
SOMClass

Ancestor Classes
SOMTEntryC, SOMObject

Attributes
Listed below is each available attribute, with its corresponding type in parentheses, followed by
a description of its purpose:

somtTypedefType (SOMTEntryC)
 A pointer to an entry object representing the base type of the typedef. This doesn’t include
 pointer stars or array declarators; to get the full type, get each of the declarators (using
 somtGetFirstDeclarator and somtGetNextDeclarator) and get its somtType attribute.
 This attribute has no “set” method.

New Methods
somtGetFirstDeclarator
somtGetNextDeclarator

Overriding Methods
somtSetSymbolsOnEntry
somDumpSelfInt

SOMTTypedefEntryC class

 142 SOMobjects Developer Toolkit

somtGetFirstDeclarator Method

Purpose
The somtGetFirstDeclarator method gets the first declarator for a typedef entry.

IDL Syntax
SOMTCommonEntryC somtGetFirstDeclarator ();

Note: This method does not take an Environment parameter.

Description
The somtGetFirstDeclarator method returns the first declarator for the typedef entry on which
the method was invoked. The next declarator can be obtained using the corresponding
somtGetNextDeclarator method.

Note that the somtGetFirstDeclarator and somtGetNextDeclarator methods cannot be used
in doubly nested loops. For example, the following doubly nested loop will not work, because
following the first execution of the inner loop, the invocation of somtGetNextDeclarator in the
outer loop will return NULL:

for (d1 = _somtGetFirstDeclarator(myTypedef); d1;
 d1 = _somtGetNextDeclarator(myTypedef))
 for (d2 = _somtGetFirstDeclarator(myTypedef); d2;
 d2 = _somtGetNextDeclarator(myTypedef))
 /* etc. */

Parameters
receiver The typedef entry whose first declarator is to be retrieved.

Return Value
This method returns the first declarator for a typedef entry.

Example
To iterate through the declarators of a typedef:

SOMTCommonEntryC myEntry;

printf(”List of declarators:\n”);
for (myEntry = _somtGetFirstDeclarator(myTypedef); myEntry;
 myEntry = _somtGetNextDeclarator(myTypedef))
 printf(”%s\n”, __get_somtEntryName(myEntry));

Related Information
Methods: somtGetNextDeclarator

SOMTTypedefEntryC class

 143Emitter Framework Guide and Reference

somtGetNextDeclarator Method

Purpose
This method gets the next declarator for a typedef entry, relative to the previous call for a similar
entry.

IDL Syntax
SOMTCommonEntryC somtGetNextDeclarator ();

Note: This method does not take an Environment parameter.

Description
The somtGetNextDeclarator method returns the next declarator for the typedef entry on which
the method was invoked, if it has a next declarator. Otherwise, it returns NULL.

A call to a somtGetNextDeclarator method is relative to the last call of either the same method
or the corresponding somtGetFirstDeclarator method, applied to the same entry object. Note
that this implies that the somtGetFirstDeclarator and somtGetNextDeclarator methods can-
not be used in doubly nested loops. For example, the following doubly nested loop will not work,
because following the first execution of the inner loop, the invocation of
somtGetNextDeclarator in the outer loop will return NULL:

for (d1 = _somtGetFirstDeclarator(myTypedef); d1;
 d1 = _somtGetNextDeclarator(myTypedef))
 for (d2 = _somtGetFirstDeclarator(myTypedef); d2;
 d2 = _somtGetNextDeclarator(myTypedef))
 /* etc. */

Parameters
receiver The entry whose next item is to be retrieved.

Return Value
This method returns the next declarator for the typedef entry represented by receiver, if it has a
next item of that type. Otherwise, it returns NULL.

Example
To iterate through the declarators of a typedef:

SOMTCommonEntryC myEntry;

printf(”List of declarators:\n”);
for (myEntry = _somtGetFirstDeclarator(myTypedef); myEntry;
 myEntry = _somtGetNextDeclarator(myTypedef))
 printf(”%s\n”, __get_somtEntryName(myEntry));

Related Information
Methods: somtGetFirstDeclarator

SOMTUnionEntryC class

 144 SOMobjects Developer Toolkit

SOMTUnionEntryC Class

Description
A SOMTUnionEntryC object represents a union definition. It provides attributes and methods
for accessing the union’s switch type and each of its cases.

File Stem
scunion

Base
SOMTEntryC

Metaclass
SOMClass

Ancestor Classes
SOMTEntryC, SOMObject

Types
struct somtLabelList {
 string label;
 somtLabelList *nextLabel;
};

struct somtCaseEntry {
 somtLabelList *caseLabels;
 SOMTEntryC memberType;
 SOMTDataEntryC memberDeclarator;
};

Attributes
Listed below is each available attribute, with its corresponding type in parentheses, followed by
a description of its purpose:

somtSwitchType (SOMTEntryC)
 A pointer to an entry object representing the switch type of the union.
 This attribute has no “set” method.

