
somf_TSequence class

 247Collection Classes Reference Manual

somf_TSequence Class

Description
The somf_TSequence class is an abstract superclass for collections whose objects are
ordered.

When you link, include the following library reference to get access to this class: somtk

When creating a collection whose objects are ordered, your classes should inherit from
somf_TSequence. (When creating an unordered collection, your classes should inherit from
somf_TCollection.) The somf_TSequence class’s pure virtual functions provide the frame-
work for the methods that should be available in an ordered collection.

File Stem
tseq

Base
somf_TCollection

Metaclass
SOMClass

Ancestor Classes
somf_TCollection, somf_MCollectible, SOMObject

New Methods
somfFirst
somfAfter
somfBefore
somfLast
somfOccurrencesOf
somfTSequenceInit

Overriding Methods
somfAdd
somfRemove
somfRemoveAll
somfDeleteAll
somfCount
somfCreateIterator
somInit

somf_TSequence class

 248 SOMobjects Developer Toolkit

somfAdd Method

Purpose
Adds an object to a given ordered collection.

IDL Syntax
somf_MCollectible somfAdd (in somf_MCollectible obj);

Description
The somfAdd method adds a specified object obj to the ordered collection represented by the
receiving object.

Every class that inherits from the somf_TSequence class must override this method for that
class to work correctly.

Parameters
receiver A pointer to an object of class somf_TSequence.

ev A pointer to the Environment structure for the calling method.

obj A pointer to a somf_MCollectible object that will be added to the receiving
object.

Return Value
There are two possible valid return values for this method:

somf_MCollectible
A pointer to the somf_MCollectible object that had to be removed in order to
add obj. (Recall that some of the main collection classes will only accept one
occurrence of an object where the somfIsEqual or somfIsSame method
would be TRUE.)

SOMF_NIL No somf_MCollectible object had to be removed in order to add obj.

Example
You cannot use this method directly from this class; it must be overridden. If you invoke this
method directly, an error message is written and processing will end. For examples of how this
method looks when it is invoked, see somf_TDeque or somf_TSortedSequence.

Original Class
somf_TCollection (overridden here)

somf_TSequence class

 249Collection Classes Reference Manual

somfAfter Method

Purpose
Gets the object found after a given object obj in an ordered collection.

IDL Syntax
somf_MCollectible somfAfter (in somf_MCollectible obj);

Description
The somfAfter method returns the object found after object obj in the ordered collection
represented by the receiving object.

Every class that inherits from the somf_TSequence class must override this method for that
class to work correctly.

Parameters
receiver A pointer to an object of class somf_TSequence.

ev A pointer to the Environment structure for the calling method.

obj A pointer to the somf_MCollectible object that is in front of the returned obj.

Return Value
There are two possible valid return values for this method:

somf_MCollectible
A pointer to the somf_MCollectible object after obj.

SOMF_NIL The obj is the last object in this collection or could not be found.

Example
You cannot use this method directly from this class; it must be overridden. If you invoke this
method directly, an error message is written and processing will end. For examples of how this
method is invoked, see somf_TDeque or somf_TSortedSequence.

Original Class
somf_TSequence

Related Information
Methods: somfBefore, somfFirst, somfLast

somf_TSequence class

 250 SOMobjects Developer Toolkit

somfBefore Method

Purpose
Gets the object found before a given obj in an ordered collection.

IDL Syntax
somf_MCollectible somfBefore (in somf_MCollectible obj);

Description
The somfBefore method returns the object found immediately before the specified object obj
in the ordered collection represented by the receiving object.

Every class that inherits from the somf_TSequence class must override this method for that
class to work correctly.

Parameters
receiver A pointer to an object of class somf_TSequence.

ev A pointer to the Environment structure for the calling method.

obj A pointer to the somf_MCollectible object that is behind the returned object.

Return Value
There are two possible valid return values for this method:

somf_MCollectible
A pointer to the somf_MCollectible object that precedes obj.

SOMF_NIL The obj is the first object in this collection or could not be found.

Example
You cannot use this method directly from this class; it must be overridden. If you invoke this
method directly, an error message is written and processing will end. For examples of how this
method is invoked, see somf_TDeque or somf_TSortedSequence.

Original Class
somf_TSequence

Related Information
Methods: somfAfter, somfFirst, somfLast

somf_TSequence class

 251Collection Classes Reference Manual

somfCount Method

Purpose
Gets the number of objects in this ordered collection.

IDL Syntax
long somfCount ();

Description
The somfCount method determines the number of objects in the ordered collection repre-
sented by the receiving object, and returns that number.

Every class that inherits from the somf_TSequence class must override this method for that
class to work correctly.

C cannot handle methods from different classes having the same name when they inherit the
name from different parents. Thus, if any child of somf_TCollection is used with a child of
somf_THashTable, then the name of the method will have to be fully qualified (for example:
somf_TSequence_somfCount). This is the only way the linker can tell them apart.

This is not a problem in C++. In C++ you could have referenced this method as:
 d–>somfCount(ev);

Parameters
receiver A pointer to an object of class somf_TSequence.

ev A pointer to the Environment structure for the calling method.

Return Value
This method returns the number of objects in the ordered collection.

Example
You cannot use this method directly from this class; it must be overridden. If you invoke this
method directly, an error message is written and processing will end. For examples of how this
method is invoked, see somf_TDeque or somf_TSortedSequence.

Original Class
somf_TCollection (overridden here)

somf_TSequence class

 252 SOMobjects Developer Toolkit

somfCreateIterator Method

Purpose
Returns a new iterator that is suitable for iterating over the objects in an ordered collection.

IDL Syntax
somf_TIterator somfCreateIterator ();

Description
The somfCreateIterator method returns a new iterator that is suitable for iterating over the
objects in the ordered collection represented by the receiving object.

Every class that inherits from the somf_TSequence class must override this method for that
class to work correctly.

Parameters
receiver A pointer to an object of class somf_TSequence.

ev A pointer to the Environment structure for the calling method.

Return Value
This method returns a pointer to the new iterator.

Example
You cannot use this method directly from this class; it must be overridden. If you invoke this
method directly, an error message is written and processing will end. For examples of how this
method is invoked, see somf_TDeque or somf_TSortedSequence.

Original Class
somf_TCollection (overridden here)

somf_TSequence class

 253Collection Classes Reference Manual

somfDeleteAll Method

Purpose
Removes all of the objects from an ordered collection and deallocates the storage that these
objects might have owned. (That is, the destructor function is called for each object in the
collection.)

IDL Syntax
void somfDeleteAll ();

Description
The somfDeleteAll method removes all of the objects from the ordered collection represented
by the receiving object. The method also deallocates the storage that these objects might have
owned (that is, the destructor function is called for each object in the collection).

Every class that inherits from the somf_TSequence class must override this method for that
class to work correctly.

Be careful with somfDeleteAll. Since a collection only contains pointers to objects (rather than
the objects themselves), somfDeleteAll can cause a problem if a pointer to an object appears
more than once. For example, if multiple pointers to ‘A’ exists, or if a single pointer to ’A’ is in the
collection multiple times, the behavior of the code is undefined, because it will try to delete ‘A’
multiple times. If you think there is a chance that an object could appear in the collection more
than once, you should consider using somfRemoveAll to remove the objects from the collec-
tion and deleting them some other way.

C cannot handle methods from different classes having the same name when they inherit the
name from different parents. Thus, if any child of somf_TCollection is used with
somf_THashTable, then the name of the method will have to be fully qualified (for example:
somf_TDictionary_somfDeleteAll). This is the only way the linker can tell them apart.

This is not a problem in C++. In C++ you could have referenced this method as:
 d–>somfDeleteAll(ev);

Parameters
receiver A pointer to an object of class somf_TSequence.

ev A pointer to the Environment structure for the calling method.

Return Value
None.

Example
You cannot use this method directly from this class; it must be overridden. If you invoke this
method directly, an error message is written and processing will end. For examples of how this
method is invoked, see somf_TDeque or somf_TSortedSequence.

Original Class
somf_TCollection (overridden here)

somf_TSequence class

 254 SOMobjects Developer Toolkit

somfFirst Method

Purpose
Gets the first object in an ordered collection.

IDL Syntax
somf_MCollectible somfFirst ();

Description
The somfFirst method determines the first object in the ordered collection represented by the
receiving object, and returns a pointer to it.

Every class that inherits from the somf_TSequence class must override this method for that
class to work correctly.

C cannot handle methods from different classes having the same name when they inherit the
name from different parents. somfFirst is a method name declared in multiple parents (for
example: somf_TSequence, somf_TIterator, etc.). You will probably have to fully qualify the
method name (for example: somf_TDeque_somfFirst). This is the only way the linker can tell
them apart.

This is not a problem in C++. In C++ you could have referenced this method as:
 seq–>somfFirst(ev);

Parameters
receiver A pointer to an object of class somf_TSequence.

ev A pointer to the Environment structure for the calling method.

Return Value
There are two possible valid return values for this method:

somf_MCollectible
A pointer to the first somf_MCollectible object in the ordered collection.

SOMF_NIL Nothing is in the collection.

Example
You cannot use this method directly from this class; it must be overridden. If you invoke this
method directly, an error message is written and processing will end. For examples of how this
method is invoked, see somf_TDeque or somf_TSortedSequence.

Original Class
somf_TSequence

Related Information
Methods: somfLast, somfAfter, somfBefore

somf_TSequence class

 255Collection Classes Reference Manual

somfLast Method

Purpose
Gets the last object in an ordered collection.

IDL Syntax
somf_MCollectible somfLast ();

Description
The somfLast method determines the last object in the ordered collection represented by the
receiving object, and returns a pointer to it.

Every class that inherits from the somf_TSequence class must override this method for that
class to work correctly.

C cannot handle methods from different classes having the same name when they inherit the
name from different parents. somfLast is a method name declared in multiple parents (for
example: somf_TSequenceIterator, somf_TSequence, etc.). You will probably have to fully
qualify the method name (for example: somf_TDeque_somfLast). This is the only way the
linker can tell them apart.

This is not a problem in C++. In C++ you could have referenced this method as:
 seq–>somfLast(ev);

Parameters
receiver A pointer to an object of class somf_TSequence.

ev A pointer to the Environment structure for the calling method.

Return Value
There are two possible valid return values for this method:

somf_MCollectible
A pointer to the last somf_MCollectible object in the ordered collection.

SOMF_NIL Nothing is in the collection.

Example
You cannot use this method directly from this class; it must be overridden. If you invoke this
method directly, an error message is written and processing will end. For examples of how this
method is invoked, see somf_TDeque or somf_TSortedSequence.

Original Class
somf_TSequence

Related Information
Methods: somfFirst, somfAfter, somfBefore

somf_TSequence class

 256 SOMobjects Developer Toolkit

somfOccurrencesOf Method

Purpose
Determines the number of times an object obj is contained in an ordered collection.

IDL Syntax
long somfOccurrencesOf (in somf_MCollectible obj);

Description
The somfOccurrencesOf method determines the number of times a specified object obj
is contained in an ordered collection represented by the receiving object, and returns that
number.

Parameters
receiver A pointer to an object of class somf_TSequence.

ev A pointer to the Environment structure for the calling method.

obj A pointer to the somf_MCollectible object to look for in the collection.

Return Value
This method returns a number indicating how many times obj occurs in the collection.

Example
somf_TDeque dq;
<your Class which inherits from somf_MCollectible> obj;
Environment *ev;

ev = somGetGlobalEnvironment();

dq = somf_TDequeNew();
obj = <your Class which inherits from somf_MCollectible>New();

_somfAddFirst(dq, ev, obj);

somPrintf(”\n There are %d OccurrencesOf obj\n”,
 _somfOccurrencesOf(dq, ev, obj));

_somFree (dq);
_somFree (obj);

Original Class
somf_TSequence

somf_TSequence class

 257Collection Classes Reference Manual

somfRemove Method

Purpose
Removes an object from an ordered collection.

IDL Syntax
somf_MCollectible somfRemove (in somf_MCollectible obj);

Description
The somfRemove method removes a specified object obj from the ordered collection repre-
sented by the receiving object.

Every class that inherits from the somf_TSequence class must override this method for that
class to work correctly.

C cannot handle methods from different classes having the same name when they inherit the
name from different parents. somfRemove is a method name declared in multiple parents (for
example: somf_TCollection, somf_THashTable, somf_TIterator, etc.) You will probably
have to fully qualify the method name (for example: somf_TDictionary_somfRemove). This is
the only way the linker can tell them apart.

This is not a problem in C++. In C++ you could have referenced this method as:
 d–>somfRemove(ev, obj);

Parameters
receiver A pointer to an object of class somf_TSequence.

ev A pointer to the Environment structure for the calling method.

obj A pointer to the somf_MCollectible object to be removed from the collection.

Return Value
There are two possible valid return values for this method:

somf_MCollectible
A pointer to the object which was removed.

SOMF_NIL The object was not found.

Example
You cannot use this method directly from this class; it must be overridden. If you invoke this
method directly, an error message is written and processing will end. For examples of how this
method is invoked, see somf_TDeque or somf_TSortedSequence.

Original Class
somf_TCollection (overridden here)

Related Information
Methods: somfRemoveAll

somf_TSequence class

 258 SOMobjects Developer Toolkit

somfRemoveAll Method

Purpose
Removes all of the objects from an ordered collection.

IDL Syntax
void somfRemoveAll ();

Description
The somfRemoveAll method removes all of the objects from the ordered collection repre-
sented by the receiving object.

Every class that inherits from the somf_TSequence class must override this method for that
class to work correctly.

C cannot handle methods from different classes having the same name when they inherit the
name from different parents. Thus, if any child of somf_TCollection is used with
somf_THashTable, then the name of the method will have to be fully qualified (for example:
somf_TDictionary_somfRemoveAll). This is the only way the linker can tell them apart.

This is not a problem in C++. In C++ you could have referenced this method as:
 d–>somfRemoveAll(ev);

Parameters
receiver A pointer to an object of class somf_TSequence.

ev A pointer to the Environment structure for the calling method.

Return Value
None.

Example
You cannot use this method directly from this class; it must be overridden. If you invoke this
method directly, an error message is written and processing will end. For examples of how this
method is invoked, see somf_TDeque or somf_TSortedSequence.

Original Class
somf_TCollection (overridden here)

Related Information
Methods: somfRemove

somf_TSequence class

 259Collection Classes Reference Manual

somfTSequenceInit Method

Purpose
Initializes a new ordered collection of class somf_TSequence, given a comparison method for
the collection to use.

IDL Syntax
somf_TSequence somfTSequenceInit (in somf_MCollectibleCompareFn testfn);

Description
The somfTSequenceInit method initializes the new ordered collection of class
somf_TSequence, as represented by the receiving object. The method also establishes
the comparison method that the new ordered collection will use to compare current/potential
objects for the collection, as determined by the testfn argument.

Note: You cannot override this method.

Parameters
receiver A pointer to an object of class somf_TSequence.

ev A pointer to the Environment structure for the calling method.

testfn A method pointer specifying either a somfIsEqual or somfIsSame method.

This argument should always be set to either
 somf_MCollectibleClassData.somfIsSame or
 somf_MCollectibleClassData.somfIsEqual.
This specification is necessary because SOM needs a pointer to the original
declaration of the method, which resides in somf_MCollectible. The
somf_TSequence object will use this pointer to access the somfIsSame or
somfIsEqual method that was declared and defined in the object being
inserted into, or removed from, the somf_TSequence object.

Return Value
This method returns a pointer to an initialized somf_TSequence object.

Original Class
somf_TSequence

somf_TSequenceIterator class

 260 SOMobjects Developer Toolkit

somf_TSequenceIterator Class

Description
The somf_TSequenceIterator class is an abstract base class that defines an iterator for the
abstract base class somf_TSequence. The methods defined in somf_TSequenceIterator will
iterate over all of the objects in a sequence.

When you link, include the following library reference to get access to this class: somtk

When creating an iterator for an ordered collection, your classes should inherit from the
somf_TSequenceIterator class. (When creating an iterator for an unordered collection, your
classes should inherit from the somf_TIterator class.) The somf_TSequenceIterator class’s
pure virtual functions provide the framework for the methods that should be available in an
iterator for an ordered collection.

File Stem
tseqitr

Base
somf_TIterator

Metaclass
SOMClass

Ancestor Classes
somf_TIterator, SOMObject

New Methods
somfLast
somfPrevious

Overriding Methods
somfFirst
somfNext
somfRemove

somf_TSequenceIterator class

 261Collection Classes Reference Manual

somfFirst Method

Purpose
Resets the iterator and gets the first object of an ordered collection.

IDL Syntax
somf_MCollectible somfFirst ();

Description
The somfFirst method resets the iterator and returns the first object of the ordered collection
that corresponds to the iterator used as the receiving object.

The somfFirst method resets the iterator to the beginning of the collection. This is true not only
for the first time the iterator is used; it is also true if other operations on the collection cause the
iterator to be invalidated. In the second case, the method also revalidates the iterator.

Every class that inherits from the somf_TSequenceIterator class must override this method
for that class to work correctly.

C cannot handle methods from different classes having the same name when they inherit the
name from different parents. somfFirst is a method name declared in multiple parents (for
example: somf_TSequence, somf_TIterator, etc.). You will probably have to fully qualify the
method name (for example: somf_TDequeIterator_somfFirst). This is the only way the linker
can tell them apart.

