
somf_TDictionary class

 103Collection Classes Reference Manual

somf_TDictionary Class

Description
This class represents a collection of (key, value) pairs (or associations). Because dictionaries
are sometimes used to represent a bijective mapping, functions for retrieving a “key” given its
corresponding “value” are provided, along with the usual access functions. (However, this
process will probably be slow).

As for the somf_THashTable class, each entry in a somf_TDictionary is actually an object of
the somf_TAssoc class that holds a (key, value) pair. In most cases, this use of a
somf_TAssoc object is transparent to the user. However, you need to be aware of this
somf_TAssoc usage, because some somf_TDictionary methods address the data as sepa-
rate “key” and “value” parts of a pair, whereas other methods accept or return a
single somf_TAssoc object representing the (key, value) pair.

The somf_TDictionary class is very similar to somf_THashTable. The primary difference is
that somf_TDictionary inherits from somf_TCollection, whereas somf_THashTable does
not. (Recall that all main collection classes except somf_THashTable inherit from the
somf_TCollection class.) The other distinction is that the somf_TDictionary class uses the
somfIsEqual method as its default comparison function, whereas somf_THashTable uses
somfIsSame. Note that the somf_TDictionary class’s use of somfIsEqual means that “equal”
keys can only appear in the dictionary once.

Objects inserted into a somf_TDictionary collection must inherit from somf_MCollectible.
In addition, they must override the somfHash method, and the somfIsEqual method. These
methods are used internally by collections of the somf_TDictionary class.

Because somf_TDictionary takes somf_MCollectible objects as members, any class that
inherits from somf_MCollectible can be a member of the dictionary. This means, for example,
that you can have a dictionary containing somf_TDeque objects, or objects of any main
collection class.

Note: The somf_TDictionary class uses the somfIsEqual method as the default comparison
function. (That is, if key1=”Bart” and key2=”Bart”, then key1 and key2 are
equal.) If you do not want to use the somfIsEqual method to equate entries, use the
initialization methods to change to the somfIsSame method.

Note: The somf_TDictionary class does not allow two entries have equal keys. Two
separate, distinct entries can hash to the same hash value, but the original keys must
not be equal.

When you link, include the following library reference to get access to this class: somtk

Although the methods in this class are reentrant, the class is not thread-safe on multi-thread
applications. If a pointer to an instance of this class will be passed to multiple threads, the code
in those threads must guarantee thread-safe usage of the class.

File Stem
tdict

Base
somf_TCollection

Metaclass
SOMClass

somf_TDictionary class

 104 SOMobjects Developer Toolkit

Ancestor Classes
somf_TCollection, somf_MCollectible, SOMObject

New Methods
somfDeleteAllKeys
somfDeleteAllValues
somfValueAt
somfKeyAtMF
somfKeyAtM
somfDeleteKey
somfAddKeyValuePairMMB,
somfAddKeyValuePairMM
somfSetHashFunction
somfGetHashFunction
somfCreateNewImplementationFLLL
somfCreateNewImplementationF
somfCreateNewImplementationFL
somfCreateNewImplementationFLL
somfCopyImplementation
somfAssign
somfTDictionaryInitFLL
somfTDictionaryInitFL
somfTDictionaryInitF
somfTDictionaryInitLLF
somfTDictionaryInitLL
somfTDictionaryInitL
somfTDictionaryInitD

Overriding Methods
somInit
somUninit
somfCreateIterator
somfRemove
somfRemoveAll
somfDeleteAll
somfCount
somfMember
somfAdd

somf_TDictionary class

 105Collection Classes Reference Manual

somfAdd Method

Purpose
Adds a specified obj (representing a key, value pair) to the dictionary.

IDL Syntax
somf_MCollectible somfAdd (in somf_MCollectible obj);

Description
The somfAdd method adds a specified object obj to the dictionary represented by the receiv-
ing object. The added obj contains a (key, value) pair.

Do not be misled by this method’s interface, which is inherited from the somf_TCollection
class. The only objects you can add with somfAdd are (key, value) pairs of the somf_TAssoc
class. You cannot use this interface to add a generic somf_MCollectible object.

Parameters
receiver A pointer to an object of class somf_TDictionary.

ev A pointer to the Environment structure for the calling method.

obj A pointer to an object that inherits from somf_MCollectible (specifically, a
somf_TAssoc object) that will be added to the receiving object.

Return Value
somf_MCollectible

A pointer to the somf_MCollectible object that was added, provided a
duplicate object does not exist. Otherwise, it returns a pointer to the value of
the duplicate object, if obj could not be added because a duplicate is already in
the collection. (Recall that an object of somf_TDictionary class will only
accept one occurrence of an object where the somfIsEqual method would be
TRUE.)