New Methods
somtGetFirstCaseEntry
somtGetNextCaseEntry

Overriding Methods
somtSetSymbolsOnEntry
somDumpSelfInt

SOMTUnionEntryC class

 145Emitter Framework Guide and Reference

somtGetFirstCaseEntry Method

Purpose
The somtGetFirstCaseEntry method gets the first case for a union entry.

IDL Syntax
somtCaseEntry * somtGetFirstCaseEntry ();

Note: This method does not take an Environment parameter.

Description
The somtGetFirstCaseEntry method returns the first case for the union entry on which the
method was invoked. The next case can be obtained using the corresponding
somtGetNextCaseEntry method.

Note that the somtGetFirstCaseEntry and somtGetNextCaseEntry methods cannot be used
in doubly nested loops. For example, the following doubly nested loop will not work, because
following the first execution of the inner loop, the invocation of somtGetNextCaseEntry in the
outer loop will return NULL:

for (c1 = _somtGetFirstCaseEntry(myUnion); c1;
 c1 = _somtGetNextCaseEntry(myUnion))
 for (c2 = _somtGetFirstCaseEntry(myUnion); c2;
 c2 = _somtGetNextCaseEntry(myUnion))
 /* etc. */

Parameters
receiver The union entry whose first case is to be retrieved.

Return Value
This method returns the first case for a union entry. The somtGetFirstCaseEntry method
returns a pointer to a somtCaseEntry struct; see the reference page for SOMTUnionEntryC
class for the definition of somtCaseEntry.

Example
To iterate through the cases of a union:

SOMTCaseEntry *case;

printf(”List of cases:\n”);
for (case = _somtGetFirstCaseEntry(myUnion); case;
 case = _somtGetNextCaseEntry(myUnion))
 printf(”%s\n”, __get_somtEntryName(case–>memberDeclarator));

Related Information
Methods: somtGetNextCaseEntry

SOMTUnionEntryC class

 146 SOMobjects Developer Toolkit

somtGetNextCaseEntry Method

Purpose
The somtGetNextCaseEntry method gets the next case for a union entry.

IDL Syntax
somtCaseEntry * somtGetNextCaseEntry ();

Note: This method does not take an Environment parameter.

Description
The somtGetNextCaseEntry method returns the next case for the union entry on which the
method was invoked, if it has a next case. Otherwise, it returns NULL.

A call to a somtGetNextCaseEntry method is relative to the last call of either the same method
or the corresponding somtGetFirstCaseEntry method, applied to the same entry object. Note
that this implies that the somtGetFirstCaseEntry and somtGetNextCaseEntry methods can-
not be used in doubly nested loops. For example, the following doubly nested loop will not work,
because following the first execution of the inner loop, the invocation of
somtGetNextCaseEntry in the outer loop will return NULL:

for (c1 = _somtGetFirstCaseEntry(myUnion); c1;
 c1 = _somtGetNextCaseEntry(myUnion))
 for (c2 = _somtGetFirstCaseEntry(myUnion); c2;
 c2 = _somtGetNextCaseEntry(myUnion))
 /* etc. */

Parameters
receiver The union entry whose next case is to be retrieved.

Return Value
This method returns the next case for a union entry. The somtGetNextCaseEntry method
returns a pointer to a somtCaseEntry struct; see the reference page for SOMTUnionEntryC
class for the definition of somtCaseEntry.

Example
To iterate through the cases of a union:

SOMTCaseEntry *case;

printf(”List of cases:\n”);
for (case = _somtGetFirstCaseEntry(myUnion); case;
 case = _somtGetNextCaseEntry(myUnion))
 printf(”%s\n”, __get_somtEntryName(case–>memberDeclarator));

Related Information
Methods: somtGetFirstCaseEntry

SOMTUserDefinedTypeEntryC class

 147Emitter Framework Guide and Reference

SOMTUserDefinedTypeEntryC Class

Description
A SOMTUserDefinedTypeEntryC object represents a type defined via a “typedef” statement in
a .idl file.

File Stem
scusrtyp

Base
SOMTEntryC

Metaclass
SOMClass

Ancestor Classes
SOMTEntryC, SOMObject

Attributes
Listed below is each available attribute, with its corresponding type in parentheses, followed by
a description of its purpose:

somtOriginalTypedef (SOMTTypedefEntryC)
 A pointer to the object representing the typedef that defines the user-defined type.

somtBaseTypeObj (SOMTEntryC)
 A pointer to the object representing the base type (short, float, unsigned long, etc.)
 of the user-defined type, regardless of any intermediate user-defined types.
 For example, given
 typedef short x;
 typedef x y;
 The base type of user-defined type “y” is “short.”

New Methods
None.

Overriding Methods
somDumpSelfInt
somtSetSymbolsOnEntry,
_get_somtTypeObj

SOMTUserDefinedTypeEntryC class

 148 SOMobjects Developer Toolkit

 149Emitter Framework Guide and Reference

Reference for
Emitter Framework Functions

Emitter functions

 150 SOMobjects Developer Toolkit

somterror Function

Purpose
Prints an error message and increments the error count maintained by the SOM Compiler.