This is not a problem in C++. In C++ you could have referenced this method as:
 itr–>somfFirst(ev);

Parameters
receiver A pointer to an object of class somf_TSequenceIterator.

ev A pointer to the Environment structure for the calling method.

Return Value
This method returns a pointer to the first somf_MCollectible object in the ordered collection.

Example
You cannot use this method directly from this class; it must be overridden. If you invoke this
method directly, an error message is written and processing will end. For examples of how this
method is invoked, see somf_TDequeIterator or somf_TSortedSequenceIterator.

Original Class
somf_TIterator (overridden here)

Related Information
Methods: somfNext

somf_TSequenceIterator class

 262 SOMobjects Developer Toolkit

somfLast Method

Purpose
Gets the last object in an ordered collection.

IDL Syntax
somf_MCollectible somfLast ();

Description
The somfLast method determines the last object in the somf_TSequence collection that
corresponds to the somf_TSequenceIterator iterator used as the receiving object, and returns
a pointer to it.

Every class that inherits from the somf_TSequenceIterator class must override this method
for that class to work correctly.

C cannot handle methods from different classes having the same name when they inherit the
name from different parents. somfLast is a method name declared in multiple parents (for
example: somf_TSequenceIterator, somf_TSequence, etc.). You will probably have to fully
qualify the method name (for example: somf_TSortedSequenceIterator_somfLast). This is
the only way the linker can tell them apart.

This is not a problem in C++. In C++ you could have referenced this method as:
 itr–>somfLast(ev);

Parameters
receiver A pointer to an object of class somf_TSequenceIterator.

ev A pointer to the Environment structure for the calling method.

Return Value
This method returns a pointer to the last somf_MCollectible in the collection.

Example
You cannot use this method directly from this class; it must be overridden. If you invoke this
method directly, an error message is written and processing will end. For examples of how this
method is invoked, see somf_TDequeIterator or somf_TSortedSequenceIterator.

Original Class
somf_TSequenceIterator

Related Information
Methods: somfPrevious

somf_TSequenceIterator class

 263Collection Classes Reference Manual

somfNext Method

Purpose
Gets the next object in an ordered collection.

IDL Syntax
somf_MCollectible somfNext ();

Description
The somfNext method determines the next object in the ordered collection that corresponds to
the iterator used as the receiving object. The method also returns a pointer to the next object, if
found. Objects are retrieved in an order that reflects the “ordered–ness” of the collection (or the
lack of ordering on the collection elements).

Every class that inherits from the somf_TSequenceIterator class must override this method
for that class to work correctly.

C cannot handle methods from different classes having the same name when they inherit the
name from different parents. Thus, if any child of somf_TIterator is used with a child of
somf_TPrimitiveLinkedListIterator, then the name of the method will have to be fully qualified
(for example: somf_TDictionaryIterator_somfNext). This is the only way the linker can tell
them apart.

This is not a problem in C++. In C++ you could have referenced this method as:
 itr–>somfNext(ev);

If the collection has changed since the last time somfFirst was called (other than through the
use of the somfRemove method of this iterator), this method will fail.

Parameters
receiver A pointer to an object of class somf_TSequenceIterator.

ev A pointer to the Environment structure for the calling method.

Return Value
There are two possible valid return values for this method:

somf_MCollectible
A pointer to the next somf_MCollectible object in the collection.

SOMF_NIL The end of the collection has been reached.

Example
You cannot use this method directly from this class; it must be overridden. If you invoke this
method directly, an error message is written and processing will end. For examples of how this
method is invoked, see somf_TDequeIterator or somf_TSortedSequenceIterator.

Original Class
somf_TIterator (overridden here)

Related Information
Methods: somfFirst

somf_TSequenceIterator class

 264 SOMobjects Developer Toolkit

somfPrevious Method

Purpose
Gets the previous object in an ordered collection.

IDL Syntax
somf_MCollectible somfPrevious ();

Description
The somfPrevious method determines the previous object in the somf_TSequence collection
that corresponds to the somf_TSequenceIterator iterator used as the receiving object, and
returns a pointer to the previous object (if found).

Every class that inherits from the somf_TSequenceIterator class must override this method
for that class to work correctly.

C cannot handle methods from different classes having the same name when they inherit the
name from different parents. Thus, if any child of somf_TSequenceIterator is used with
somf_TPrimitiveLinkedListIterator, then the name of the method will have to be fully qualified
(for example: somf_TSortedSequenceIterator_somfPrevious). This is the only way the
linker can tell them apart.

This is not a problem in C++. In C++ you could have referenced this method as:
 itr–>somfPrevious(ev);

Parameters
receiver A pointer to an object of class somf_TSequenceIterator.

ev A pointer to the Environment structure for the calling method.

Return Value
There are two possible valid return values for this method:

somf_MCollectible
A pointer to the previous somf_MCollectible object in the collection.

SOMF_NIL The beginning of the collection has been reached.

Example
You cannot use this method directly from this class; it must be overridden. If you invoke this
method directly, an error message is written and processing will end. For examples of how this
method is invoked, see somf_TDequeIterator or somf_TSortedSequenceIterator.

Original Class
somf_TSequenceIterator

Related Information
Methods: somfLast

somf_TSequenceIterator class

 265Collection Classes Reference Manual

somfRemove Method

Purpose
Removes the current object from an ordered collection.

IDL Syntax
void somfRemove ();

Description
The somfRemove method removes the current object (the one just returned by somfFirst,
somfNext, somfLast, or somfPrevious) from the ordered collection that corresponds to the
iterator used as the receiving object.

The somfRemove method is the only way to remove an object from an ordered collection
during iteration. However, if multiple iterators are in process, all other iterators are invalidated,
just as if some other kind of change had occurred in the collection

If the collection has changed (other than through the use of the somfRemove method of this
iterator) since the last time somfFirst or somfLast was called, this method will fail.

Every class that inherits from the somf_TSequenceIterator class must override this method
for that class to work correctly.

C cannot handle methods from different classes having the same name when they inherit the
name from different parents. somfRemove is a method name declared in multiple parents (for
example: somf_TCollection, somf_THashTable, somf_TIterator, etc.) You will probably
have to fully qualify the method name (as somf_TDictionaryIterator_somfRemove, for ex-
ample). This is the only way the linker can tell them apart.

This is not a problem in C++. In C++ you could have referenced this method as:
 itr–>somfRemove(ev);

Parameters
receiver A pointer to an object of class somf_TSequenceIterator.

ev A pointer to the Environment structure for the calling method.

Return Value
None.

Example
You cannot use this method directly from this class; it must be overridden. If you invoke this
method directly, an error message is written and processing will end. For examples of how this
method is invoked, see somf_TDequeIterator or somf_TSortedSequenceIterator.

Original Class
somf_TIterator (overridden here)

somf_TSet class

 266 SOMobjects Developer Toolkit

somf_TSet Class

Description
The somf_TSet class is a subclass of somf_TCollection. It represents an unordered collec-
tion of objects in which objects can appear only once.

When you link, include the following library reference to get access to this class: somtk

Because somf_TSet takes objects of the somf_MCollectible class as members, any class
that inherits from somf_MCollectible can be an element of the set. This means, for example,
that you can have a set containing somf_TDeque objects, or a set of somf_TDictionary
objects, or objects of any main collection class.

Objects that are inserted into the somf_TSet collection must inherit from somf_MCollectible.
In addition, they must override the somfHash method, and the somfIsEqual method. These
are used internally by collections of the somf_TSet class.

Note: The somf_TSet class uses the somfIsEqual method as the default comparison
function. (That is, if key1=”Bart” and key2=”Bart”, then key1 and key2 are
equal.) If you do not want to use the somfIsEqual method to equate entries, use one of
the initialization methods to change to the somfIsSame method.

Warning: The somf_TSet class only allows objects to be in the collection once. If an object will
be needed in the set more than once, you should consider using a somf_TDeque instead.

Although the methods in this class are reentrant, the class is not thread-safe on multi-thread
applications. If a pointer to an instance of this class will be passed to multiple threads, the code
in those threads must guarantee thread-safe usage of the class.

File Stem
tset

Base
somf_TCollection

Metaclass
SOMClass

Ancestor Classes
somf_TCollection, somf_MCollectible, SOMObject

New Methods
somfDifferenceS
somfDifferenceSS
somfIntersectionS
somfIntersectionSS
somfUnionS
somfUnionSS
somfXorS
somfXorSS
somfSetHashFunction
somfGetHashFunction
somfRehash

somf_TSet class

 267Collection Classes Reference Manual

somfAssign
somfTSetInitFL
somfTSetInitF
somfTSetInitLF
somfTSetInitL
somfTSetInitS

Overriding Methods
somInit
somUninit
somfAdd
somfRemove
somfRemoveAll
somfDeleteAll
somfCount
somfMember
somfCreateIterator

somf_TSet class

 268 SOMobjects Developer Toolkit

somfAdd Method

Purpose
Adds an object to a given set.

IDL Syntax
somf_MCollectible somfAdd (in somf_MCollectible obj);

Description
The somfAdd method adds the specified object obj to the set used as the receiving object.

Parameters
receiver A pointer to an object of class somf_TSet.

ev A pointer to the Environment structure for the calling method.

obj A pointer to the somf_MCollectible object that will be added to the set.

Return Value
There are two possible valid return values for this method:

somf_MCollectible
A pointer to the somf_MCollectible object that had to be removed in order to
add obj.

SOMF_NIL No somf_MCollectible object had to be removed in order to add obj.

Example
somf_TSet s;
<Your class which inherits from somf_MCollectible> obj;
Environment *ev;

ev = somGetGlobalEnvironment();

s = somf_TSetNew();
obj = <Your class which inherits from somf_MCollectible>New();

/* Add obj to s */
if (_somfAdd(s, ev, obj) != SOMF_NIL)
 somPrintf(”\n problem adding obj to s\n”);

_somFree (s);

Original Class
somf_TCollection (overridden here)

somf_TSet class

 269Collection Classes Reference Manual

somfAssign Method

Purpose
Assigns a set as being equal to a given source set.

IDL Syntax
void somfAssign (in somf_TSet source);

Description
The somfAssign method assigns the set used as the receiving object to be equal to the source
set. That is, the method sets/resets the instance variables of the receiver to the values of the
source. This operation is logically equivalent to using the “=” operator.

C cannot handle methods from different classes having the same name when they inherit the
name from different parents. Thus, if any child of somf_TSet is used with any other main
collection class, then the name of the method will have to be fully qualified (for example:
somf_TSet_somfAssign). This is the only way the linker can tell them apart.

This is not a problem in C++. In C++ you could have referenced this method as:
 d–>somfAssign(ev, d2);

Parameters
receiver A pointer to an object of class somf_TSet.

ev A pointer to the Environment structure for the calling method.

source A pointer to the set to which the receiving object will be made equal.

Return Value
None.

Example
somf_TSet s1;
somf_TSet s2;
Environment *ev;

ev = somGetGlobalEnvironment();

s1 = somf_TSetNew();
s2 = somf_TSetNew();

/* Add som objects to s1 */

/* Assign s2 = s1 */
somf_TSet_somfAssign(s2, ev, s1);

_somFree (s1);
_somFree (s2);

Original Class
somf_TSet

somf_TSet class

 270 SOMobjects Developer Toolkit

somfCount Method

Purpose
Gets the number of objects in a given set.

IDL Syntax
long somfCount ();

Description
The somfCount method determines the number of objects in the set used as the receiving
object, and returns that number.

C cannot handle methods from different classes having the same name when they inherit the
name from different parents. Thus, if any child of somf_TCollection is used with
somf_THashTable, then the name of the method will have to be fully qualified (for example:
somf_TDictionary_somfCount). This is the only way the linker can tell them apart.

This is not a problem in C++. In C++ you could have referenced this method as:
 d–>somfCount(ev);

Parameters
receiver A pointer to an object of class somf_TSet.

ev A pointer to the Environment structure for the calling method.

Return Value
This method returns the number of objects contained in the set.

Example
somf_TSet s;
Environment *ev;

ev = somGetGlobalEnvironment();

s = somf_TSetNew();

somPrintf(”\n Count of s= %d\n”, _somfCount(s,ev));

_somFree (s);

Original Class
somf_TCollection (overridden here)

somf_TSet class

 271Collection Classes Reference Manual

somfCreateIterator Method

Purpose
Returns a new iterator that is suitable for iterating over the objects in this set.

IDL Syntax
somf_TIterator somfCreateIterator ();

Description
The somfCreateIterator method returns a new iterator that is suitable for iterating over the
objects in this set.

Note: This is one of two ways to initialize a somf_TSetIterator iterator to point to an instance
of somf_TSet. The other way is to use the somf_TSetIterator class’s initializer method
described on page 299.

Parameters
receiver A pointer to an object of class somf_TSet.

ev A pointer to the Environment structure for the calling method.

Return Value
This method returns a pointer to the new iterator.

Example
somf_TSet s;
Environment *ev;
somf_TSetIterator itr;

ev = somGetGlobalEnvironment();

s = somf_TSetNew();
itr = (somf_TSetIterator*) _somfCreateIterator(s,ev);

_somFree (s);
_somFree (itr);

Original Class
somf_TCollection (overridden here)

somf_TSet class

 272 SOMobjects Developer Toolkit

somfDeleteAll Method

Purpose
Removes all of the objects from a set and deallocates the storage that these objects might have
owned. (That is, the destructor function is called for each object in the set.)

IDL Syntax
void somfDeleteAll ();

Description
The somfDeleteAll method removes all of the objects from the set represented by the receiving
object. The method also deallocates the storage that these objects might have owned (that is,
the destructor function is called for each object in the collection).

Be careful with somfDeleteAll. Since a collection only contains pointers to objects (rather than
the objects themselves), somfDeleteAll can cause a problem if a pointer to an object appears
more than once. For example, if multiple pointers to ‘A’ exist, or if a single pointer to ‘A’ is in the
collection multiple times, the behavior of the code is undefined, because it will try to delete ‘A’
multiple times. If you think there is a chance that an object could appear in the collection more
than once, you should consider using somfRemoveAll to remove the objects from the collec-
tion and deleting them some other way.

C cannot handle methods from different classes having the same name when they inherit the
name from different parents. Thus, if any child of somf_TCollection is used with
somf_THashTable, then the name of the method will have to be fully qualified (for example:
somf_TSet_somfDeleteAll). This is the only way the linker can tell them apart.

This is not a problem in C++. In C++ you could have referenced this method as:
 d–>somfDeleteAll(ev);

Parameters
receiver A pointer to an object of class somf_TSet.

ev A pointer to the Environment structure for the calling method.

Return Value
None.

Example
somf_TSet s;
Environment *ev;

ev = somGetGlobalEnvironment();

s = somf_TSetNew();

/* Add some objects to s */

/* Remove all of the objects from s AND DELETE THEM */
_somfDeleteAll(s,ev);

_somFree (s);

Original Class
somf_TCollection (overridden here)

somf_TSet class

 273Collection Classes Reference Manual

somfDifferenceS Method

Purpose
Determines the elements of a given set that do not appear in another specified set, and modifies
the first set to contain only those different elements.

IDL Syntax
void somfDifferenceS (in somf_TSet set1);

Description
The somfDifferenceS method determines those elements of a given set that are not contained
in another specified set, set1. The set used as the receiving object is destructively modified to
contain only those elements that do not appear in set1.

Parameters
receiver A pointer to an object of class somf_TSet.

ev A pointer to the Environment structure for the calling method.

set1 A pointer to the set that the receiving object will be compared against.

Return Value
None.

Example
somf_TSet s1;
somf_TSet s2;
Environment *ev;

ev = somGetGlobalEnvironment();

s1 = somf_TSetNew();
s2 = somf_TSetNew();

/* Find the differences between s1 and s2, and put it in s1 */
_somfDifferenceS(s1, ev, s2);

_somFree (s1);
_somFree (s2);

Original Class
somf_TSet

Related Information
Methods: somfDifferenceSS

somf_TSet class

 274 SOMobjects Developer Toolkit

somfDifferenceSS Method

Purpose
Determines the elements of a given set that do not appear in another specified set, and places
those different elements in a third set.

IDL Syntax
void somfDifferenceSS (

in somf_TSet set1,
 in somf_TSet resultSet);

Description
The somfDifferenceSS method determines which elements of the receiving-object set are not
contained in set set1. Those elements that do not appear in set set1 are then placed in set
resultSet. The original receiving-object set remains unchanged.

Parameters
receiver A pointer to an object of class somf_TSet.

ev A pointer to the Environment structure for the calling method.

set1 A pointer to the set that the receiving object set will be compared against.

resultSet A pointer to the set containing the results of the operation.

Return Value
None.

Example
somf_TSet s1;
somf_TSet s2;
somf_TSet s3;
Environment *ev;

ev = somGetGlobalEnvironment();

s1 = somf_TSetNew();
s2 = somf_TSetNew();
s3 = somf_TSetNew();

/* Find the differences between s1 and s2, and put it in s3 */
_somfDifferenceSS(s1, ev, s2, s3);

_somFree (s1);
_somFree (s2);
_somFree (s3);

Original Class
somf_TSet

Related Information
Methods: somfDifferenceS

somf_TSet class

 275Collection Classes Reference Manual

somfGetHashFunction Method

Purpose
Gets a pointer to the hash function used by a set.

IDL Syntax
somf_MCollectibleHashFn somfGetHashFunction ();

Description
The somfGetHashFunction method returns a pointer to the hash function used by the set
represented by the receiving object.

C cannot handle methods from different classes having the same name when they inherit the
name from different parents. Thus, if somf_TSet is used with a child of somf_THashTable or
somf_TDictionary, then the name of the method will have to be fully qualified (for example:
somf_TSet_somfGetHashFunction). This is the only way the linker can tell them apart.

This is not a problem in C++. In C++ you could have referenced this method as:
 d–>somfGetHashFunction(ev);

Parameters
receiver A pointer to an object of class somf_TSet.

ev A pointer to the Environment structure for the calling method.

Return Value
This method returns a pointer to the hash function.

Example
somf_TSet s;
Environment *ev;

ev = somGetGlobalEnvironment();

s = somf_TSetNew();

if ((somf_TSet_somfGetHashFunction(s,ev)) !=
 somf_MCollectibleClassData.somfHash)
 somPrintf(”\n What Hash Function are we using?\n”);

_somFree (s);

Original Class
somf_TSet

Related Information
Methods: somfSetHashFunction

somf_TSet class

 276 SOMobjects Developer Toolkit

somfIntersectionS Method

Purpose
Gets those elements that are members of both a given set and another set, set1, and modifies
the first set to contain only those common elements.

IDL Syntax
void somfIntersectionS (in somf_TSet set1);

Description
The somfIntersectionS method determines, given the receiving-object set and set1, which
elements are contained in both sets. The set used as the receiving object is then destructively
modified to contain only those common elements.

Parameters
receiver A pointer to an object of class somf_TSet.

ev A pointer to the Environment structure for the calling method.

set1 A pointer to the set that the receiving object will be compared against.

Return Value
None.

Example
somf_TSet s1;
somf_TSet s2;
Environment *ev;

ev = somGetGlobalEnvironment();

s1 = somf_TSetNew();
s2 = somf_TSetNew();

/* Find the intersection between s1 and s2, and put it in s1 */
_somfIntersectionS(s1, ev, s2);

_somFree (s1);
_somFree (s2);

Original Class
somf_TSet

Related Information
Methods: somfIntersectionSS

somf_TSet class

 277Collection Classes Reference Manual

somfIntersectionSS Method

Purpose
Gets those elements that are members of both a given set and another set, set1, and places
those common elements in a third set.

IDL Syntax
void somfIntersectionSS (

in somf_TSet set1,
 in somf_TSet resultSet);

Description
The somfIntersectionSS method determines, given the receiving-object set and set1, which
elements are contained in both sets. The common elements are then placed in set resultSet.
The original receiving-object set and set1 remain unchanged.

Parameters
receiver A pointer to an object of class somf_TSet.

ev A pointer to the Environment structure for the calling method.

set1 A pointer to the set this instance will be compared against.

resultSet A pointer to the set containing the results of the operation.

Return Value
None.

Example
somf_TSet s1;
somf_TSet s2;
somf_TSet s3;
Environment *ev;

ev = somGetGlobalEnvironment();

s1 = somf_TSetNew();
s2 = somf_TSetNew();
s3 = somf_TSetNew();

/* Find the intersection between s1 and s2, and put it in s3 */
_somfIntersectionSS(s1, ev, s2, s3);

_somFree (s1);
_somFree (s2);
_somFree (s3);

Original Class
somf_TSet

Related Information
Methods: somfIntersectionS

somf_TSet class

 278 SOMobjects Developer Toolkit

somfMember Method

Purpose
Gets an object from a set.

IDL Syntax
somf_MCollectible somfMember (in somf_MCollectible obj);

Description
The somfMember method determines whether the specified object obj is a member of the set
represented by the receiving object, and returns a pointer to the object (if found).

C cannot handle methods from different classes having the same name when they inherit the
name from different parents. Thus, if any child of somf_TCollection is used with
somf_THashTable, then the name of the method will have to be fully qualified (for example:
somf_TSet_somfMember). This is the only way the linker can tell them apart.

This is not a problem in C++. In C++ you could have referenced this method as:
 d–>somfMember(ev, obj);

Parameters
receiver A pointer to an object of class somf_TSet.

ev A pointer to the Environment structure for the calling method.

obj A pointer to the somf_MCollectible that may or may not be a member of the
Collection.

Return Value
There are two possible valid return values for this method:

somf_MCollectible
A pointer to the object the method determined as the member.

SOMF_NIL The object was not found.

Example
somf_TSet s;
<your Class which inherits from somf_MCollectible> obj;
Environment *ev;

ev = somGetGlobalEnvironment();

s = somf_TSetNew();
obj = <your Class which inherits from somf_MCollectible>New();

_somfAdd(s, ev, obj);

if (_somfMember(s, ev, obj) != SOMF_NIL)
 somPrintf(”\n obj is a Member\n”);
else
 somPrintf(”\n ERROR: obj should be a Member\n”);

_somFree (s);
_somFree (obj);

Original Class
somf_TCollection (overridden here)

somf_TSet class

 279Collection Classes Reference Manual

somfRehash Method

Purpose
Rehashes a set, cleaning up for any objects that were marked for deletion.

IDL Syntax
void somfRehash ();

Description
The somfRehash method rehashes the set represented by the receiving object, and cleans up
for any objects that were marked for deletion.

Note: You cannot override this method.

Parameters
receiver A pointer to an object of class somf_TSet.

ev A pointer to the Environment structure for the calling method.

Return Value
None.

Example
somf_TSet s;
Environment *ev;

ev = somGetGlobalEnvironment();

s = somf_TSetNew();

_somfRehash(s,ev);

_somFree (s);

Original Class
somf_TSet

somf_TSet class

 280 SOMobjects Developer Toolkit

somfRemove Method

Purpose
Removes an object from a given set.

IDL Syntax
somf_MCollectible somfRemove (in somf_MCollectible obj);

Description
The somfRemove method removes a specified object obj from the set represented by the
receiving object.

C cannot handle methods from different classes having the same name when they inherit the
name from different parents. somfRemove is a method name declared in multiple parents (for
example: somf_TCollection, somf_THashTable, somf_TIterator, etc.) You will probably
have to fully qualify the method name (for example: somf_TSet_somfRemove). This is the
only way the linker can tell them apart.

This is not a problem in C++. In C++ you could have referenced this method as:
 d–>somfRemove(ev, obj);

Parameters
receiver A pointer to an object of class somf_TSet.

ev A pointer to the Environment structure for the calling method.

obj A pointer to the somf_MCollectible object to be removed from the set.

Return Value
There are two possible valid return values for this method:

somf_MCollectible
A pointer to the object that was removed.

SOMF_NIL The object was not found.

Example
somf_TSet s;
<your Class which inherits from somf_MCollectible> obj;
Environment *ev;

ev = somGetGlobalEnvironment();

s = somf_TSetNew();
obj = <your Class which inherits from somf_MCollectible>New();

_somfAdd(s, ev, obj);
if (somf_TSet_somfRemove(s, ev, obj) == SOMF_NIL)
 somPrintf(”\n problem removing obj from s\n”);

_somFree (s);
_somFree (obj);

Original Class
somf_TCollection (overridden here)

Related Information
Methods: somfRemoveAll

somf_TSet class

 281Collection Classes Reference Manual

somfRemoveAll Method

Purpose
Removes all of the objects from a given set.

IDL Syntax
void somfRemoveAll ();

Description
The somfRemoveAll method removes all of the objects from the set represented by the
receiving object.

C cannot handle methods from different classes having the same name when they inherit the
name from different parents. Thus, if any child of somf_TCollection is used with a child of
somf_THashTable, then the name of the method will have to be fully qualified (for example:
somf_TSet_somfRemoveAll). This is the only way the linker can tell them apart.

This is not a problem in C++. In C++ you could have referenced this method as:
 d–>somfRemoveAll(ev);

Parameters
receiver A pointer to an object of class somf_TSet.

ev A pointer to the Environment structure for the calling method.

Return Value
None.

Example
somf_TSet s;
Environment *ev;

ev = somGetGlobalEnvironment();

s = somf_TSetNew();

/* Remove All of the objects in s */
_somfRemoveAll(s,ev);

_somFree (s);

Original Class
somf_TCollection (overridden here)

Related Information
Methods: somfRemove

somf_TSet class

 282 SOMobjects Developer Toolkit

somfSetHashFunction Method

Purpose
Sets the hash function of a set.

IDL Syntax
void somfSetHashFunction (in somf_MCollectibleHashFn fn);

Description
The somfSetHashFunction method sets the hash function of the set used as the receiving
object to the specified method fn.

C cannot handle methods from different classes having the same name when they inherit the
name from different parents. Thus, if a child of somf_TDictionary is used with a child of
somf_THashTable or somf_TSet, then the name of the method will have to be fully qualified
(for example: somf_TSet_somfSetHashFunction). This is the only way the linker can tell
them apart.

This is not a problem in C++. In C++ you could have referenced this method as:
 d–>somfSetHashFunction(ev);

Parameters
receiver A pointer to an object of class somf_TSet.

ev A pointer to the Environment structure for the calling method.

fn A method pointer specifying a somfHash type method.

This argument should always be set to
 somf_MCollectibleClassData.somfHash
This specification is necessary because SOM needs a pointer to the original
declaration of the method, which resides in somf_MCollectible. The
somf_TSet object will use this pointer to access the somfHash method that
was declared and defined in the object being inserted into, or removed from,
the somf_TSet object.

Return Value
None.

Example
somf_TSet s;
Environment *ev;

ev = somGetGlobalEnvironment();

s = somf_TSetNew();

somf_TSet_somfSetHashFunction(s, ev,
 somf_MCollectibleClassData.somfHash);

_somFree (s);

Original Class
somf_TSet

Related Information
Methods: somfGetHashFunction

somf_TSet class

 283Collection Classes Reference Manual

somfTSetInitF Method

Purpose
Initializes a new set, given its comparison test method.

IDL Syntax
somf_TSet somfTSetInitF (in somf_MCollectibleCompareFn testfn);

Description
The somfTSetInitF method initializes the set represented by the receiving object, given the
comparison test method that the set will use. The method assumes a default number of objects
as the set size.

Note: You cannot override this method.

Parameters
receiver A pointer to an object of class somf_TSet.

ev A pointer to the Environment structure for the calling method.

testfn A method pointer specifying either a somfIsEqual or somfIsSame method.

This argument should always be set to either
 somf_MCollectibleClassData.somfIsSame or
 somf_MCollectibleClassData.somfIsEqual.
This specification is necessary because SOM needs a pointer to the original
declaration of the method, which resides in somf_MCollectible. The
somf_TSet object will use this pointer to access the somfIsSame or
somfIsEqual method that was declared and defined in the object being
inserted into, or removed from, the somf_TSet object.

Return Value
This method returns a pointer to an initialized somf_TSet object.

Example
somf_TSet s2;
Environment *ev;

ev = somGetGlobalEnvironment();

s2 = somf_TSetNew();
_somfTSetInitF(s2, ev, somf_MCollectibleClassData.somfIsEqual);

_somFree (s2);

Original Class
somf_TSet

Related Information
Methods: somfTSetInitFL, somfTSetInitLF, somfTSetInitL, somfTSetInitS

somf_TSet class

 284 SOMobjects Developer Toolkit

somfTSetInitFL Method

Purpose
Initializes a new set, given the comparison test method and the initial set size. Note: This
method is equivalent to the method somfTSetInitLF.

IDL Syntax
somf_TSet somfTSetInitFL (

in somf_MCollectibleCompareFn testfn,
 in long setSizeHint);

Description
The somfTSetInitFL method initializes the set represented by the receiving object, given the
set’s comparison test method and initial set size.

Note: You cannot override this method.

Parameters
receiver A pointer to an object of class somf_TSet.

ev A pointer to the Environment structure for the calling method.

testfn A method pointer specifying either a somfIsEqual or somfIsSame method.

This argument should always be set to either
 somf_MCollectibleClassData.somfIsSame or
 somf_MCollectibleClassData.somfIsEqual.
This specification is necessary because SOM needs a pointer to the original
declaration of the method, which resides in somf_MCollectible. The
somf_TSet object will use this pointer to access the somfIsSame or
somfIsEqual method that was declared and defined in the object being
inserted into, or removed from, the somf_TSet object.

setSizeHint The initial size of the set, expressed as the number of objects the set is
expected to contain.

Return Value
This method returns a pointer to an initialized somf_TSet object.

Example
somf_TSet s1;
Environment *ev;

ev = somGetGlobalEnvironment();

s1 = somf_TSetNew();
_somfTSetInitFL(s1, ev, somf_MCollectibleClassData.somfIsEqual, 8);

_somFree (s1);

Original Class
somf_TSet

Related Information
Methods: somfTSetInitF, somfTSetInitLF, somfTSetInitL, somfTSetInitS

somf_TSet class

 285Collection Classes Reference Manual

somfTSetInitL Method

Purpose
Initializes a new set, given the initial set size.

IDL Syntax
somf_TSet somfTSetInitL (in long setSizeHint);

Description
The somfTSetInitL method initializes the set represented by the receiving object, given the
set’s initial set size. The method assumes the somf_TSet class’s default comparison test
function of somfIsEqual.

Note: You cannot override this method.

Parameters
receiver A pointer to an object of class somf_TSet.

ev A pointer to the Environment structure for the calling method.

setSizeHint The initial size of the set, expressed as the number of objects the set is
expected to contain.

Return Value
This method returns a pointer to an initialized somf_TSet.

Example
somf_TSet s4;
Environment *ev;

ev = somGetGlobalEnvironment();

s4 = somf_TSetNew();
_somfTSetInitL(s4, ev, 8);

_somFree (s4);

Original Class
somf_TSet

Related Information
Methods: somfTSetInitFL, somfTSetInitF, somfTSetInitLF, somfTSetInitS

somf_TSet class

 286 SOMobjects Developer Toolkit

somfTSetInitLF Method

Purpose
Initializes a new set, given the initial set size and the comparison test method. Note: This
method is equivalent to method somfTSetInitFL.

IDL Syntax
somf_TSet somfTSetInitLF (

in long setSizeHint,
 in somf_MCollectibleCompareFn testfn);

Description
The somfTSetInitLF method initializes the set represented by the receiving object, given the
set’s initial set size and its comparison test method.

Note: You cannot override this method.

Parameters
receiver A pointer to an object of class somf_TSet.

ev A pointer to the Environment structure for the calling method.

setSizeHint The initial size of the set, expressed as the number of objects the set is
expected to contain.

testfn A method pointer specifying either a somfIsEqual or somfIsSame method.

This argument should always be set to either
 somf_MCollectibleClassData.somfIsSame or
 somf_MCollectibleClassData.somfIsEqual.
This specification is necessary because SOM needs a pointer to the original
declaration of the method, which resides in somf_MCollectible. The
somf_TSet object will use this pointer to access the somfIsSame or
somfIsEqual method that was declared and defined in the object being
inserted into, or removed from, the somf_TSet object.

Return Value
This method returns a pointer to an initialized somf_TSet object.

Example
somf_TSet s3;
Environment *ev;

ev = somGetGlobalEnvironment();

s3 = somf_TSetNew();
_somfTSetInitLF(s3, ev, 8, somf_MCollectibleClassData.somfIsEqual);

_somFree (s3);

Original Class
somf_TSet

Related Information
Methods: somfTSetInitFL, somfTSetInitF, somfTSetInitL, somfTSetInitS

somf_TSet class

 287Collection Classes Reference Manual

somfTSetInitS Method

Purpose
Initializes a new set, establishing it as equal to another given set.

IDL Syntax
somf_TSet somfTSetInitS (in somf_TSet s);

Description
The somfTSetInitS method initializes the set represented by the receiving object. The method
also establishes the new set as equal to the specified source set. This implies that the instance
data of the new set will be equal to those of the source set.

Note: You cannot override this method.

Parameters
receiver A pointer to an object of class somf_TSet.

ev A pointer to the Environment structure for the calling method.

s A pointer to the set to which the receiving object will be equal.

Return Value
This method returns a pointer to an initialized somf_TSet object.

Example
somf_TSet s4;
somf_TSet s5;
Environment *ev;

ev = somGetGlobalEnvironment();

s4 = somf_TSetNew();
s5 = somf_TSetNew();
_somfTSetInitS(s5, ev, s4);

_somFree (s4);
_somFree (s5);

Original Class
somf_TSet

Related Information
Methods: somfTSetInitFL, somfTSetInitF, somfTSetInitLF, somfTSetInitL

somf_TSet class

 288 SOMobjects Developer Toolkit

somfUnionS Method

Purpose
Gets those elements that are members of either a given set or another set, set1, and modifies
the first set to contain all elements from both sets.

IDL Syntax
void somfUnionS (in somf_TSet set1);

Description
The somfUnionS method determines the set of elements that are contained in either the
receiving object set or in the set set1. The set used as the receiving object is then destructively
modified to contain all of those elements from both sets.

Parameters
receiver A pointer to an object of class somf_TSet.

ev A pointer to the Environment structure for the calling method.

set1 A pointer to the set that the receiving object will be compared against.

Return Value
None.

Example
somf_TSet s1;
somf_TSet s2;
Environment *ev;

ev = somGetGlobalEnvironment();

s1 = somf_TSetNew();
s2 = somf_TSetNew();

/* Find the union between s1 and s2, and put it in s1 */
_somfUnionS(s1, ev, s2);

_somFree (s1);
_somFree (s2);

Original Class
somf_TSet

Related Information
Methods: somfUnionSS

somf_TSet class

 289Collection Classes Reference Manual

somfUnionSS Method

Purpose
Gets those elements that are members of either a given set and another set, set1, and places
all those elements in a third set.