Syntax
void somterror (string file, long lineno, string format, ...);

Description
The somterror function prints an error message and increments the error count maintained by
the SOM Compiler. The error message begins with the string “error: ” and includes the name of
the file and the line number on which the error occurred, if specified.

Parameters
file The name of the file in which the error occurred, or NULL.

lineno The line number on which the error occurred, or zero.

format A format string suitable for passing to the printf C library function.

varargs The arguments to be passed to printf.

Return Value
None.

Example
somterror(__get_somtSourceFileName(cls),
 __get_somtSourceLineNumber(entry),
 ”I don’t understand the entry named %s.\n”,
 __get_somtEntryName(entry));

Related Information
Functions: somtmsg, somtwarn, somtfatal, somtinternal

Emitter functions

 151Emitter Framework Guide and Reference

somtfatal Function

Purpose
Prints a fatal error message and increments the internal error count maintained by the SOM
Compiler.

Syntax
void somtfatal (string file, long lineno, string format, ...);

Description
The somtfatal function prints a fatal error message and increments the internal error count
maintained by the SOM Compiler. The error message begins with the string “fatal error: ” and
includes the name of the file and the line number on which the error occurred, if specified. After
printing the error message, the routine removes the output file and terminates the process.

Parameters
file The name of the file in which the error occurred, or NULL.

lineno The line number on which the error occurred, or zero.

format A format string suitable for passing to the printf C library function.

varargs The arguments to be passed to printf.

Return Value
None.

Example
somtfatal(__get_somtSourceFileName(cls),
 __get_somtSourceLineNumber(entry),
 ”The entry named %s is a disaster!.\n”,
 __get_somtEntryName(entry));

Related Information
Functions: somtmsg, somtwarn, somterror, somtinternal

Emitter functions

 152 SOMobjects Developer Toolkit

somtfclose Function

Purpose
Closes a file opened using somtOpenEmitFile.

Syntax
int somtfclose (FILE *fp);

Description
The somtfclose function closes a file opened using somtOpenEmitFile. Emitters that use
somtOpenEmitFile should use this function, rather than fclose, to close the output file so that,
regardless of the way the standard C library is packaged or whether emitters are statically or
dynamically loaded, files opened with somtOpenEmitFile will be properly closed. Emitters are
not required to close their output files; normally, an emitter’s return value is the file handle for the
file it opened using somtOpenEmitFile. If an emitter needs to close its output file, however, the
somtfclose function should be used, rather than fclose.

Parameters
fp A pointer to the file to be closed.

Return Value
The somtfclose returns the same return code as the C library fclose function.

Example
FILE *fp = somtopenEmitFile(”hello.foo”, ”foo”);
__set_somtTargetFile(emitter, fp);
...
somtfclose(fp);

Related Information
Functions: somtOpenEmitFile

Emitter functions

 153Emitter Framework Guide and Reference

somtGetObjectWrapper Function

Purpose
Gets the entry object corresponding to the cls argument passed by the SOM Compiler to an
emitter’s driver program. This object should then be set as the target class or module of the
emitter.

Syntax
SOMTEntryC somtGetObjectWrapper (Entry *entry);

Description
The somtGetObjectWrapper function gets the entry object corresponding to the cls argument
passed by the SOM Compiler to an emitter’s driver program. This object should then be set as
the target class or module of the emitter. Before freeing the emitter object, the object returned by
this function should be freed.

Parameters
entry The data structure passed by the SOM Compiler to an emitter’s driver program.

Return Value
The somtGetObjectWrapper function returns the entry object created.

Example
SOMTClassEntryC oCls;
SOMTModuleEntryC mod;
MyEmitter emitter;
if (cls–>type == SOMTClassE) {
 oCls = (SOMTClassEntryC) somtGetObjectWrapper(cls);
 emitter = MyEmitterNew();
 __set_somtTargetClass(emitter, oCls);
...
}
else if (cls–>type == SOMTModuleE) {
 mod = (SOMTModuleEntryC) somtGetObjectWrapper(cls);
 emitter = MyEmitterNew();
 __set_somtTargetModule(emitter, mod);
...
}

Emitter functions

 154 SOMobjects Developer Toolkit

somtinternal Function

Purpose
Prints an internal error message and increments the internal error count maintained by the SOM
Compiler.

Syntax
void somtinternal (string file, long lineno, string format, ...);

Description
The somtinternal function prints an internal error message and increments the internal error
count maintained by the SOM Compiler. The error message begins with the string “internal
error: ” and includes the name of the file and the line number on which the error occurred, if
specified. After printing the error message, the routine removes the output file and terminates
the process.

Parameters
file The name of the file in which the error occurred, or NULL.

lineno The line number on which the error occurred, or zero.

format A format string suitable for passing to the printf C library function.

varargs The arguments to be passed to printf.