IDL Syntax
void somfUnionSS (

in somf_TSet set1,
 in somf_TSet resultSet);

Description
The somfUnionSS method determines the set of elements that are contained either in the
receiving-object set or in set1. All of those elements are then placed in set resultSet. The original
receiving-object set and set1 remain unchanged.

Parameters
receiver A pointer to an object of class somf_TSet.

ev A pointer to the Environment structure for the calling method.

set1 A pointer to the set that the receiving object will be compared against.

resultSet A pointer to the set containing the results of the operation.

Return Value
None.

Example
somf_TSet s1;
somf_TSet s2;
somf_TSet s3;
Environment *ev;

ev = somGetGlobalEnvironment();

s1 = somf_TSetNew();
s2 = somf_TSetNew();
s3 = somf_TSetNew();

/* Find the union between s1 and s2, and put it in s3 */
_somfUnionSS(s1, ev, s2, s3);

_somFree (s1);
_somFree (s2);
_somFree (s3);

Original Class
somf_TSet

Related Information
Methods: somfUnionS

somf_TSet class

 290 SOMobjects Developer Toolkit

somfXorS Method

Purpose
Determines a set wherein each member is an element either of a given set or of another set set1,
but not of both, and modifies the first set to contain the elements of the new set.

IDL Syntax
void somfXorS (in somf_TSet set1);

Description
The somfXorS method determines a set wherein each member is an element either of the set
represented by the receiving object or of another set, set1, but not both. The receiving object set
is then modified to contain all of the elements of the newly determined set.

Parameters
receiver A pointer to an object of class somf_TSet.

ev A pointer to the Environment structure for the calling method.

set1 A pointer to the set that the receiving object will be compared against.

Return Value
None.

Example
somf_TSet s1;
somf_TSet s2;
Environment *ev;

ev = somGetGlobalEnvironment();

s1 = somf_TSetNew();
s2 = somf_TSetNew();

/* Find the exclusive or of s1 and s2, and put it in s1 */
_somfXorS(s1, ev, s2);

_somFree (s1);
_somFree (s2);

Original Class
somf_TSet

Related Information
Methods: somfXorSS

somf_TSet class

 291Collection Classes Reference Manual

somfXorSS Method

Purpose
Determines a set where each member is an element either of a given set or of another set set1,
but not of both, and places all of those elements in a third set.

IDL Syntax
void somfXorSS (

in somf_TSet set1,
 in somf_TSet resultSet);

Description
The somfXorSS method determines a set where each member is an element either of the set
represented by the receiving object or of another set, set1, but not both. All elements of the
newly determined set are then placed in set resultSet. The receiving-object set and set1
remain unchanged.

Parameters
receiver A pointer to an object of class somf_TSet.

ev A pointer to the Environment structure for the calling method.

set1 A pointer to the set that the receiving object will be compared against.

resultSet A pointer to the set containing the results of the operation.

Return Value
None.

Example
somf_TSet s1;
somf_TSet s2;
somf_TSet s3;
Environment *ev;

ev = somGetGlobalEnvironment();

s1 = somf_TSetNew();
s2 = somf_TSetNew();
s3 = somf_TSetNew();

/* Find the exclusive or of s1 and s2, and put it in s3 */
_somfXorSS(s1, ev, s2, s3);

_somFree (s1);
_somFree (s2);
_somFree (s3);

Original Class
somf_TSet

Related Information
Methods: somfXorS

somf_TSetIterator class

 292 SOMobjects Developer Toolkit

somf_TSetIterator Class

Description
The somf_TSetIterator class defines an iterator for the somf_TSet class that will iterate over
all of the objects in a set.

When you link, include the following library reference to get access to this class: somtk

Although the methods in this class are reentrant, the class is not thread-safe on multi-thread
applications. If a pointer to an instance of this class will be passed to multiple threads, the code
in those threads must guarantee thread-safe usage of the class.

File Stem
tsetitr

Base
somf_TIterator

Metaclass
SOMClass

Ancestor Classes
somf_TIterator, SOMObject

New Methods
somfTSetIteratorInit

Overriding Methods
somUninit
somfNext
somfFirst
somfRemove

somf_TSetIterator class

 293Collection Classes Reference Manual

somfFirst Method

Purpose
Resets the iterator and returns the first element of a set.

IDL Syntax
somf_MCollectible somfFirst ();

Description
The somfFirst method resets the iterator and returns the first element of the set that corre-
sponds to the set iterator represented by the receiving object.

The somfFirst method resets the iterator to the beginning of the set. This is true not only the first
time the iterator is used; it is also true if other operations on the collection cause the iterator to be
invalidated. In the second case, the method also revalidates the iterator.

C cannot handle methods from different classes having the same name when they inherit the
name from different parents. somfFirst is a method name declared in multiple parents (for
example: somf_TSequence, somf_TIterator, etc.). You will probably have to fully qualify the
method name (for example: somf_TSetIterator_somfFirst). This is the only way the linker can
tell them apart.

This is not a problem in C++. In C++ you could have referenced this method as:
 itr–>somfFirst(ev);

Parameters
receiver A pointer to an object of class somf_TSetIterator.

ev A pointer to the Environment structure for the calling method.

Return Value
This method returns a pointer to the first somf_MCollectible object in the set. Or, SOMF_NIL is
returned if the collection is empty.

Example
somf_TSet s;
Environment *ev;
somf_TSetIterator itr;
somf_MCollectible itrobj;

ev = somGetGlobalEnvironment();

s = somf_TSetNew();
itr = somf_TSetIteratorNew();
_somfTSetIteratorInit(itr, ev, s);

/* Add some object to s */

/* Iterate through the TSet */
itrobj = somf_TSetIterator_somfFirst(itr,ev);
while (itrobj != SOMF_NIL)
{
 /* Do something with itrobj */
 itrobj = _somfNext(itr,ev);
}

_somFree (s);
_somFree (itr);

somf_TSetIterator class

 294 SOMobjects Developer Toolkit

Original Class
somf_TIterator

Related Information
Methods: somfNext

somf_TSetIterator class

 295Collection Classes Reference Manual

somfNext Method

Purpose
Gets the next object in a set.

IDL Syntax
somf_MCollectible somfNext ();

Description
The somfNext method determines the next object in the set that corresponds to the set iterator
represented by the receiving object, and returns a pointer to it. Objects are retrieved in an order
reflecting the “ordered–ness” of the set (or the lack of ordering on the set elements).

If the somf_TSet collection has changed (other than through the use of the somfRemove
method of this iterator) since the last time the somfFirst method was called, the iterator
becomes invalid and will fail if asked to find the next object. For example, if the collection’s
somfAdd method were called after starting to iterate through the collection, the iterator then
would not allow iteration to continue. The iterator must be reset, and the easiest way to do that is
to call the iterator’s somfFirst method and start over.

C cannot handle methods from different classes having the same name when they inherit the
name from different parents. Thus, if any child of somf_TIterator is used with a child of
somf_TPrimitiveLinkedListIterator, then the name of the method will have to be fully qualified
(example: somf_TSetIterator_somfNext). This is the only way the linker can tell them apart.

This is not a problem in C++. In C++ you could have referenced this method as:
 itr–>somfNext(ev);

Parameters
receiver A pointer to an object of class somf_TSetIterator.

ev A pointer to the Environment structure for the calling method.

Return Value
There are two possible valid return values for this method:

somf_MCollectible
A pointer to the next somf_MCollectible object in the set.

SOMF_NIL The end of the set has been reached.

Example
somf_TSet s;
Environment *ev;
somf_TSetIterator itr;
somf_MCollectible itrobj;

ev = somGetGlobalEnvironment();

s = somf_TSetNew();
itr = somf_TSetIteratorNew();
_somfTSetIteratorInit(itr, ev, s);

/* Add some object to s */

somf_TSetIterator class

 296 SOMobjects Developer Toolkit

/* Iterate through the TSet */
itrobj = somf_TSetIterator_somfFirst(itr,ev);
while (itrobj != SOMF_NIL)
{
 /* Do something with itrobj */
 itrobj = _somfNext(itr,ev);
}

_somFree (s);
_somFree (itr);

Original Class
somf_TIterator

Related Information
Methods: somfFirst

somf_TSetIterator class

 297Collection Classes Reference Manual

somfRemove Method

Purpose
Removes the current object (the one just returned by somfFirst or somfNext) from a set.

IDL Syntax
void somfRemove ();

Description
The somfRemove method removes the current object (the one just returned by somfFirst or
somfNext) from the set that corresponds to the iterator used as the receiving object.

This method is the only way to remove an object from a set during iteration. However, if multiple
iterators are in process, all other iterators are invalidated, just as if some other kind of change
had occurred in the collection.

If the collection has changed since the last time somfFirst was called (other than through the
use of the somfRemove method of this iterator), this method will fail.

C cannot handle methods from different classes having the same name when they inherit the
name from different parents. somfRemove is a method name declared in multiple parents (for
example: somf_TCollection, somf_THashTable, somf_TIterator, etc.) You will probably
have to fully qualify the method name (for example: somf_TSetIterator_somfRemove). This
is the only way the linker can tell them apart.

This is not a problem in C++. In C++ you could have referenced this method as:
 itr–>somfRemove(ev);

Parameters
receiver A pointer to an object of class somf_TSetIterator.

ev A pointer to the Environment structure for the calling method.

Return Value
None.

Example
somf_TSet s;
Environment *ev;
somf_TSetIterator itr;

ev = somGetGlobalEnvironment();

s = somf_TSetNew();
itr = somf_TSetIteratorNew();
_somfTSetIteratorInit(itr, ev, s);

/* Remove the first object in s */

/* Iterate through the TSet */
somf_TSetIterator_somfFirst(itr,ev);
somf_TSetIterator_somfRemove(itr,ev);

_somFree (s);
_somFree (itr);

somf_TSetIterator class

 298 SOMobjects Developer Toolkit

Original Class
somf_TIterator

somf_TSetIterator class

 299Collection Classes Reference Manual

somfTSetIteratorInit Method

Purpose
Initializes somf_TSetIterator object, establishing it as the iterator for a given somf_TSet set.

IDL Syntax
somf_TSetIterator somfTSetIteratorInit (in somf_TSet h);

Description
The somfTSetIteratorInit method initializes a given iterator object (the somf_TSetIterator
receiving object) that will iterate over the specified somf_TSet set.

Note: This is one of two ways to initialize a somf_TSetIterator to point to an instance of a
somf_TSet set. The other way is to use the somf_TSet class’s somfCreateIterator
method described on page 271.

Note: You cannot override this method.

Parameters
receiver A pointer to an object of class somf_TSetIterator.

ev A pointer to the Environment structure for the calling method.

h A pointer to the set that the receiving object will iterate over.

Return Value
This method returns a pointer to an initialized somf_TSetIterator object.

Example
somf_TSet s;
Environment *ev;
somf_TSetIterator itr;

ev = somGetGlobalEnvironment();

s = somf_TSetNew();
itr = somf_TSetIteratorNew();
_somfTSetIteratorInit(itr, ev, s);

_somFree (s);
_somFree (itr);

Original Class
somf_TSetIterator

somf_TSortedSequence class

 300 SOMobjects Developer Toolkit

somf_TSortedSequence Class

Description
The somf_TSortedSequence class is a child of the somf_TSequence class. Ordering of
objects in a sorted sequence collection is based on how the objects relate to each other,
ranging from largest to smallest. Any object in the somf_TSortedSequence “IsGreaterThan”
or “IsEqualTo” the object behind it, and “IsLessThan” or “IsEqualTo” the element in front of it.

When you link, include the following library reference to get access to this class: somtk

Warning: Do not be misled by the interface of methods in this class, many of which are
overridden from the somf_TSequence or somf_TCollection class. All objects placed into a
somf_TSortedSequence collection must be instances of the somf_MOrderableCollectible
class. If you attempt to add a somf_MCollectible object to a sorted sequence, the class
method will abend.

All somf_MOrderableCollectible objects that are inserted into a somf_TSortedSequence
collection should override the somfIsEqual, somfIsLessThan, somfIsGreaterThan, and
somfHash methods.

The somf_TSortedSequence class uses somfIsEqual to compare objects in the collection.
You cannot override or change this to the somfIsSame method.

Although the methods in this class are reentrant, the class is not thread-safe on multi-thread
applications. If a pointer to an instance of this class will be passed to multiple threads, the code
in those threads must guarantee thread-safe usage of the class.

File Stem
tss

Base
somf_TSequence

Metaclass
SOMClass

Ancestor Classes
somf_TSequence, somf_TCollection, somf_MCollectible, SOMObject

New Methods
somfCreateSequenceIterator
somfGetSequencingFunction
somfSetSequencingFunction
somfCreateSortedSequenceNode
somfAssign
somfTSortedSequenceInitF
somfTSortedSequenceInitS

Overriding Methods
somInit
somUninit
somfAdd

somf_TSortedSequence class

 301Collection Classes Reference Manual

somfRemove
somfDeleteAll
somfRemoveAll
somfCount
somfAfter
somfBefore
somfLast
somfFirst
somfMember
somfCreateIterator
somfOccurrencesOf

somf_TSortedSequence class

 302 SOMobjects Developer Toolkit

somfAdd Method

Purpose
Adds an obj to a sorted sequence.

IDL Syntax
somf_MCollectible somfAdd (in somf_MCollectible obj);

Description
The somfAdd method adds an object obj to the sorted sequence represented by the receiving
object.

Notice that the somfAdd method does not include an argument specifying where to add the
object, because the sequence will be ordered based on how the elements relate to each other.

Parameters
receiver A pointer to an object of class somf_TSortedSequence

ev A pointer to the Environment structure for the calling method.

obj A pointer to an somf_MCollectible that will be added to this instance.

Return Value
This method returns a pointer to the somf_MCollectible object added.

Example
somf_TSortedSequence ss;
<Your class which inherits from somf_MOrderableCollectible> obj;
Environment *ev;

ev = somGetGlobalEnvironment();

ss = somf_TSortedSequenceNew();
obj =
 <Your class which inherits from somf_MOrderableCollectible>New();

/* Add obj to ss */
_somfAdd(ss, ev, obj);

_somFree (ss);

Original Class
somf_TCollection (overridden here)

somf_TSortedSequence class

 303Collection Classes Reference Manual

somfAfter Method

Purpose
Gets the object found after a given object in a sorted sequence.

IDL Syntax
somf_MCollectible somfAfter (in somf_MCollectible obj);

Description
The somfAfter method returns the object found after the specified object obj in the sorted
sequence represented by the receiving object.

Parameters
receiver A pointer to an object of class somf_TSortedSequence.

ev A pointer to the Environment structure for the calling method.

obj A pointer to the somf_MCollectible object that precedes the returned obj.

Return Value
There are two possible valid return values for this method:

somf_MCollectible
A pointer to the somf_MCollectible object after obj.

SOMF_NIL The designated obj is the last object in this collection or was not found.

Example
somf_TSortedSequence ss;
<Your class which inherits from somf_MOrderableCollectible> obj;
<Your class which inherits from somf_MOrderableCollectible> objptr;
Environment *ev;

ev = somGetGlobalEnvironment();

ss = somf_TSortedSequenceNew();
obj = <Your class which inherits from
 somf_MOrderableCollectible>New();

/* Determine what object comes after obj */
objptr =
 (<Your class which inherits from somf_MOrderableCollectible>*)
 _somfAfter(ss,ev,obj);

_somFree (ss);

Original Class
somf_TSequence (overridden here)

Related Information
Methods: somfBefore, somfFirst, somfLast

somf_TSortedSequence class

 304 SOMobjects Developer Toolkit

somfAssign Method

Purpose
Assigns a sorted sequence as equal to a given source sorted sequence.

IDL Syntax
void somfAssign (in somf_TSortedSequence s);

Description
The somfAssign method assigns the sorted sequence represented by the receiving object as
equal to the specified source sorted sequence. That is, the method sets/resets the instance
variables of the receiver to the values of the source. This operation is logically equivalent to
using the “=” operator.

C cannot handle methods from different classes having the same name when they inherit the
name from different parents. Thus, if any child of somf_TSortedSequence is used with any
other main collection class, then the name of the method will have to be fully qualified (for
example: somf_TSortedSequence_somfAssign). This is the only way the linker can tell them
apart.

This is not a problem in C++. In C++ you could have referenced this method as:
 d–>somfAssign(ev, d2);

Parameters
receiver A pointer to an object of class somf_TSortedSequence.

ev A pointer to the Environment structure for the calling method.

s A pointer to the sorted sequence to which the receiver will be equal.

Return Value
None.

Example
somf_TSortedSequence s1;
somf_TSortedSequence s2;
Environment *ev;

ev = somGetGlobalEnvironment();

s1 = somf_TSortedSequenceNew();
s2 = somf_TSortedSequenceNew();

/* Add som objects to s1 */

/* Assign s2 = s1 */
somf_TSortedSequence_somfAssign(s2, ev, s1);

_somFree (s1);
_somFree (s2);

Original Class
somf_TSortedSequence

somf_TSortedSequence class

 305Collection Classes Reference Manual

somfBefore Method

Purpose
Returns the object found before a given object in a sorted sequence.

IDL Syntax
somf_MCollectible somfBefore (in somf_MCollectible obj);

Description
The somfBefore method returns the object found before the specified object obj in the sorted
sequence represented by the receiving object.

Parameters
receiver A pointer to an object of class somf_TSortedSequence.

ev A pointer to the Environment structure for the calling method.

obj A pointer to the somf_MCollectible object that is behind the returned obj.

Return Value
There are two possible valid return values for this method:

somf_MCollectible
A pointer to the somf_MCollectible object that precedes obj.

SOMF_NIL The designated obj is the first object in the sorted sequence or was not found.

Example
somf_TSortedSequence ss;
<Your class which inherits from somf_MOrderableCollectible> obj;
<Your class which inherits from somf_MOrderableCollectible> objptr;
Environment *ev;

ev = somGetGlobalEnvironment();

ss = somf_TSortedSequenceNew();
obj =
 <Your class which inherits from somf_MOrderableCollectible>New();

/* Determine what object comes before obj */
objptr =
 (<Your class which inherits from somf_MOrderableCollectible>*)
 _somfBefore(ss,ev,obj);

_somFree (ss);

Original Class
somf_TSequence (overridden here)

Related Information
Methods: somfAfter, somfFirst, somfLast

somf_TSortedSequence class

 306 SOMobjects Developer Toolkit

somfCount Method

Purpose
Gets the number of objects in a given sorted sequence.

IDL Syntax
long somfCount ();

Description
The somfCount method determines the number of objects in the sorted sequence given as the
receiving object, and returns that number.

C cannot handle methods from different classes having the same name when they inherit the
name from different parents. Thus, if any child of somf_TCollection is used with a child of
somf_THashTable, then the name of the method will have to be fully qualified (for example:
somf_TDictionary_somfCount). This is the only way the linker can tell them apart.

This is not a problem in C++. In C++ you could have referenced this method as:
 d–>somfCount(ev);

Parameters
receiver A pointer to an object of class somf_TSortedSequence.

ev A pointer to the Environment structure for the calling method.

Return Value
This method returns the number of objects in this sorted sequence.

Example
somf_TSortedSequence ss;
Environment *ev;

ev = somGetGlobalEnvironment();

ss = somf_TSortedSequenceNew();

somPrintf(”\n Count of ss= %d\n”, _somfCount(ss,ev));

_somFree (ss);

Original Class
somf_TCollection (overridden here)

somf_TSortedSequence class

 307Collection Classes Reference Manual

somfCreateIterator Method

Purpose
Returns a new iterator that is suitable for iterating over the objects in a sorted sequence.

IDL Syntax
somf_TIterator somfCreateIterator ();

Description
The somfCreateIterator method returns a new iterator that is suitable for iterating over the
objects in the sorted sequence given as the receiving object.

Note: This is one of three ways to initialize a somf_TSortedSequenceIterator to point to an
instance of a somf_TSortedSequence. One other way is to use the initializer method of
the somf_TSortedSequenceIterator class, described on page 334. The final way is to
use the somf_TSortedSequence class’s somfCreateSequenceIterator method de-
scribed on page 308.

Parameters
receiver A pointer to an object of class somf_TSortedSequence.

ev A pointer to the Environment structure for the calling method.

Return Value
This method returns a pointer to the new iterator.

Example
somf_TSortedSequence ss;
Environment *ev;
somf_TSortedSequenceIterator itr;

ev = somGetGlobalEnvironment();

ss = somf_TSortedSequenceNew();
itr = (somf_TSortedSequenceIterator*) _somfCreateIterator(ss,ev);

_somFree (ss);
_somFree (itr);

Original Class
somf_TCollection (overridden here)

Related Information
Methods: somfCreateSequenceIterator

somf_TSortedSequence class

 308 SOMobjects Developer Toolkit

somfCreateSequenceIterator Method

Purpose
Returns a new iterator that is suitable for iterating over the objects in a sorted sequence.

IDL Syntax
somf_TSequenceIterator somfCreateSequenceIterator ();

Description
The somfCreateSequenceIterator method returns a new iterator that is suitable for iterating
over the objects in the sorted sequence represented by the receiving object.

Note: This is one of three ways to initialize a somf_TSortedSequenceIterator to point to an
instance of a somf_TSortedSequence. One other way is to use the initializer method
for the somf_TSortedSequenceIterator class, described on page 334. The final way
is to use the somf_TSortedSequence class’s somfCreateIterator method described
on page 307.

This method is virtually identical to the somfCreateIterator method; thus, you could use either
one. The only difference between methods is the indicated type of their return value: the current
method returns a somf_TSequenceIterator object, whereas the somfCreateIterator method
returns a somf_TIterator object. In reality, however, both methods return an instance of a
somf_TSortedSequenceIterator that has been typed correctly.

Parameters
receiver A pointer to an object of class somf_TSortedSequence.

ev A pointer to the Environment structure for the calling method.

Return Value
This method returns a pointer to the new sorted-sequence iterator.

Example
somf_TSortedSequence ss;
Environment *ev;
somf_TSortedSequenceIterator itr;

ev = somGetGlobalEnvironment();

ss = somf_TSortedSequenceNew();
itr = (somf_TSortedSequenceIterator*)
 _somfCreateSequenceIterator(ss,ev);

_somFree (ss);
_somFree (itr);

Original Class
somf_TSortedSequence

Related Information
Methods: somfCreateIterator

somf_TSortedSequence class

 309Collection Classes Reference Manual

somfCreateSortedSequenceNode Method

Purpose
Creates a new somf_TSortedSequenceNode in a somf_TSortedSequence collection, given
a key to the new node and its left and right children.

IDL Syntax
somf_TSortedSequenceNode somfCreateSortedSequenceNode (
 in somf_TSortedSequenceNode n1,
 in somf_MOrderableCollectible obj,
 in somf_TSortedSequenceNode n2);

Description
The somfCreateSortedSequenceNode method creates a new node of class
somf_TSortedSequenceNode in the somf_TSortedSequence collection represented by the
receiving object. The method call also specifies a somf_MOrderableCollectible object to be
used as the key to the new node, as well as two somf_TSortedSequenceNode objects to be
used as the left and right children of the new node.

If you create a new class that inherits from the somf_TSortedSequence class, you might
consider overriding this method in order to customize how an instance of your new class creates
a new node.

Parameters
receiver A pointer to an object of class somf_TSortedSequence.

ev A pointer to the Environment structure for the calling method.

n1 A pointer to the left child of the new somf_TSortedSequenceNode object.

obj A pointer to the key of the new somf_TSortedSequenceNode object.

n2 A pointer to the right child of the new somf_TSortedSequenceNode object.

Return Value
This method returns a pointer to the new somf_TSortedSequenceNode created.

Original Class
somf_TSortedSequence

somf_TSortedSequence class

 310 SOMobjects Developer Toolkit

somfDeleteAll Method

Purpose
Removes all objects from a sorted sequence and deallocates the storage that these objects
might have owned. (That is, the destructor function is called for each object in the collection.)

IDL Syntax
void somfDeleteAll ();

Description
The somfDeleteAll method removes all of the objects from the sorted sequence represented
by the receiving object. The method also deallocates the storage that these objects might have
owned (that is, the destructor function is called for each object in the collection).

Be careful with somfDeleteAll. Since a collection only contains pointers to objects (rather than
the objects themselves), somfDeleteAll can cause a problem if a pointer to an object appears
more than once. For example, if multiple pointers to ‘A’ exists, or if a single pointer to ’A’ is in the
collection multiple times, the behavior of the code is undefined, because it will try to delete ‘A’
multiple times. If you think there is a chance that an object could appear in the collection more
than once, you should consider using somfRemoveAll to remove the objects from the collec-
tion and deleting them some other way.

C cannot handle methods from different classes having the same name when they inherit the
name from different parents. Thus, if any child of somf_TCollection is used with
somf_THashTable, then the name of the method will have to be fully qualified (for example:
somf_TDictionary_somfDeleteAll). This is the only way the linker can tell them apart.

This is not a problem in C++. In C++ you could have referenced this method as:
 d–>somfDeleteAll(ev);

Parameters
receiver A pointer to an object of class somf_TSortedSequence.

ev A pointer to the Environment structure for the calling method.

Return Value
None.

Example
somf_TSortedSequence ss;
Environment *ev;

ev = somGetGlobalEnvironment();

ss = somf_TSortedSequenceNew();

/* Remove all the objects from ss AND DELETE THEM */
somf_TSortedSequence_somfDeleteAll(ss,ev);

_somFree (ss);

Original Class
somf_TCollection (overridden here)

somf_TSortedSequence class

 311Collection Classes Reference Manual

somfFirst Method

Purpose
Gets the first object in a sorted sequence.

IDL Syntax
somf_MCollectible somfFirst ();

Description
The somfFirst method determines the first object in the sorted sequence represented by the
receiving object, and returns a pointer to the object.

C cannot handle methods from different classes having the same name when they inherit the
name from different parents. somfFirst is a method name declared in multiple parents (for
example: somf_TSequence, somf_TIterator, etc.). You will probably have to fully qualify the
method name (for example: somf_TSortedSequence_somfFirst). This is the only way the
linker can tell them apart.

This is not a problem in C++. In C++ you could have referenced this method as:
 seq–>somfFirst(ev);

Parameters
receiver A pointer to an object of class somf_TSortedSequence.

ev A pointer to the Environment structure for the calling method.

Return Value
There are two possible valid return values for this method:

somf_MCollectible
A pointer to the first somf_MCollectible object in the sorted sequence.

SOMF_NIL Nothing is in the collection.

Example
somf_TSortedSequence ss;
Environment *ev;
somf_MOrderableCollectible obj;

ev = somGetGlobalEnvironment();

ss = somf_TSortedSequenceNew();

/* Determine the first object in ss */
obj = somf_TSortedSequence_somfFirst(ss,ev);

_somFree (ss);

Original Class
somf_TSequence (overridden here)

Related Information
Methods: somfLast, somfAfter, somfBefore

somf_TSortedSequence class

 312 SOMobjects Developer Toolkit

somfGetSequencingFunction Method

Purpose
Gets a pointer to the function used to compare objects in a sorted sequence, and consequently
determines the sequence of the collection.

IDL Syntax
somf_MBetterOrderableCompareFn somfGetSequencingFunction ();

Description
The somfGetSequencingFunction method returns a pointer to the function used to compare
objects in the sorted sequence represented by the receiving object. This consequently reveals
the sequence of the collection.

Parameters
receiver A pointer to an object of class somf_TSortedSequence.

ev A pointer to the Environment structure for the calling method.

Return Value
This method returns a pointer to the compare method used by this somf_TSortedSequence

object.

Example
somf_TSortedSequence ss;
Environment *ev;

ev = somGetGlobalEnvironment();

ss = somf_TSortedSequenceNew();

if (_somfGetSequencingFunction(ss,ev) !=
 somf_MOrderableCollectibleClassData.somfCompare)
{
 somPrintf(”\n What Compare Function are we using?\n”);
}

_somFree (ss);

Original Class
somf_TSortedSequence

Related Information
Methods: somfSetSequencingFunction

somf_TSortedSequence class

 313Collection Classes Reference Manual

somfLast Method

Purpose
Gets the last object in a sorted sequence.

IDL Syntax
somf_MCollectible somfLast ();

Description
The somfLast method determines the last object in the sorted sequence represented by the
receiving object, and returns a pointer to it.

C cannot handle methods from different classes having the same name when they inherit the
name from different parents. somfLast is a method name declared in multiple parents (for
example: somf_TSequenceIterator, somf_TSequence, etc.). You will probably have to fully
qualify the method name (for example: somf_TSortedSequence_somfLast). This is the only
way the linker can tell them apart.

This is not a problem in C++. In C++ you could have referenced this method as:
 seq–>somfLast(ev);

Parameters
receiver A pointer to an object of class somf_TSortedSequence.

ev A pointer to the Environment structure for the calling method.

Return Value
There are two possible valid return values for this method:

somf_MCollectible
A pointer to the last somf_MCollectible object in the collection.

SOMF_NIL Nothing is in the collection.

Example
somf_TSortedSequence ss;
Environment *ev;
somf_MOrderableCollectible obj;

ev = somGetGlobalEnvironment();

ss = somf_TSortedSequenceNew();

/* Determine the last object in ss */
obj = somf_TSortedSequence_somfLast(ss,ev);

_somFree (ss);

Original Class
somf_TSequence (overridden here)

Related Information
Methods: somfFirst, somfAfter, somfBefore

somf_TSortedSequence class

 314 SOMobjects Developer Toolkit

somfMember Method

Purpose
Gets an object in a sorted sequence.

IDL Syntax
somf_MCollectible somfMember (in somf_MCollectible obj);

Description
The somfMember method determines whether a specified object obj is in the sorted sequence
represented by the receiving object and, if found, returns a pointer to it.

C cannot handle methods from different classes having the same name when they inherit the
name from different parents. Thus, if any child of somf_TCollection is used with
somf_THashTable, then the name of the method will have to be fully qualified (for example:
somf_TSortedSequence_somfMember). This is the only way the linker can tell them apart.

This is not a problem in C++. In C++ you could have referenced this method as:
 d–>somfMember(ev, obj);

Parameters
receiver A pointer to an object of class somf_TSortedSequence.

ev A pointer to the Environment structure for the calling method.

obj A pointer to the somf_MCollectible object that may or may not be a member
of the collection.

Return Value
There are two possible valid return values for this method:

somf_MCollectible
A pointer to the object the method determined as a member of the collection.

SOMF_NIL The object was not found.

Example
somf_TSortedSequence ss;
<your Class which inherits from somf_MOrderableCollectible> obj;
Environment *ev;

ev = somGetGlobalEnvironment();

ss = somf_TSortedSequenceNew();
obj =
 <your Class which inherits from somf_MOrderableCollectible>New();

_somfAdd(ss, ev, obj);

if (_somfMember(ss, ev, obj) != SOMF_NIL)
 somPrintf(”\n obj is a Member\n”);
else
 somPrintf(”\n ERROR: obj should be a Member\n”);

_somFree (ss);
_somFree (obj);

somf_TSortedSequence class

 315Collection Classes Reference Manual

Original Class
somf_TCollection (overridden here)

Related Information
Methods: somfOccurrencesOf

somf_TSortedSequence class

 316 SOMobjects Developer Toolkit

somfOccurrencesOf Method

Purpose
Determines the number of times an object is in a sorted sequence.

IDL Syntax
long somfOccurrencesOf (in somf_MCollectible obj);

Description
The somfOccurrencesOf method determines the number of times an object obj is in the sorted
sequence represented by the receiving object, and returns that number.

Parameters
receiver A pointer to an object of class somf_TSortedSequence

ev A pointer to the Environment structure for the calling method.

obj A pointer to the somf_MCollectible to look for in the collection.

Return Value
This method returns the number of times obj occurs in the sorted sequence.

Example
somf_TSortedSequence ss;
<your Class which inherits from somf_MOrderableCollectible> obj;
Environment *ev;

ev = somGetGlobalEnvironment();

ss = somf_TSortedSequenceNew();
obj =
 <your Class which inherits from somf_MOrderableCollectible>New();

somPrintf(”\n There are %d OccurrencesOf obj\n”,
 _somfOccurrencesOf(ss, ev, obj));

_somFree (ss);
_somFree (obj);

Original Class
somf_TSequence (overridden here)

Related Information
Methods: somfMember

somf_TSortedSequence class

 317Collection Classes Reference Manual

somfRemove Method

Purpose
Removes an object from a sorted sequence.

IDL Syntax
somf_MCollectible somfRemove (in somf_MCollectible obj);

Description
The somfRemove method removes the specified object obj from the sorted sequence repre-
sented by the receiving object.

C cannot handle methods from different classes having the same name when they inherit the
name from different parents. somfRemove is a method name declared in multiple parents (for
example: somf_TCollection, somf_THashTable, somf_TIterator, etc.) You will probably
have to fully qualify the method name (as somf_TSortedSequence_somfRemove, for exam-
ple). This is the only way the linker can tell them apart.

This is not a problem in C++. In C++ you could have referenced this method as:
 d–>somfRemove(ev, obj);

Parameters
receiver A pointer to an object of class somf_TSortedSequence.

ev A pointer to the Environment structure for the calling method.

obj A pointer to the somf_MCollectible object to be removed from the collection.

Return Value
There are two possible valid return values for this method:

somf_MCollectible
A pointer to the object that was actually removed.

SOMF_NIL The specified object was not found.

Example
somf_TSortedSequence ss;
<your Class which inherits from somf_MOrderableCollectible> obj;
Environment *ev;

ev = somGetGlobalEnvironment();

ss = somf_TSortedSequenceNew();
obj =
 <your Class which inherits from somf_MOrderableCollectible>New();

/* Remove obj from ss */
somf_TSortedSequence_somfRemove(ss,ev,obj);

_somFree (ss);
_somFree (obj);

Original Class
somf_TCollection (overridden here)

Related Information
Methods: somfRemoveAll

somf_TSortedSequence class

 318 SOMobjects Developer Toolkit

somfRemoveAll Method

Purpose
Removes all of the objects from a sorted sequence.

IDL Syntax
void somfRemoveAll ();

Description
The somfRemoveAll method removes all of the objects from the sorted sequence represented
by the receiving object.

C cannot handle methods from different classes having the same name when they inherit the
name from different parents. Thus, if any child of somf_TCollection is used with
somf_THashTable, then the name of the method will have to be fully qualified (for example:
somf_TSortedSequence_somfRemoveAll). This is the only way the linker can tell them
apart.

This is not a problem in C++. In C++ you could have referenced this method as:
 d–>somfRemoveAll(ev);

Parameters
receiver A pointer to an object of class somf_TSortedSequence.

ev A pointer to the Environment structure for the calling method.