Return Value
None.

Example
somtinternal(__get_somtSourceFileName(cls),
 __get_somtSourceLineNumber(entry),
 ”I really messed this one up!\n”);

Related Information
Functions: somtmsg, somtwarn, somtfatal, somterror

Emitter functions

 155Emitter Framework Guide and Reference

somtmsg Function

Purpose
Prints an informational message.

Syntax
void somtmsg (string file, long lineno, string format, ...);

Description
The somtmsg function prints an informational message. The message includes the name of the
file and the line number to which the message applies, if specified.

In order for a somtmsg function to produce output, you also must specify the –v (verbose) flag
when entering the sc command on the command line to invoke the SOM Compiler. (See also
“Running the SOM Compiler” in chapter 4, “SOM IDL and the SOM Compiler” in the SOMobjects
Developer Toolkit Users Guide.)

Parameters
file The name of the file to which the message applies, or NULL.

lineno The line number to which the message applies, or zero.

format A format string suitable for passing to the printf C library function.

varargs The arguments to be passed to printf.

Return Value
None.

Example
somtmsg(__get_somtSourceFileName(cls),
 __get_somtSourceLineNumber(entry),
 ”I really like the entry named %s.\n”,
 __get_somtEntryName(entry));

Related Information
Functions: somterror, somtwarn, somtfatal, somtinternal

Emitter functions

 156 SOMobjects Developer Toolkit

somtNewSymbol Function

Purpose
Creates a new symbol name by concatenating a prefix and a name.

Syntax
string somtNewSymbol (string prefix, string stem);

Description
The somtNewSymbol function creates a new symbol name by concatenating a prefix and a
name. Ownership of the string is passed to the caller. Hence, the somtSetSymbol or
somtSetSymbolCopyValue method should be used to give the resulting symbol a value
(instead of somtSetSymbolCopyName or somtSetSymbolCopyBoth). This function is use-
ful for overriding implementations of the somtSetSymbolsOnEntry method, which takes the
prefix as an argument.

Parameters
prefix The prefix of the symbol to be created.

stem The base name of the symbol to be created.

Return Value
The somtNewSymbol function returns the new symbol name. Ownership of the string is
passed to the caller.

Example
The following code creates the new symbol name “classComment” and sets its value:

SOMTClassEntryC class = __get_somtTargetClass(emitter);
SOMTTemplateOutputC template = __get_somtTemplate(emitter);
string comment = __get_somtEntryComment(class);
_somtSetSymbolCopyValue(template,
 somtNewSymbol(”class”, ”Comment”),
 (comment ? comment : ””));

Related Information
Methods: somtSetSymbol, somtSetSymbolCopyName, somtSetSymbolCopyValue,
somtSetSymbolCopyBoth

Emitter functions

 157Emitter Framework Guide and Reference

somtopenEmitFile Function

Purpose
Open an output file for an emitter.

Syntax
FILE * somtopenEmitFile (char *file, char *ext)

Description
The somtopenEmitFile function opens the named output file for an emitter. It also sets global
variables needed by other library functions and adds a header to the newly opened file if ext is a
known extension. Users can extend the list of known extensions by adding them to the value of
the SMKNOWNEXTS environment variable, separated by a semicolon.

Depending on the setting of a global variable (set by the SOM Compiler), the file will be opened
for either writing or appending. When an emitter is invoked for the first time on a particular .idl file,
this global variable indicates that the file should be opened for writing. When the same emitter is
invoked subsequently on the same input file (for example, to process interface definitions within
a module definition), the global variable indicates that the file should be opened for appending.
In this way, all output for a single input file goes to the same output file, even though the emitter
may be invoked multiple times.

When an interrupt occurs as an emitter is executing, the file opened by somtopenEmitFile is
removed. If you wish to prevent this during critical portions of the code, call the function
somtunsetEmitSignals at the beginning of your code segment, and call the function
somtresetEmitSignals after the segment.

Parameters
file The name of the file to be opened. If NULL, stdout is returned.

ext The extension of the file to be opened. If the specified filename does not include
this extension (or if it includes a different extension), a filename is constructed
that has the specified extension.

Return Value
The somtopenEmitFile functions returns a pointer to the opened file (or stdout, if no filename is
specified).

Example
FILE *fp = somtopenEmitFile(”hello.foo”, ”foo”);
__set_somtTargetFile(emitter, fp);
...
somtfclose(fp);

Related Information
Functions: somtunsetEmitSignals, somtresetEmitSignals

Emitter functions

 158 SOMobjects Developer Toolkit

somtresetEmitSignals Function

Purpose
Resumes signal processing after disabling it via the somtunsetEmitSignals function.

Syntax
void somtresetEmitSignals ();

Description
The somtresetEmitSignals function resumes signal processing after disabling it via the
somtunsetEmitSignals function.

Parameters
None.

Return Value
None.

Example
somtunsetEmitSignals();
/* do some protected processing */
somtresetEmitSignals();

Related Information
Functions: somtunsetEmitSignals

Emitter functions

 159Emitter Framework Guide and Reference

somtunsetEmitSignals Function

Purpose
Prevents signals from being received as an emitter is executing.

Syntax
void somtunsetEmitSignals ();

Description
The somtunsetEmitSignals function prevents signals from being received as an emitter is
executing. Normally, signals such as internal errors and user-generated interrupts are trapped
within emitters. It may be necessary, however, to prevent such interrupts from occurring in
certain sections of an emitter’s code.

This function is also useful for preventing the output file from being removed if an interrupt
occurs. Normally, when an interrupt occurs, the file opened by somtopenEmitFile is removed.
If you wish to prevent this during critical portions of the code, call somtunsetEmitSignals at the
beginning of your code segment, and call somtresetEmitSignals after the segment.

Parameters
None.

Return Value
None.

Example
somtunsetEmitSignals();
/* do some protected processing */
somtresetEmitSignals();

Related Information
Functions: somtresetEmitSignals, somtOpenEmitFile

Emitter functions

 160 SOMobjects Developer Toolkit

somtwarn Function

Purpose
Prints a warning message and increments the warning count maintained by the SOM Compiler.

Syntax
void somtwarn (string file, long lineno, string format, ...);

Description
The somtwarn function prints a warning message and increments the warning count main-
tained by the SOM Compiler. The message begins with the string “warning: ” and includes the
name of the file and the line number on which the error occurred, if specified.

Parameters
file The name of the file in which the error occurred, or NULL.

lineno The line number on which the error occurred, or zero.

format A format string suitable for passing to the printf C library function.

varargs The arguments to be passed to printf.

Return Value
None.

Example
somtwarn(__get_somtSourceFileName(cls),
 __get_somtSourceLineNumber(entry),
 ”I’m worried about the entry named %s.\n”,
 __get_somtEntryName(entry));

Related Information
Functions: somtmsg, somterror, somtfatal, somtinternal

 161Emitter Framework Guide and Reference

�����

�

Abstract syntax graph, 3

Attribute declarator entry, 13

Attribute entry, 13

�

Base class entry, 12

	

Class entry, 11

Class shadowing, 3, 23, 24

Classes
See also the separate index entry for each class.
SOMTAttributeEntryC class, 36
SOMTBaseClassEntryC class, 39
SOMTClassEntryC class, 40
SOMTCommonEntryC class, 49
SOMTConstEntryC class, 54
SOMTDataEntryC class, 56
SOMTEmitC class, 57
SOMTEntryC class, 83
SOMTEnumEntryC class, 93
SOMTEnumNameEntryC class, 96
SOMTMetaClassEntryC class, 97
SOMTMethodEntryC class, 98
SOMTModuleEntryC class, 111
SOMTParameterEntryC class, 116
SOMTPassthruEntryC class, 117
SOMTSequenceEntryC class, 119
SOMTStringEntryC class, 120
SOMTStructEntryC class, 121
SOMTTemplateOutputC class, 124
SOMTTypedefEntryC class, 141
SOMTUnionEntryC class, 144
SOMTUserDefinedTypeEntryC class, 147

Comment substitution in emitter template, 8

Constant entry, 14

Data entry, 13

�

Emitter class (SOMTEmitC), 4, 5

Emitter Framework, 3
emitter class (SOMTEmitC), 4, 5
entry classes

class descriptions of, 10
hierarchy of, 10
introduction, 3, 4

entry objects, 3
error handling, 25
limitations of, 33
object graph builder, 3
reference manual for classes/methods, 35
reference manual for functions, 149
structure of, 3
table of section names/methods, 31
template class (SOMTTemplateOutputC), 4, 5, 8
writing an emitter

advanced topics, 21
basics, 16

Emitter name, 5

Emitter output
designing, 17
section names, 17
sections of, 8, 17
somtGenerateSections method, 18

Emitter template, 8
See also “Template”
epilog sections, 7, 17
prolog sections, 7, 17
repeating sections of, 7, 17
standard sections of, 6

Emitters
‘newemit’ facility, 1, 16
use by SOM Compiler, 1

Entry classes
class descriptions of, 10
hierarchy of, 10
introduction, 3, 4

Entry objects, 3

Entry type, 10

Enum entry, 14

Enumerator name entry, 14

Epilog section of a template, 7, 17

Error handling, 25

Exception entry, 14

�

Filter methods, 7

Functions
somterror function, 150
somtfatal function, 151
somtfclose function, 152

 162 SOMobjects Developer Toolkit

Functions (cont’d.)
somtGetObjectWrapper function, 153
somtinternal function, 154
somtmsg function, 155
somtNewSymbol function, 156
somtopenEmitFile function, 157
somtresetEmitSignals function, 158
somtunsetEmitSignals function, 159
somtwarn function, 160