Return Value
None.

Example
somf_TSortedSequence ss;
Environment *ev;

ev = somGetGlobalEnvironment();

ss = somf_TSortedSequenceNew();

/* Remove all the objects from ss */
somf_TSortedSequence_somfRemoveAll(ss,ev);

_somFree (ss);

Original Class
somf_TCollection (overridden here)

Related Information
Methods: somfRemove

somf_TSortedSequence class

 319Collection Classes Reference Manual

somfSetSequencingFunction Method

Purpose
Sets a pointer to the method used to compare objects in a sorted sequence, and consequently
determines the sequence of the collection.

IDL Syntax
void somfSetSequencingFunction (in somf_MBetterOrderableCompareFn fn);

Description
The somfSetSequencingFunction method sets a pointer to the method that will be used to
compare objects in the sorted sequence represented by the receiving object. This consequently
determines the sequence of the collection.

Parameters
receiver A pointer to an object of class somf_TSortedSequence.

ev A pointer to the Environment structure for the calling method.

fn A pointer to the compare method to be used by this somf_TSortedSequence
object.

This should always be set to:
 somf_MOrderableCollectibleClassData.somfCompare.
This specification is necessary because SOM needs a pointer to the original
declaration of the method, which resides in somf_MOrderableCollectible.
The somf_TSortedSequence object will use this pointer to access the
somfCompare method that was declared and defined in the object being
inserted into, or removed from, the somf_TSortedSequence object.

Return Value
None.

Example
somf_TSortedSequence ss;
Environment *ev;

ev = somGetGlobalEnvironment();

ss = somf_TSortedSequenceNew();

_somfSetSequencingFunction(ss, ev,
 somf_MOrderableCollectibleClassData.somfCompare);

_somFree (ss);

Original Class
somf_TSortedSequence

Related Information
Methods: somfGetSequencingFunction

somf_TSortedSequence class

 320 SOMobjects Developer Toolkit

somfTSortedSequenceInitF Method

Purpose
Initializes a new sorted sequence, given the comparison method that it will use.

IDL Syntax
somf_TSortedSequence somfTSortedSequenceInitF(
 in somf_MBetterOrderableCompareFn testfn);

Description
The somfTSortedSequenceInitF method initializes the new sorted sequence represented by
the receiving object, given a pointer to the compare method that the new object will use.

Note: You cannot override this method.

Parameters
receiver A pointer to an object of class somf_TSortedSequence.

ev A pointer to the Environment structure for the calling method.

testfn A pointer to the compare method to be used by this somf_TSortedSequence
object.

This should always be set to:
 somf_MOrderableCollectibleClassData.somfCompare.
This specification is necessary because SOM needs a pointer to the original
declaration of the method, which resides in somf_MOrderableCollectible.
The somf_TSortedSequence object will use this pointer to access the
somfCompare method that was declared and defined in the object being
inserted into, or removed from, the somf_TSortedSequence object.

Return Value
This method returns a pointer to an initialized somf_TSortedSequence object.

Example
somf_TSortedSequence s1;
Environment *ev;

ev = somGetGlobalEnvironment();

s1 = somf_TSortedSequenceNew();
_somfTSortedSequenceInitF(s1, ev,
 somf_MOrderableCollectibleClassData.somfCompare);

_somFree (s1);

Original Class
somf_TSortedSequence

Related Information
Methods: somfTSortedSequenceInitS

somf_TSortedSequence class

 321Collection Classes Reference Manual

somfTSortedSequenceInitS Method

Purpose
Initializes a new sorted sequence, setting it equal to another given sorted sequence.

IDL Syntax
somf_TSortedSequence somfTSortedSequenceInitS (in somf_TSortedSequence s);

Description
The somfTSortedSequenceInitS method initializes the new sorted sequence represented by
the receiving object. The method sets the new sorted sequence equal to a specified source
sorted sequence.

Note: You cannot override this method.

Parameters
receiver A pointer to an object of class somf_TSortedSequence.

ev A pointer to the Environment structure for the calling method.

s A pointer to the somf_TSortedSequence object to which the new sorted
sequence will be equal.

Return Value
This method returns a pointer to an initialized somf_TSortedSequence object.

Example
somf_TSortedSequence s1;
somf_TSortedSequence s2;
Environment *ev;

ev = somGetGlobalEnvironment();

s1 = somf_TSortedSequenceNew();
s2 = somf_TSortedSequenceNew();
_somfTSortedSequenceInitS(s2, ev, s1);

_somFree (s1);
_somFree (s2);

Original Class
somf_TSortedSequence

Related Information
Methods: somfTSortedSequenceInitF

somf_TSortedSequenceIterator class

 322 SOMobjects Developer Toolkit

somf_TSortedSequenceIterator Class

Description
This class defines an iterator for the somf_TSortedSequence class that will iterate over all of
the objects in a sorted sequence.

When you link, include the following library reference to get access to this class: somtk

Although the methods in this class are reentrant, the class is not thread-safe on multi-thread
applications. If a pointer to an instance of this class will be passed to multiple threads, the code
in those threads must guarantee thread-safe usage of the class.

File Stem
tssitr

Base
somf_TSequenceIterator

Metaclass
SOMClass

Ancestor Classes
somf_TSequenceIterator, somf_TIterator, SOMObject

New Methods
somfStartHere
somfTSortedSequenceIteratorInit

Overriding Methods
somfFirst
somfNext
somfLast
somfPrevious
somfRemove

somf_TSortedSequenceIterator class

 323Collection Classes Reference Manual

somfFirst Method

Purpose
Resets the iterator and returns the first object of a sorted sequence.

IDL Syntax
somf_MCollectible somfFirst ();

Description
The somfFirst method resets the somf_TSortedSequenceIterator iterator given as the
receiving object. The method also returns the first object of the somf_TSortedSequence
collection that corresponds to the specified iterator.

This method resets the iterator to the beginning of the sorted sequence. This is true not only the
first time the iterator is used; it is also true if other operations on the collection cause the iterator
to be invalidated. In the second case, this method also revalidates the iterator.

C cannot handle methods from different classes having the same name when they inherit the
name from different parents. somfFirst is a method name declared in multiple parents (for
example: somf_TSequence, somf_TIterator, etc.). You will probably have to fully qualify the
method name (for example: somf_TSortedSequenceIterator_somfFirst). This is the only
way the linker can tell them apart.

This is not a problem in C++. In C++ you could have referenced this method as:
 itr–>somfFirst(ev);

Parameters
receiver A pointer to an object of class somf_TSortedSequenceIterator.

ev A pointer to the Environment structure for the calling method.

Return Value
This method returns a pointer to the first somf_MCollectible object in the sorted sequence. Or,
SOMF_NIL is returned if the collection is empty.

Example
somf_TSortedSequence ss;
Environment *ev;
somf_TSortedSequenceIterator itr;
<Your class which inherits from somf_MOrderableCollectible> itrobj;

ev = somGetGlobalEnvironment();

ss = somf_TSortedSequenceNew();
itr = somf_TSortedSequenceIteratorNew();
_somfTSortedSequenceIteratorInit(itr, ev, ss);

/* Iterate through the TSortedSequence */
itrobj =
 (<Your class which inherits from somf_MOrderableCollectible>*)
 somf_TSortedSequenceIterator_somfFirst(itr,ev);
while (itrobj != SOMF_NIL)
{
 /* Do something with itrobj */

somf_TSortedSequenceIterator class

 324 SOMobjects Developer Toolkit

 itrobj =
 (<Your class which inherits from somf_MOrderableCollectible>*)
 _somfNext(itr,ev);
}

_somFree (ss);
_somFree (itr);

Original Class
somf_TIterator (overridden here)

Related Information
Methods: somfNext, somfStartHere

somf_TSortedSequenceIterator class

 325Collection Classes Reference Manual

somfLast Method

Purpose
Gets the last object in a sorted sequence.

IDL Syntax
somf_MCollectible somfLast ();

Description
The somfLast method determines the last object in the somf_TSortedSequence collection
that corresponds to the somf_TSortedSequenceIterator iterator used as the receiving object.

C cannot handle methods from different classes having the same name when they inherit the
name from different parents. somfLast is a method name declared in multiple parents (for
example: somf_TSequenceIterator, somf_TSequence, etc.). You will probably have to fully
qualify the method name (for example: somf_TSortedSequenceIterator_somfLast). This is
the only way the linker can tell them apart.

This is not a problem in C++. In C++ you could have referenced this method as:
 itr–>somfLast(ev);

Parameters
receiver A pointer to an object of class somf_TSortedSequenceIterator.

ev A pointer to the Environment structure for the calling method.

Return Value
This method returns a pointer to the last somf_MCollectible object in the sorted sequence. Or,
SOMF_NIL is returned if the collection is empty.

Example
somf_TSortedSequence ss;
Environment *ev;
somf_TSortedSequenceIterator itr;
<Your class which inherits from somf_MOrderableCollectible> itrobj;

ev = somGetGlobalEnvironment();

ss = somf_TSortedSequenceNew();
itr = somf_TSortedSequenceIteratorNew();
_somfTSortedSequenceIteratorInit(itr, ev, ss);

/* Go to the last object in ss */
itrobj =
 (<Your class which inherits from somf_MOrderableCollectible>*)
 somf_TSortedSequenceIterator_somfLast(itr,ev);

_somFree (ss);
_somFree (itr);

Original Class
somf_TSequenceIterator (overridden here)

Related Information
Methods: somfPrevious

somf_TSortedSequenceIterator class

 326 SOMobjects Developer Toolkit

somfNext Method

Purpose
Gets the next object in a sorted sequence.

IDL Syntax
somf_MCollectible somfNext ();

Description
The somfNext method determines the next object in the somf_TSortedSequence collection
that corresponds to the somf_TSortedSequenceIterator iterator used as the receiving object,
and returns a pointer to it. Objects are retrieved in an order that reflects the “ordered–ness” of
the sorted sequence (or the lack of ordering on the sorted sequence objects).

If the somf_TSortedSequence collection has changed (other than through the use of the
somfRemove method of this iterator) since the last time the somfFirst method was called, the
iterator becomes invalid and will fail if asked to find the next object. For example, if the
collection’s somfAdd method were called after starting to iterate through the collection, the
iterator then would not allow iteration to continue. The iterator must be reset, and the easiest
way to do that is to call the iterator’s somfFirst method and start over.

C cannot handle methods from different classes having the same name when they inherit the
name from different parents. Thus, if any child of somf_TIterator is used with a child of
somf_TPrimitiveLinkedListIterator, then the name of the method will have to be fully qualified
(for example: somf_TSortedSequenceIterator_somfNext). This is the only way the linker
can tell them apart.

This is not a problem in C++. In C++ you could have referenced this method as:
 itr–>somfNext(ev);

Parameters
receiver A pointer to an object of class somf_TSortedSequenceIterator.

ev A pointer to the Environment structure for the calling method.

Return Value
There are two possible valid return values for this method:

somf_MCollectible
A pointer to the next somf_MCollectible object in the sorted sequence.

SOMF_NIL The end of the collection has been reached.

Example
somf_TSortedSequence ss;
Environment *ev;
somf_TSortedSequenceIterator itr;
<Your class which inherits from somf_MOrderableCollectible> itrobj;

ev = somGetGlobalEnvironment();

ss = somf_TSortedSequenceNew();
itr = somf_TSortedSequenceIteratorNew();
_somfTSortedSequenceIteratorInit(itr, ev, ss);

somf_TSortedSequenceIterator class

 327Collection Classes Reference Manual

/* Iterate through the TSortedSequence */
itrobj =
 (<Your class which inherits from somf_MOrderableCollectible>*)
 somf_TSortedSequenceIterator_somfFirst(itr,ev);
while (itrobj != SOMF_NIL)
{
 /* Do something with itrobj */

 itrobj =
 (<Your class which inherits from somf_MOrderableCollectible>*)
 _somfNext(itr,ev);
}

_somFree (ss);
_somFree (itr);

Original Class
somf_TIterator (overridden here)

Related Information
Methods: somfFirst, somfStartHere

somf_TSortedSequenceIterator class

 328 SOMobjects Developer Toolkit

somfPrevious Method

Purpose
Gets the previous object in a sorted sequence.

IDL Syntax
somf_MCollectible somfPrevious ();

Description
The somfPrevious method determines the previous object in the somf_TSortedSequence
collection that corresponds to the somf_TSortedSequenceIterator iterator used as the re-
ceiving object, and returns a pointer to it.

If the somf_TSortedSequence collection has changed (other than through the use of the
somfRemove method of this iterator) since the last time the somfLast method was called, the
iterator becomes invalid and will fail if asked to find the previous object. For example, if the
collection’s somfAdd method were called after starting to iterate through the collection, the
iterator then would not allow iteration to continue. The iterator must be reset, and the easiest
way to do that is to call the iterator’s somfLast method and start over.

C cannot handle methods from different classes having the same name when they inherit the
name from different parents. Thus, if any child of somf_TSequenceIterator is used with
somf_TPrimitiveLinkedListIterator, then the name of the method will have to be fully qualified
(for example: somf_TSortedSequenceIterator_somfPrevious). This is the only way the
linker can tell them apart.

This is not a problem in C++. In C++ you could have referenced this method as:
 itr–>somfPrevious(ev);

Parameters
receiver A pointer to an object of class somf_TSortedSequenceIterator.

ev A pointer to the Environment structure for the calling method.

Return Value
There are two possible valid return values for this method:

somf_MCollectible
A pointer to the previous object in the sorted sequence collection.

SOMF_NIL The beginning of the collection has been reached.

Example
somf_TSortedSequence ss;
Environment *ev;
somf_TSortedSequenceIterator itr;
<Your class which inherits from somf_MOrderableCollectible> itrobj;

ev = somGetGlobalEnvironment();

ss = somf_TSortedSequenceNew();
itr = somf_TSortedSequenceIteratorNew();
_somfTSortedSequenceIteratorInit(itr, ev, ss);

somf_TSortedSequenceIterator class

 329Collection Classes Reference Manual

/* Go to the next to the last object in ss */
somf_TSortedSequenceIterator_somfLast(itr,ev);
itrobj =
 (<Your class which inherits from somf_MOrderableCollectible>*)
 _somfPrevious(itr,ev);

_somFree (ss);
_somFree (itr);

Original Class
somf_TSequenceIterator (overridden here)

Related Information
Methods: somfLast

somf_TSortedSequenceIterator class

 330 SOMobjects Developer Toolkit

somfRemove Method

Purpose
Removes the current object (the one just returned by a somfFirst or somfNext method) from a
sorted sequence.

IDL Syntax
void somfRemove ();

Description
The somfRemove method removes the current object (the one just returned by somfFirst,
somfNext, somfLast, or somfPrevious) from the sorted sequence represented by the receiv-
ing object.

The somfRemove method is the only way to remove an object from a sorted sequence during
iteration. However, if multiple iterators are in process, all other iterators are invalidated, just as if
some other kind of change had occurred in the sorted sequence.

If the collection has changed (other than through the use of the somfRemove method of this
iterator) since the last time somfFirst or somfLast was called, this method will fail.

C cannot handle methods from different classes having the same name when they inherit the
name from different parents. somfRemove is a method name declared in multiple parents (for
example: somf_TCollection, somf_THashTable, somf_TIterator, etc.) You will probably
have to fully qualify the method name (as somf_TSortedSequenceIterator_somfRemove,
for example). This is the only way the linker can tell them apart.

This is not a problem in C++. In C++ you could have referenced this method as:
 itr–>somfRemove(ev);

Parameters
receiver A pointer to an object of class somf_TSortedSequenceIterator.

ev A pointer to the Environment structure for the calling method.

Return Value
None.

Example
somf_TSortedSequence ss;
Environment *ev;
somf_TSortedSequenceIterator itr;
<Your class which inherits from somf_MOrderableCollectible> itrobj;

ev = somGetGlobalEnvironment();

ss = somf_TSortedSequenceNew();
itr = somf_TSortedSequenceIteratorNew();
_somfTSortedSequenceIteratorInit(itr, ev, ss);

/* Use the Iterator’s Remove to remove the next to the last object
*/
itrobj =
 (<Your class which inherits from somf_MOrderableCollectible>*)
 somf_TSortedSequenceIterator_somfLast(itr,ev);

somf_TSortedSequenceIterator class

 331Collection Classes Reference Manual

itrobj =
 (<Your class which inherits from somf_MOrderableCollectible>*)
 _somfPrevious(itr,ev);
somf_TSortedSequenceIterator_somfRemove(itr,ev);

_somFree (ss);
_somFree (itr);

Original Class
somf_TIterator (overridden here)

somf_TSortedSequenceIterator class

 332 SOMobjects Developer Toolkit

somfStartHere Method

Purpose
Begins Iterating through a somf_TSortedSequence, starting at a given object obj, rather than
at the front of the collection.

IDL Syntax
somf_MOrderableCollectible somfStartHere (in somf_MOrderableCollectible obj);

Description
The somfStartHere method begins Iterating through a somf_TSortedSequence collection
that corresponds to the somf_TSortedSequenceIterator iterator used as the receiving object.
Iteration begins at the given object obj, rather than at the front of the collection.

Parameters
receiver A pointer to an object of class somf_TSortedSequenceIterator.

ev A pointer to the Environment structure for the calling method.

obj A pointer to the somf_MOrderableCollectible object where iteration will
begin.

Return Value
This method returns a pointer to the somf_MCollectible object where iteration started. Or,
SOMF_NIL is returned if the collection is empty.

Example
somf_TSortedSequence ss;
Environment *ev;
somf_TSortedSequenceIterator itr;
<Your Class that inherits from somf_MOrderableCollectible> obj;
<Your class which inherits from somf_MOrderableCollectible> itrobj;

ev = somGetGlobalEnvironment();

ss = somf_TSortedSequenceNew();
obj = <Your Class that inherits from somf_MOrderableCollectible>New();
itr = somf_TSortedSequenceIteratorNew();
_somfTSortedSequenceIteratorInit(itr, ev, ss);

/* Iterate through the TSortedSequence starting at obj */
itrobj =
 (<Your class which inherits from somf_MOrderableCollectible>*)
 _somfStartHere(itr,ev,obj);
while (itrobj != SOMF_NIL)
{
 /* Do something with itrobj */

 itrobj =
 (<Your class which inherits from somf_MOrderableCollectible>*)
 _somfNext(itr,ev);
}

_somFree (ss);
_somFree (itr);

somf_TSortedSequenceIterator class

 333Collection Classes Reference Manual

Original Class
somf_TSortedSequenceIterator

Related Information
Methods: somfFirst, somfNext

somf_TSortedSequenceIterator class

 334 SOMobjects Developer Toolkit

somfTSortedSequenceIteratorInit Method

Purpose
Initializes a new somf_TSortedSequenceIterator object, given the somf_TSortedSequence
collection over which it will iterate.

IDL Syntax
somf_TSortedSequenceIterator somfTSortedSequenceIteratorInit (
 in somf_TSortedSequence h);

Description
The somfTSortedSequenceIteratorInit method initializes a somf_TSortedSequenceIterator
iterator, given the somf_TSortedSequence object over which iteration is needed.

Note: This is one of three ways to initialize a somf_TSortedSequenceIterator to point to
an instance of a somf_TSortedSequence. One other way is to use the
somf_TSortedSequence class’s somfCreateSequenceIterator method described
on page 308. The final way is to use somf_TSortedSequence’s somfCreateIterator
method described on page 307.

Note: You cannot override this method.

Parameters
receiver A pointer to an object of class somf_TSortedSequenceIterator.

ev A pointer to the Environment structure for the calling method.

h A pointer to the sorted sequence that the receiving object will iterate over.

Return Value
This method returns a pointer to an initialized somf_TSortedSequenceIterator object.

Example
somf_TSortedSequence ss;
Environment *ev;
somf_TSortedSequenceIterator itr;

ev = somGetGlobalEnvironment();

ss = somf_TSortedSequenceNew();
itr = somf_TSortedSequenceIteratorNew();
_somfTSortedSequenceIteratorInit(itr, ev, ss);

_somFree (ss);
_somFree (itr);

Original Class
somf_TSortedSequenceIterator

somf_TSortedSequenceNode class

 335Collection Classes Reference Manual

somf_TSortedSequenceNode Class
Description

The somf_TSortedSequenceNode class defines a node in a tree. Objects inserted into a node
must be of the somf_MOrderableCollectible class. Each node contains a key (the
somf_MOrderableCollectible object) and links to a left child and a right child. An object of
class somf_TSortedSequenceNode is used (transparently) by the somf_TSortedSequence
class for each node of a sorted sequence collection. The somf_TSortedSequenceNode
object provides the “linkability” (that is, the left and right links) to its two adjacent nodes in the
collection.

The somf_TSortedSequenceNode class and methods will probably be of interest to program-
mers only in two situations: (a) if you are creating a new class that needs linkable nodes
between objects of the class, or (b) if you are creating a new class that inherits from
somf_TSortedSequence, and it would be appropriate to override some method(s) of the
somf_TSortedSequence class to define additional functionality for those methods.

When you link, include the following library reference to get access to this class: somtk

This class is not thread-safe. Even if you put semaphores around your calls to this class’s
methods, different tasks should not be setting the values of the node. That situation is too prone
to having multiple tasks setting conflicting values, leaving the instance in an unacceptable state.

This class is reentrant.

File Stem
tssnode

Base
SOMObject

Metaclass
SOMClass

Ancestor Classes
SOMObject

New Methods
somfGetLeftChild
somfGetRightChild
somfGetParent
somfGetKey
somfGetRed
somfSetParent
somfSetLeftChild
somfSetRightChild
somfSetKey
somfSetRed
somfSetRedOn
somfTSortedSequenceNodeInitTMT
somfTSortedSequenceNodeInitTM
somfTSortedSequenceNodeInitT

Overriding Methods
somInit

somf_TSortedSequenceNode class

 336 SOMobjects Developer Toolkit

somfGetKey Method

Purpose
Gets the key to a node.

IDL Syntax
somf_MOrderableCollectible somfGetKey ();

Description
The somfGetKey method determines the key to the node represented by the receiving object,
and returns a pointer to the key.

Note: You cannot override this method.

Parameters
receiver A pointer to an object of class somf_TSortedSequenceNode.

ev A pointer to the Environment structure for the calling method.

Return Value
This method returns a pointer to the somf_MOrderableCollectible key.

Original Class
somf_TSortedSequenceNode

Related Information
Methods: somfSetKey

somf_TSortedSequenceNode class

 337Collection Classes Reference Manual

somfGetLeftChild Method

Purpose
Gets the left child of a node.

IDL Syntax
somf_TSortedSequenceNode somfGetLeftChild ();

Description
The somfGetLeftChild method determines the left child of the node represented by the
receiving object, and returns a pointer to the node.

Note: You cannot override this method.

Parameters
receiver A pointer to an object of class somf_TSortedSequenceNode.

ev A pointer to the Environment structure for the calling method.

Return Value
This method returns a pointer to the left child of the node.

Original Class
somf_TSortedSequenceNode

Related Information
Methods: somfSetLeftChild

somf_TSortedSequenceNode class

 338 SOMobjects Developer Toolkit

somfGetParent Method

Purpose
Gets the parent of a node.

IDL Syntax
somf_TSortedSequenceNode somfGetParent ();

Description
The somfGetParent method determines the parent of the node represented by the receiving
object, and returns a pointer to the parent.

Note: You cannot override this method.

Parameters
receiver A pointer to an object of class somf_TSortedSequenceNode.

ev A pointer to the Environment structure for the calling method.

Return Value
This method returns a pointer to the parent of the node.

Original Class
somf_TSortedSequenceNode

Related Information
Methods: somfSetParent

somf_TSortedSequenceNode class

 339Collection Classes Reference Manual

somfGetRed Method

Purpose
Determines whether a node is red or black.

IDL Syntax
boolean somfGetRed ();

Description
The somfGetRed method determines whether the node represented by the receiving object is
red or black. Note: For a discussion of Red–Black Trees, you can refer to Algorithms in C++ by
Robert Sedgewick (Addison–Wesley Publishing Company, 1992).

Note: You cannot override this method.

Parameters
receiver A pointer to an object of class somf_TSortedSequenceNode.

ev A pointer to the Environment structure for the calling method.

Return Value
There are two possible valid return values for this method:

TRUE The node is red.

FALSE The node is black.

Original Class
somf_TSortedSequenceNode

Related Information
Methods: somfSetRed, somfSetRedOn

somf_TSortedSequenceNode class

 340 SOMobjects Developer Toolkit

somfGetRightChild Method

Purpose
Gets the right child of a node.

IDL Syntax
somf_TSortedSequenceNode somfGetRightChild ();

Description
The somfGetRightChild method determines the right child of the node represented by the
receiving object, and returns a pointer to the node.

Note: You cannot override this method.

Parameters
receiver A pointer to an object of class somf_TSortedSequenceNode.

ev A pointer to the Environment structure for the calling method.

Return Value
This method returns the pointer to the right child of the node.

Original Class
somf_TSortedSequenceNode

Related Information
Methods: somfSetRightChild

somf_TSortedSequenceNode class

 341Collection Classes Reference Manual

somfSetKey Method

Purpose
Sets the key to a node, given a pointer to a key object.

IDL Syntax
void somfSetKey (in somf_MOrderableCollectible k);

Description
The somfSetKey method sets the key to the node represented by the receiving object, given a
pointer to a somf_MOrderableCollectible object to be used as the key.

Note: You cannot override this method.

Parameters
receiver A pointer to an object of class somf_TSortedSequenceNode.

ev A pointer to the Environment structure for the calling method.

k A pointer to the somf_MOrderableCollectible key.

Return Value
None.

Original Class
somf_TSortedSequenceNode

Related Information
Methods: somfGetKey

somf_TSortedSequenceNode class

 342 SOMobjects Developer Toolkit

somfSetLeftChild Method

Purpose
Sets the left child of a node, given a pointer to an object that will be the left child.

IDL Syntax
void somfSetLeftChild (in somf_TSortedSequenceNode n);

Description
The somfSetLeftChild method sets the left child of the node represented by the receiving
object, given a pointer to the somf_TSortedSequenceNode object to be used as the left child.

Note: You cannot override this method.

Parameters
receiver A pointer to an object of class somf_TSortedSequenceNode.

ev A pointer to the Environment structure for the calling method.

n A pointer to the left child of the node.

Return Value
None.

Original Class
somf_TSortedSequenceNode

Related Information
Methods: somfGetLeftChild

somf_TSortedSequenceNode class

 343Collection Classes Reference Manual

somfSetParent Method

Purpose
Sets the parent of a node, given an object to be used as the parent node.

IDL Syntax
void somfSetParent (in somf_TSortedSequenceNode n);

Description
The somfSetParent method sets the parent of the node represented by the receiving object,
given a pointer to the somf_TSortedSequenceNode object to be used as the parent.

Note: You cannot override this method.

Parameters
receiver A pointer to an object of class somf_TSortedSequenceNode.

ev A pointer to the Environment structure for the calling method.

n A pointer to the parent node of the receiving-object node.

Return Value
None.

Original Class
somf_TSortedSequenceNode

Related Information
Methods: somfGetParent

somf_TSortedSequenceNode class

 344 SOMobjects Developer Toolkit

somfSetRed Method

Purpose
Sets a node to red or black.

IDL Syntax
void somfSetRed (in boolean on);

Description
The somfSetRed method sets the node represented by the receiving object to either red or
black, as determined by the boolean argument. Note: For a discussion of Red–Black Trees, you
can refer to Algorithms in C++ by Robert Sedgewick (Addison–Wesley Publishing Company,
1992).

Note: You cannot override this method.

Parameters
receiver A pointer to an object of class somf_TSortedSequenceNode

ev A pointer to the Environment structure for the calling method.

on One of these two choices:
TRUE The node is red;
FALSE The node is black.

Return Value
None.

Original Class
somf_TSortedSequenceNode

Related Information
Methods: somfSetRedOn, somfGetRed

somf_TSortedSequenceNode class

 345Collection Classes Reference Manual

somfSetRedOn Method

Purpose
Sets a node to red.

IDL Syntax
void somfSetRedOn ();

Description
The somfSetRedOn method sets the node represented by the receiving object to red, uncondi-
tionally. Note: For a discussion of Red–Black Trees, you can refer to Algorithms in C++ by
Robert Sedgewick (Addison–Wesley Publishing Company, 1992).

Note: You cannot override this method.

Parameters
receiver A pointer to an object of class somf_TSortedSequenceNode.

ev A pointer to the Environment structure for the calling method.

Return Value
None.

Original Class
somf_TSortedSequenceNode

Related Information
Methods: somfSetRed, somfGetRed

somf_TSortedSequenceNode class

 346 SOMobjects Developer Toolkit

somfSetRightChild Method

Purpose
Sets the right child of a node, given a pointer to an object that will be the right child.

IDL Syntax
void somfSetRightChild (in somf_TSortedSequenceNode n);

Description
The somfSetRightChild method sets the right child of the node represented by the receiving
object, given a pointer to the somf_TSortedSequenceNode object to be used as the right
child.

Note: You cannot override this method.

Parameters
receiver A pointer to an object of class somf_TSortedSequenceNode.

ev A pointer to the Environment structure for the calling method.

n A pointer to the right child of the node.

Return Value
None.

Original Class
somf_TSortedSequenceNode

Related Information
Methods: somfGetRightChild

somf_TSortedSequenceNode class

 347Collection Classes Reference Manual

somfTSortedSequenceNodeInitT Method

Purpose
Initializes a new somf_TSortedSequenceNode node, given its left child.

IDL Syntax
somf_TSortedSequenceNode somfTSortedSequenceNodeInitT (
 in somf_TSortedSequenceNode n1);

Description
The somfTSortedSequenceNodeInitT method initializes the new node represented by the
receiving object (a somf_TSortedSequenceNode object). The method call also specifies a
somf_TSortedSequenceNode object to be used as the left child of the new node.

Note: You cannot override this method.

Parameters
receiver A pointer to an object of class somf_TSortedSequenceNode.

ev A pointer to the Environment structure for the calling method.

n1 A pointer to the left child of the new somf_TSortedSequenceNode object.

Return Value
This method returns a pointer to an initialized somf_TSortedSequenceNode object.

Original Class
somf_TSortedSequenceNode

Related Information
Methods: somfTSortedSequenceNodeInitTMT, somfTSortedSequenceNodeInitTM

somf_TSortedSequenceNode class

 348 SOMobjects Developer Toolkit

somfTSortedSequenceNodeInitTM Method

Purpose
Initializes a new somf_TSortedSequenceNode node, given its left child and a key to the new
node.

IDL Syntax
somf_TSortedSequenceNode somfTSortedSequenceNodeInitTM (
 in somf_TSortedSequenceNode n1,
 in somf_MOrderableCollectible obj);

Description
The somfTSortedSequenceNodeInitTM method initializes the new node represented by the
receiving object (a somf_TSortedSequenceNode object). The method call also specifies a
somf_TSortedSequenceNode object to be used as the left child of the new node, and a
somf_MOrderableCollectible object to be used as the key to the new node.

Note: You cannot override this method.

Parameters
receiver A pointer to an object of class somf_TSortedSequenceNode.

ev A pointer to the Environment structure for the calling method.

n1 A pointer to the left child of the new somf_TSortedSequenceNode object.

obj A pointer to the key of the new somf_TSortedSequenceNode object.

Return Value
This method returns a pointer to an initialized somf_TSortedSequenceNode object.

Original Class
somf_TSortedSequenceNode

Related Information
Methods: somfTSortedSequenceNodeInitTMT, somfTSortedSequenceNodeInitT

somf_TSortedSequenceNode class

 349Collection Classes Reference Manual

somfTSortedSequenceNodeInitTMT Method

Purpose
Initializes a new somf_TSortedSequenceNode node, given a key to the new node and its left
and right children.

IDL Syntax
somf_TSortedSequenceNode somfTSortedSequenceNodeInitTMT (
 in somf_TSortedSequenceNode n1,
 in somf_MOrderableCollectible obj,
 in somf_TSortedSequenceNode n2);

Description
The somfTSortedSequenceNodeInitTMT method initializes the new node represented by the
receiving object (a somf_TSortedSequenceNode object). The method call also specifies a
somf_MOrderableCollectible object to be used as the key to the new node, as well as two
somf_TSortedSequenceNode objects to be used as the left and right children of the new
node.

Note: You cannot override this method.

Parameters
receiver A pointer to an object of class somf_TSortedSequenceNode.

ev A pointer to the Environment structure for the calling method.

n1 A pointer to the left child of the new somf_TSortedSequenceNode object.

obj A pointer to the key of the new somf_TSortedSequenceNode object.

n2 A pointer to the right child of the new somf_TSortedSequenceNode object.

Return Value
This method returns a pointer to an initialized somf_TSortedSequenceNode object.