Global modifiers, 5

�

Limitations of Emitter Framework, 33

List substitution for template, 9

�

Metaclass entry, 12

Method entry, 13

Modifiers, SOM IDL, 3, 10

Module entry, 12

Modules
handling, 24
somtopenEmitFile function, 25
target module, 24

�

‘newemit’ facility, 1, 16

�

Object graph builder, 3

Output file, opening, 25

�

Parameter entry, 14

Passthru entry, 12

Prolog section of a template, 7, 17

�

Repeating sections of a template, 7, 17

�

sc command, –m option, 5
sc command, –s option, 5, 19
Scanning methods, 7, 18, 29
Section names, 17

changing, 23
section-name symbols, 31
table of initial values and related methods, 31

Section-name symbols, 31
table of initial values & methods, 31

Section-emitting methods, 7, 29, 31
customizing, 23

Sections of a template, 8, 17
Sequence entry, 14
Shadowing, 3, 23, 24
SOM Compiler

–m option of sc command, 5
–s option of sc command, 5, 19
structure of, 1
use of emitters, 1

SOM IDL modifiers, 3, 10
SOM_SubstituteClass macro, 24
somtAddSectionDefinitions method, 127
somtAll method, 61
somtArgCount attribute, 13, 23, 98
somtArrayDimsString attribute, 11, 49
somtAttribType attribute, 13, 36
SOMTAttributeEntryC class, 13, 36

somtAttribType attribute, 36
somtGetFirst<item> methods, 37
somtGetNext<item> methods, 38
somtIsReadonly attribute, 36

somtBaseClassDef attribute, 12, 39
SOMTBaseClassEntryC class, 12, 39

somtBaseClassDef attribute, 39
somtBaseCount attribute, 11, 41
somtBaseTypeObj attribute, 15, 147
somtCheckSymbol method, 128
SOMTClassEntryC class, 3, 11, 40

somtBaseCount attribute, 41
somtClassModule attribute, 40
somtFilterNew method, 42
somtFilterOverridden method, 43
somtForwardRef attribute, 41
somtGetFirst<item> methods, 44
somtGetNext<item> methods, 46
somtGetReleaseNameList method, 48
somtMetaClassEntry attribute, 40
somtMetaclassFor attribute, 41
somtNewMethodCount attribute, 40
somtOverrideMethodCount attribute, 40
somtProcMethodCount attribute, 40
somtSourceFileName attribute, 40
somtStaticMethodCount attribute, 40
somtVAMethodCount attribute, 41

 163Emitter Framework Guide and Reference

somtClassModule attribute, 11, 40

somtCommentNewline attribute, 8, 126

somtCommentStyle attribute, 8, 126

SOMTCommonEntryC class, 11, 49
somtArrayDimsString attribute, 49
somtGetFirstArrayDimension method, 50
somtGetNextArrayDimension method, 51
somtIsArray method, 52
somtIsPointer method, 53
somtPtrs attribute, 49
somtType attribute, 49
somtTypeObj attribute, 49

SOMTConstEntryC class, 14, 54
somtConstIsNegative attribute, 54
somtConstNumNegVal attribute, 54
somtConstNumVal attribute, 54
somtConstStringVal attribute, 54
somtConstType attribute, 54
somtConstTypeObj attribute, 54
somtConstVal attribute, 54

somtConstIsNegative attribute, 14, 54

somtConstNumNegVal attribute, 14, 54

somtConstNumVal attribute, 14, 54

somtConstStringVal attribute, 14, 54

somtConstType attribute, 14, 54

somtConstTypeObj attribute, 14, 54

somtConstVal attribute, 14, 54

somtContextArray attribute, 13, 98

somtCParameterDeclaration attribute, 14, 116

somtCReturnType attribute, 13, 98

somtCScopedName attribute, 10, 83

SOMTDataEntryC class, 13, 56
somtIsSelfRef attribute, 56

somtElementType attribute, 10, 83

somtElementTypeName attribute, 10, 83

SOMTEmitC class, 4, 5, 57
somtAll method, 61
somtEmitFullPassthru method, 65
somtEmit<section> methods, 62
somtEmitterName attribute, 59
somtFileSymbols method, 66
somtGenerateSections method, 67
somtGetFirstGlobalDefinition method, 69
somtGetGlobalModifierValue method, 70
somtGetNextGlobalDefinition method, 71
somtImplemented method, 72
somtInherited method, 73
somtNew method, 74
somtNewNoProc method, 75
somtNewProc method, 76
somtOpenSymbolsFile method, 77
somtOverridden method, 78
somtScan<section> methods, 79
somtSetPredefinedSymbols method, 81

SOMTEmitC class (cont’d.)
somtTargetClass attribute, 59
somtTargetFile attribute, 59
somtTargetModule attribute, 59
somtTemplate attribute, 59
somtVA method, 82

somtEmitFullPassthru method, 65
somtEmit<section> methods, 62
somtEmitterName attribute, 59
SOMTEntryC class, 10, 83

somtCScopedName attribute, 83
somtElementType attribute, 83
somtElementTypeName attribute, 83
somtEntryComment attribute, 83
somtEntryName attribute, 83
somtFormatModifier method, 85
somtGetFirstModifier method, 86
somtGetModifierList method, 88
somtGetModifierValue method, 89
somtGetNextModifier method, 90
somtIDLScopedName attribute, 83
somtIsReference attribute, 83
somtSetSymbolsOnEntry method, 92
somtSourceLineNumber attribute, 83
somtTypeCode attribute, 83

somtEntryComment attribute, 10, 83
somtEntryName attribute, 10, 83
SOMTEnumEntryC class, 14, 93

somtGetFirstEnumName method, 94
somtGetNextEnumName method, 95

SOMTEnumNameEntryC class, 14, 96
somtEnumPtr attribute, 96
somtEnumVal attribute, 96

somtEnumPtr attribute, 14, 96
somtEnumVal attribute, 14, 96
somterror function, 150
somtExpandSymbol method, 129
somtfatal function, 151
somtfclose function, 152
somtFileSymbols method, 66
somtFilterNew method, 42
somtFilterOverridden method, 43
somtFormatModifier method, 85
somtForwardRef attribute, 11, 41
somtGenerateSections method, 18, 67
somtGetFirstArrayDimension method, 50
somtGetFirstCaseEntry method, 145
somtGetFirstDeclarator method, 142
somtGetFirstEnumName method, 94
somtGetFirstGlobalDefinition method, 69
somtGetFirst<item> methods, 37, 44, 100, 112
somtGetFirstMember method, 122
somtGetFirstModifier method, 86
somtGetFullCParamList method, 101
somtGetFullParamNameList method, 103

 164 SOMobjects Developer Toolkit

somtGetGlobalModifierValue method, 70
somtGetIDLParamList method, 104
somtGetModifierList method, 88
somtGetModifierValue method, 89
somtGetNextArrayDimension method, 51
somtGetNextCaseEntry method, 146
somtGetNextDeclarator method, 143
somtGetNextEnumName method, 95
somtGetNextGlobalDefinition method, 71
somtGetNext<item> methods, 38, 46, 105, 114
somtGetNextMember method, 123
somtGetNextModifier method, 90
somtGetNthParameter method, 106
somtGetObjectWrapper function, 153
somtGetReleaseNameList method, 48
somtGetShortCParamList method, 107
somtGetShortParamNameList method, 109
somtGetSymbol method, 130
somtIDLParameterDeclaration attribute, 14, 116
somtIDLScopedName attribute, 10, 83
somtImplemented method, 72
somtInherited method, 73
somtinternal function, 154
somtIsArray method, 52
somtIsBeforePassthru method, 118
somtIsException attribute, 14, 121
somtIsOneway attribute, 13, 98
somtIsPointer method, 53
somtIsReadonly attribute, 13, 36
somtIsReference attribute, 10, 83
somtIsSelfRef attribute, 13, 56
somtIsVarargs attribute, 13, 98
somtLineLength attribute, 9, 126
somtMetaClassDef attribute, 12, 97
somtMetaClassEntry attribute, 11, 40
SOMTMetaClassEntryC class, 12, 97

somtMetaClassDef attribute, 97
somtMetaFile attribute, 97

somtMetaclassFor attribute, 11, 41
somtMetaFile attribute, 12, 97
SOMTMethodEntryC class, 3, 13, 98

somtArgCount attribute, 98
somtContextArray attribute, 98
somtCReturnType attribute, 98
somtGetFirst<item> methods, 100
somtGetFullCParamList method, 101
somtGetFullParamNameList method, 103
somtGetIDLParamList method, 104
somtGetNext<item> methods, 105
somtGetNthParameter method, 106
somtGetShortCParamList method, 107
somtGetShortParamNameList method, 109
somtIsOneway attribute, 98

SOMTMethodEntryC class (cont’d.)
somtIsVarargs attribute, 98
somtOriginalClass attribute, 98
somtOriginalMethod attribute, 98

SOMTModuleEntryC class, 12, 111
somtGetFirst<item> methods, 112
somtGetNext<item> methods, 114
somtModuleFile attribute, 111
somtOuterModule attribute, 111

somtModuleFile attribute, 111
somtmsg function, 155
somtNew method, 74
somtNewMethodCount attribute, 11, 40
somtNewNoProc method, 75
somtNewProc method, 76
somtNewSymbol function, 156
somto method, 131
somtopenEmitFile function, 157
somtopenEmitFile function, 25
somtOpenSymbolsFile method, 77
somtOriginalClass attribute, 13, 98
somtOriginalMethod attribute, 13, 98
somtOriginalTypedef attribute, 15, 147
somtOuterModule attribute, 111
somtOutputComment method, 132
somtOutputSection method, 133
somtOverridden method, 78
somtOverrideMethodCount attribute, 11, 40
somtParameterDirection attribute, 14, 116
SOMTParameterEntryC class, 3, 14, 116