Original Class
somf_TSortedSequenceNode

Related Information
Methods: somfTSortedSequenceNodeInitTM, somfTSortedSequenceNodeInitT

 350 SOMobjects Developer Toolkit

351Collection Classes Reference Manual

�����

�
Abstract classes, 3

somf_TCollection class, 46
somf_TIterator class, 195
somf_TSequence class, 247
somf_TSequenceIterator class, 260

�
Collection classes, 1

basics of, 1
categories, 1, 10

Abstract classes, 3
Iterator classes, 6
Main collection classes, 4
Mixin classes, 7
Supporting classes, 8

class inheritance vs. element inheritance, 2
class requirements of inserted objects, 7
inheritance hierarchy, 9
initializer methods, 2
IsSame vs. IsEqual comparisons, 1
main collection classes selection chart, 5
naming methods, 2
somf_MCollectible class, 11

somfClone method, 13
somfClonePointer method, 14
somfHash method, 15
somfIsEqual method, 16
somfIsNotEqual method, 17
somfIsSame method, 18

somf_MLinkable class, 19
somfGetNext method, 20
somfGetPrevious method, 21
somfMLinkableInit method, 22
somfSetNext method, 23
somfSetPrevious method, 24

somf_MOrderableCollectible class, 25
somfCompare method, 27
somfIsGreaterThan method, 29
somfIsGreaterThanOrEqualTo method, 30
somfIsLessThan method, 31
somfIsLessThanOrEqualTo method, 32

somf_TAssoc class, 33
somfGetKey method, 34
somfGetValue method, 35
somfSetKey method, 36
somfSetValue method, 37
somfTAssocInitM method, 38
somfTAssocInitMM method, 39

somf_TCollectibleLong class, 40
somfGetValue method, 41
somfHash method, 42
somfIsEqual method, 43
somfSetValue method, 44
somfTCollectibleLongInit method, 45

Collection classes (cont’d.)
somf_TCollection class, 46

somfAdd method, 47
somfAddAll method, 48
somfCount method, 49
somfCreateIterator method, 50
somfDeleteAll method, 51
somfIsEqual method, 52
somfMember method, 53
somfRemove method, 54
somfRemoveAll method, 55
somfSetTestFunction method, 56
somfTCollectionInit, 57
somfTestFunction method, 58

somf_TDeque class, 59
somfAdd method, 61
somfAddAfter method, 62
somfAddBefore method, 63
somfAddFirst method, 64
somfAddLast method, 65
somfAfter method, 66
somfAssign method, 67
somfBefore method, 68
somfCount method, 69
somfCreateIterator method, 70
somfCreateNewLink method, 71
somfCreateSequenceIterator method, 72
somfDeleteAll method, 73
somfFirst method, 74
somfInsert method, 75
somfLast method, 76
somfMember method, 77
somfPop method, 78
somfPush method, 79
somfRemove method, 80
somfRemoveAll method, 81
somfRemoveFirst method, 82
somfRemoveLast method, 83
somfRemoveQ method, 84
somfTDequeInitD method, 85
somfTDequeInitF method, 86

somf_TDequeIterator class, 87
somfFirst method, 88
somfLast method, 90
somfNext method, 91
somfPrevious method, 93
somfRemove method, 95
somfTDequeIteratorInit method, 97

somf_TDequeLinkable class, 98
somfGetValue method, 99
somfSetValue method, 100
somfTDequeLinkableInitDD method, 101
somfTDequeLinkableInitDDM method, 102

somf_TDictionary class, 103
somfAdd method, 105
somfAddKeyValuePairMM method, 107
somfAddKeyValuePairMMB method, 109
somfAssign method, 111
somfCopyImplementation method, 112
somfCount method, 113

352 SOMobjects Developer Toolkit

Collection classes (cont’d.)
somf_TDictionary class (cont’d.)

somfCreateIterator method, 114
somfCreateNewImplementationF method, 115
somfCreateNewImplementationFL method, 117
somfCreateNewImplementationFLL method, 119
somfCreateNewImplementationFLLL method, 121
somfDeleteAll method, 123
somfDeleteAllKeys method, 125
somfDeleteAllValues method, 126
somfDeleteKey method, 127
somfGetHashFunction method, 128
somfKeyAtM method, 129
somfKeyAtMF method, 130
somfMember method, 132
somfRemove method, 133
somfRemoveAll method, 134
somfSetHashFunction method, 135
somfTDictionaryInitD method, 136
somfTDictionaryInitF method, 137
somfTDictionaryInitFL method, 138
somfTDictionaryInitFLL method, 139
somfTDictionaryInitL method, 141
somfTDictionaryInitLL method, 142
somfTDictionaryInitLLF method, 143
somfValueAt method, 145

somf_TDictionaryIterator class, 146
somfFirst method, 147
somfNext method, 149
somfRemove method, 151
somfTDictionaryIteratorInit method, 153

somf_THashTable class, 154
somfAddMM method, 156
somfAddMMB method, 158
somfAssign method, 160
somfCount method, 161
somfDelete method, 162
somfDeleteAll method, 164
somfDeleteAllKeys method, 166
somfDeleteAllValues method, 168
somfGetGrowthRate method, 170
somfGetHashFunction method, 171
somfGetRehashThreshold method, 172
somfGrow method, 173
somfMember method, 174
somfRemove method, 175
somfRemoveAll method, 176
somfRetrieve method, 177
somfSetGrowthRate method, 178
somfSetHashFunction method, 179
somfSetRehashThreshold method, 181
somfTHashTableInitFL method, 182
somfTHashTableInitFLL method, 183
somfTHashTableInitFLLL method, 184
somfTHashTableInitH method, 186

somf_THashTableIterator class, 187
somfFirst method, 188
somfNext method, 190
somfRemove method, 192
somfTHashTableIteratorInit method, 194

Collection classes (cont’d.)
somf_TIterator class, 195

somfFirst method, 196
somfNext method, 197
somfRemove method, 198

somf_TPrimitiveLinkedList class, 199
somfAddAfter method, 200
somfAddBefore method, 201
somfAddFirst method, 202
somfAddLast method, 203
somfAfter method, 204
somfBefore method, 205
somfCount method, 206
somfFirst method, 207
somfLast method, 208
somfRemove method, 209
somfRemoveAll method, 210
somfRemoveFirst method, 211
somfRemoveLast method, 212

somf_TPrimitiveLinkedListIterator class, 213
somfFirst method, 214
somfLast method, 216
somfNext method, 217
somfPrevious method, 219
somfTPrimitiveLinkedListIterator method, 220

somf_TPriorityQueue class, 221
somfAdd method, 223
somfAssign method, 224
somfCount method, 225
somfCreateIterator method, 226
somfDeleteAll method, 227
somfGetEqualityComparisonFunction method, 228
somfInsert method, 229
somfMember method, 230
somfPeek method, 231
somfPop method, 232
somfRemove method, 233
somfRemoveAll method, 234
somfReplace method, 235
somfSetEqualityComparisonFuction, 236
somfTPriorityQueueInitF method, 237
somfTPriorityQueueInitP method, 238

somf_TPriorityQueueIterator class, 239
somfFirst method, 240
somfNext method, 242
somfRemove method, 244
somfTPriorityQueueIteratorInit method, 245

somf_TSequence class, 247
somfAdd method, 248
somfAfter method, 249
somfBefore method, 250
somfCount method, 251
somfCreateIterator method, 252
somfDeleteAll method, 253
somfFirst method, 254
somfLast method, 255
somfOccurrencesOf method, 256
somfRemove method, 257
somfRemoveAll method, 258
somfTSequenceInit method, 259

353Collection Classes Reference Manual

Collection classes (cont’d.)
somf_TSequenceIterator class, 260

somfFirst method, 261
somfLast method, 262
somfNext method, 263
somfPrevious method, 264
somfRemove method, 265

somf_TSet class, 266
somfAdd method, 268
somfAssign method, 269
somfCount method, 270
somfCreateIterator method, 271
somfDeleteAll method, 272
somfDifferenceS method, 273
somfDifferenceSS method, 274
somfGetHashFunction method, 275
somfIntersectionS method, 276
somfIntersectionSS method, 277
somfMember method, 278
somfRehash method, 279
somfRemove method, 280
somfRemoveAll method, 281
somfSetHashFunction method, 282
somfTSetInitF method, 283
somfTSetInitFL method, 284
somfTSetInitL method, 285
somfTSetInitLF method, 286
somfTSetInitS method, 287
somfUnionS method, 288
somfUnionSS method, 289
somfXorS method, 290
somfXorSS method, 291

somf_TSetIterator class, 292
somfFirst method, 293
somfNext method, 295
somfRemove method, 297
somfTSetIteratorInit method, 299

somf_TSortedSequence class, 300
somfAdd method, 302
somfAfter method, 303
somfAssign method, 304
somfBefore method, 305
somfCount method, 306
somfCreateIterator method, 307
somfCreateSequenceIterator method, 308
somfCreateSortedSequenceNode method, 309
somfDeleteAll method, 310
somfFirst method, 311
somfGetSequencingFunction method, 312
somfLast method, 313
somfMember method, 314
somfOccurrencesOf method, 316
somfRemove method, 317
somfRemoveAll method, 318
somfSetSequencingFunction method, 319
somfTSortedSequenceInitF method, 320
somfTSortedSequenceInitS method, 321

somf_TSortedSequenceIterator class, 322
somfFirst method, 323
somfLast method, 325
somfNext method, 326

Collection classes (cont’d.)
somf_TSortedSequenceIterator class (cont’d.)

somfPrevious method, 328
somfRemove method, 330
somfStartHere method, 332
somfTSortedSequenceIteratorInit method, 334

somf_TSortedSequenceNode class, 335
somfGetKey method, 336
somfGetLeftChild method, 337
somfGetRed method, 339
somfGetRightChild method, 340
somfSetKey method, 341
somfSetLeftChild method, 342
somfGetParent method, 338, 343
somfSetRed method, 344
somfSetRedOn method, 345
somfSetRightChild method, 346
somfTSortedSequenceNodeInitT method, 347
somfTSortedSequenceNodeInitTM method, 348
somfTSortedSequenceNodeInitTMT method, 349

	
Dequeues, 59
Dictionaries, 103

EComparisonResult enum, 25

�
Hash tables, 154

�
Iterator classes, 6

somf_TDequeIterator class, 87
somf_TDictionaryIterator class, 146
somf_THashTableIterator class, 187
somf_TIterator abstract class, 195
somf_TPrimitiveLinkedListIterator class, 213
somf_TPriorityQueueIterator class, 239
somf_TSequenceIterator abstract class, 260
somf_TSetIterator class, 292
somf_TSortedSequenceIterator class, 322

�
Main collection classes, 4

See also “Collection classes”
selection chart, 5
somf_TDeque class, 59
somf_TDictionary class, 103
somf_THashTable class, 154
somf_TPrimitiveLinkedList class, 199
somf_TPriorityQueue class, 221
somf_TSet class, 266
somf_TSortedSequence class, 300

354 SOMobjects Developer Toolkit

Mixin classes, 7
somf_MCollectible, 11
somf_MLinkable, 19
somf_MOrderableCollectible, 25

Primitive linked lists, 199
Priority queues, 221

�
Queues, 59
Queues, priority, 221

�
Sets, 266
SOMF_CALL_BETTER_ORDERABLE_COMPARE_FN define,

26
SOMF_CALL_COMPARE_FN define, 12
SOMF_CALL_HASH_FN define, 12
SOMF_CALL_ORDERABLE_COMPARE_FN define, 26
somf_MBetterOrderableCompareFn typedef, 25
somf_MCollectibleCompareFn typedef, 11
somf_MCollectibleHashFn typedef, 11
somf_MOrderableCompareFn typedef, 25
SOMF_NIL define, 12
somfAdd method, 47, 61, 105, 223, 248, 268, 302
somfAddAfter method, 62, 200
somfAddAll method, 48
somfAddBefore method, 63, 201
somfAddFirst method, 64, 202
somfAddKeyValuePairMM method, 107
somfAddKeyValuePairMMB method, 109
somfAddLast method, 65, 203
somfAddMM method, 156
somfAddMMB method, 158
somfAfter method, 66, 204, 249, 303
somfAssign method, 67, 111, 160, 224, 269, 304
somfBefore method, 68, 205, 250, 305
somfClone method, 13
somfClonePointer method, 14
somfCompare method, 27
somfCopyImplementation method, 112
somfCount method, 49, 69, 113, 161, 206, 225, 251,

270, 306
somfCreateIterator method, 50, 70, 114, 226, 252,

271, 307
somfCreateNewImplementationF method, 115
somfCreateNewImplementationFL method, 117
somfCreateNewImplementationFLL method, 119
somfCreateNewImplementationFLLL method, 121
somfCreateNewLink method, 71
somfCreateSequenceIterator method, 72, 308
somfCreateSortedSequenceNode method, 309
somfDelete method, 162
somfDeleteAll method, 51, 73, 123, 164, 227, 253,

272, 310

somfDeleteAllKeys method, 125, 166
somfDeleteAllValues method, 126, 168
somfDeleteKey method, 127
somfDifferenceS method, 273
somfDifferenceSS method, 274
somfFirst method, 74, 88, 147, 188, 196, 207, 214,

240, 254, 261, 293, 311, 323
somfGetEqualityComparisonFunction method, 228
somfGetGrowthRate method, 170
somfGetHashFunction method, 128, 171, 275
somfGetKey method, 34, 336
somfGetLeftChild method, 337
somfGetNext method, 20
somfGetParent method, 338
somfGetPrevious method, 21
somfGetRed method, 339
somfGetRehashThreshold method, 172
somfGetRightChild method, 340
somfGetSequencingFunction method, 312
somfGetValue method, 35, 41, 99
somfGrow method, 173
somfHash method, 15, 42
somfInsert method, 75, 229
somfIntersectionS method, 276
somfIntersectionSS method, 277
somfIsEqual method, 16, 43, 52
somfIsEqual method, distinction with somfIsSame, 1
somfIsGreaterThan method, 29
somfIsGreaterThanOrEqualTo method, 30
somfIsLessThan method, 31
somfIsLessThanOrEqualTo method, 32
somfIsNotEqual method, 17
somfIsSame method, 18
somfIsSame method, distinction with somfIsEqual, 1
somfKeyAtM method, 129
somfKeyAtMF method, 130
somfLast method, 76, 90, 208, 216, 255, 262, 313,

325
somf_MCollectible class, 11

See also “Collection classes”
somfMember method, 53, 77, 132, 174, 230, 278,

314
somf_MLinkable class, 19

See also “Collection classes”
somfMLinkableInit method, 22
somf_MOrderableCollectible class, 25

See also “Collection classes”
somfNext method, 91, 149, 190, 197, 217, 242, 263,

295, 326
somfOccurrencesOf method, 256, 316
somfPeek method, 231
somfPop method, 78, 232
somfPrevious method, 93, 219, 264, 328
somfPush method, 79
somfRehash method, 279
somfRemove method, 54, 80, 95, 133, 151, 175,

192, 198, 209, 233, 244, 257, 265, 280, 297,
317, 330

355Collection Classes Reference Manual

somfRemoveAll method, 55, 81, 134, 176, 210,
234, 258, 281, 318

somfRemoveFirst method, 82, 211
somfRemoveLast method, 83, 212
somfRemoveQ method, 84
somfReplace method, 235
somfRetrieve method, 177
somfSetEqualityComparisonFunction method, 236
somfSetGrowthRate method, 178
somfSetHashFunction method, 135, 179, 282
somfSetKey method, 36, 341
somfSetLeftChild method, 342
somfSetNext method, 23
somfSetParent method, 343
somfSetPrevious method, 24
somfSetRed method, 344
somfSetRedOn method, 345
somfSetRehashThreshold method, 181
somfSetRightChild method, 346
somfSetSequencingFunction method, 319
somfSetTestFunction method, 56
somfSetValue method, 37, 44, 100
somfStartHere method, 332
somf_TAssoc class, 33

See also “Collection classes”
somfTAssocInitM method, 38
somfTAssocInitMM method, 39
somf_TCollectibleLong class, 40

See also “Collection classes”
somfTCollectibleLongInit method, 45
somf_TCollection class, 46

See also “Collection classes”
somfTCollectionInit method, 57
somf_TDeque class, 59

See also “Collection classes”
somfTDequeInitD method, 85
somfTDequeInitF method, 86
somf_TDequeIterator class, 87

See also “Collection classes”
somfTDequeIteratorInit method, 97
somf_TDequeLinkable class, 98

See also “Collection classes”
somfTDequeLinkableInitDD method, 101
somfTDequeLinkableInitDDM method, 102
somf_TDictionary class, 103

See also “Collection classes”
somfTDictionaryInitD method, 136
somfTDictionaryInitF method, 137
somfTDictionaryInitFL method, 138
somfTDictionaryInitFLL method, 139
somfTDictionaryInitL method, 141
somfTDictionaryInitLL method, 142
somfTDictionaryInitLLF method, 143
somf_TDictionaryIterator class, 146

See also “Collection classes”
somfTDictionaryIteratorInit method, 153
somfTestFunction method, 58

somf_THashTable class, 154
See also “Collection classes”

somfTHashTableInitFL method, 182
somfTHashTableInitFLL method, 183
somfTHashTableInitFLLL method, 184
somfTHashTableInitH method, 186
somf_THashTableIterator class, 187

See also “Collection classes”
somfTHashTableIteratorInit method, 194
somf_TIterator class, 195

See also “Collection classes”
somf_TPrimitiveLinkedList class, 199

See also “Collection classes”
somf_TPrimitiveLinkedListIterator class, 213

See also “Collection classes”
somfTPrimitiveLinkedListIterator method, 220
somf_TPriorityQueue class, 221

See also “Collection classes”
somfTPriorityQueueInitF method, 237
somfTPriorityQueueInitP method, 238
somf_TPriorityQueueIterator class, 239

See also “Collection classes”
somfTPriorityQueueIteratorInit method, 245
somf_TSequence class, 247

See also “Collection classes”
somfTSequenceInit method, 259
somf_TSequenceIterator class, 260

See also “Collection classes”
somf_TSet class, 266

See also “Collection classes”
somfTSetInitF method, 283
somfTSetInitFL method, 284
somfTSetInitL method, 285
somfTSetInitLF method, 286
somfTSetInitS method, 287
somf_TSetIterator class, 292

See also “Collection classes”
somfTSetIteratorInit method, 299
somf_TSortedSequence class, 300

See also “Collection classes”
somfTSortedSequenceInitF method, 320
somfTSortedSequenceInitS method, 321
somf_TSortedSequenceIterator class, 322

See also “Collection classes”
somfTSortedSequenceIteratorInit method, 334
somf_TSortedSequenceNode class, 335

See also “Collection classes”
somfTSortedSequenceNodeInitT method, 347
somfTSortedSequenceNodeInitTM method, 348
somfTSortedSequenceNodeInitTMT method, 349
somfUnionS method, 288
somfUnionSS method, 289
somfValueAt method, 145
somfXorS method, 290
somfXorSS method, 291
Sorted sequences, 300
Stacks, 59

356 SOMobjects Developer Toolkit

Supporting classes
somf_TAssoc class, 33
somf_TCollectibleLong class, 40
somf_TDequeLinkable class, 98
somf_TSortedSequenceNode class, 335

�
Utility collection classes. See “Collection classes”