somtCParameterDeclaration attribute, 116
somtIDLParameterDeclaration attribute, 116
somtParameterDirection attribute, 116

somtPassthruBody attribute, 12, 117
SOMTPassthruEntryC class, 12, 117

somtIsBeforePassthru method, 118
somtPassthruBody attribute, 117
somtPassthruLanguage attribute, 117
somtPassthruTarget attribute, 117

somtPassthruLanguage attribute, 12, 117
somtPassthruTarget attribute, 12, 117
somtProcMethodCount attribute, 11, 40
somtPtrs attribute, 11, 33, 49
somtReadSectionDefinitions method, 135
somtresetEmitSignals function, 158
somtScan<section> methods, 79
somtSeqLength attribute, 14, 119
somtSeqType attribute, 14, 119
SOMTSequenceEntryC class, 14, 119

somtSeqLength attribute, 119
somtSeqType attribute, 119

somtSetOutputFile method, 136
somtSetPredefinedSymbols method, 81
somtSetSymbol method, 137

 165Emitter Framework Guide and Reference

somtSetSymbolCopyBoth method, 138

somtSetSymbolCopyName method, 139

somtSetSymbolCopyValue method, 140

somtSetSymbolsOnEntry method, 22, 29, 92

somtSourceFileName attribute, 11, 40

somtSourceLineNumber attribute, 10, 83

somtStaticMethodCount attribute, 11, 40

SOMTStringEntryC class, 14, 120
somtStringLength attribute, 120

somtStringLength attribute, 14, 120

somtStructClass attribute, 14, 121

SOMTStructEntryC class, 14, 121
somtGetFirstMember method, 122
somtGetNextMember method, 123
somtIsException attribute, 121
somtStructClass attribute, 121

somtSwitchType attribute, 14, 144

somtTargetClass attribute, 59

somtTargetFile attribute, 59

somtTargetModule attribute, 59

somtTemplate attribute, 21, 59

SOMTTemplateOutputC class, 4, 5, 8, 124
somtAddSectionDefinitions method, 127
somtCheckSymbol method, 128
somtCommentNewline attribute, 126
somtCommentStyle attribute, 126
somtExpandSymbol method, 129
somtGetSymbol method, 130
somtLineLength attribute, 126
somto method, 131
somtOutputComment method, 132
somtOutputSection method, 133
somtReadSectionDefinitions method, 135
somtSetOutputFile method, 136
somtSetSymbol method, 137
somtSetSymbolCopyBoth method, 138
somtSetSymbolCopyName method, 139
somtSetSymbolCopyValue method, 140

somtType attribute, 11, 13, 49

somtTypeCode attribute, 10, 83

SOMTTypedefEntry, 13

SOMTTypedefEntryC class, 141
somtGetFirstDeclarator method, 142
somtGetNextDeclarator method, 143
somtTypedefType attribute, 141

somtTypedefType attribute, 13, 141

somtTypeObj attribute, 11, 33, 49

SOMTUnionEntryC class, 14, 144
somtGetFirstCaseEntry method, 145
somtGetNextCaseEntry method, 146
somtSwitchType attribute, 144

somtunsetEmitSignals function, 159

SOMTUserDefinedTypeEntryC class, 15, 147
somtBaseTypeObj attribute, 147
somtOriginalTypedef attribute, 147

somtVA method, 82
somtVAMethodCount attribute, 11, 41
somtwarn function, 160
Standard sections of a template, 6
Standard symbols, 6, 26

by entry class availability, 29
by section validity, 26
section-name symbols, 31

String entry, 14
Struct entry, 14
Struct member, 13
Struct member declarator entry, 13
Symbol names

in emitter template, 8
See also “Symbols” and “Standard symbols”

section-name symbols, 31
Symbol processing

comment substitution, 8
list substitution, 9

Symbols
See also “Standard symbols”
defining new names, 21
getting values of, 21
in emitter template, 8

�
Tabbing in a template, 9
Target class entry, 11
Target class of an emitter, 5

standard symbols of, 6, 26
Target file of an emitter, 5
Target module, 5, 24
Template

comment substitution in, 8
for emitter output, 8
list substitution in, 9
tabbing in, 9

Template class (SOMTTemplateOutputC), 4, 5, 8
Template file for an emitter, 8, 17
Template object of an emitter, 5
Template output, 8

See also “Template”
designing, 17
epilog sections, 7, 17
prolog sections, 7, 17
repeating sections of, 7, 17
section names, 17
sections of, 8, 17
somtGenerateSections method, 18
standard sections of, 6

Template sections, 8, 17
Template symbols (symbol names), 8
Typedef entry, 13

 166 SOMobjects Developer Toolkit

�

Union entry, 14
User-defined type entry, 15

�

Writing an emitter
advanced topics, 21
basics, 16