Example
somf_TDictionary d;
<Your Class which inherits from somf_MCollectible> obj;
<Your Class which inherits from somf_MCollectible> obj2;
somf_TAssoc tassoc;
Environment *ev;

ev = somGetGlobalEnvironment();

obj = <Your Class which inherits from somf_MCollectible>New();
obj2 = <Your Class which inherits from somf_MCollectible>New();
d = somf_TDictionaryNew();
tassoc = somf_TAssocNew();

_somfSetKey(tassoc, ev, obj);
_somfSetValue(tassoc, ev, obj2);
_somfAdd(d, ev, tassoc);

_somFree (d);
_somFree (obj);
_somFree (obj2);
_somFree (tassoc);

somf_TDictionary class

 106 SOMobjects Developer Toolkit

Original Class
somf_TCollection (overridden here)

Related Information
Methods: somfAddKeyValuePairMM, somfAddKeyValuePairMMB

somf_TDictionary class

 107Collection Classes Reference Manual

somfAddKeyValuePairMM Method

Purpose
Adds a (key, value) pair to the receiving dictionary object, and returns a removed object (if
removal was necessary).

IDL Syntax
somf_MCollectible somfAddKeyValuePairMM (

in somf_MCollectible key,
 in somf_MCollectible val);

Description
The somfAddKeyValuePairMM method adds the specified (key, value) pair to the dictionary,
even if there is an existing (key, value) pair that conflicts. The method also returns the value of
the conflicting object (if any) that existed in the dictionary before this call.

Using the specified key and val arguments, this method transparently creates an object of
the somf_TAssoc class, before adding the new (key, value) pair to the dictionary.

Parameters
receiver A pointer to an object of class somf_TDictionary.

ev A pointer to the Environment structure for the calling method.

key A pointer to a somf_MCollectible object that will be the key of the associated
pair.

val A pointer to a somf_MCollectible object that will be the value of the asso-
ciated pair.

Return Value
There are two possible valid return values for this method:

somf_MCollectible
A pointer to the somf_MCollectible value that had to be removed in order for a
new (key, value) pair to be added.

SOMF_NIL No somf_MCollectible value had to be removed in order to add the pair.

Example
somf_TDictionary d;
<Your Class which inherits from somf_MCollectible> obj;
<Your Class which inherits from somf_MCollectible> obj2;
Environment *ev;

ev = somGetGlobalEnvironment();

obj = <Your Class which inherits from somf_MCollectible>New();
obj2 = <Your Class which inherits from somf_MCollectible>New();
d = somf_TDictionaryNew();

if (_somfAddKeyValuePairMM(d, ev, obj, obj2) != SOMF_NIL)
 somPrintf(”\n problem adding obj,obj2 to d\n”);

_somFree (d);
_somFree (obj);
_somFree (obj2);

somf_TDictionary class

 108 SOMobjects Developer Toolkit

Original Class
somf_TDictionary

Related Information
Methods: somfAddKeyValuePairMMB, somfAdd

somf_TDictionary class

 109Collection Classes Reference Manual

somfAddKeyValuePairMMB Method

Purpose
Adds a (key, value) pair to a dictionary, unless the boolean argument prohibits replacement of
a conflicting pair.

IDL Syntax
somf_MCollectible somfAddKeyValuePairMMB (

in somf_MCollectible key,
 in somf_MCollectible val,
 in boolean replace);

Description
The somfAddKeyValuePairMMB method adds the stipulated (key, value) pair to the dictionary
represented by the receiving object, unless the boolean argument replace prohibits this
replacement.

If replace=TRUE, the (key, value) pair is added to the dictionary regardless of whether a
conflicting pair exists. Otherwise, if replace = FALSE, then the (key, value) pair is added to the
dictionary only if there is not a conflicting (key, value) pair.

Using the specified key and val arguments, this method transparently creates an object of
the somf_TAssoc class, before adding the new (key, value) pair to the dictionary.

Parameters
receiver A pointer to an object of class somf_TDictionary.

ev A pointer to the Environment structure for the calling method.

key A pointer to a somf_MCollectible object that is the key of the associated pair.

val A pointer to a somf_MCollectible object that is the value of the associated
pair.

replace A boolean that indicates whether an existing pair with an identical key should
be replaced.

Return Value
There are two possible valid return values for this method:

somf_MCollectible
A pointer to the somf_MCollectible value that had to be removed in order for a
new (key, value) pair to be added.

SOMF_NIL No somf_MCollectible value had to be removed in order to add the pair.

Example
somf_TDictionary d;
<Your Class which inherits from somf_MCollectible> obj2;
<Your Class which inherits from somf_MCollectible> obj3;
Environment *ev;

ev = somGetGlobalEnvironment();

obj2 = <Your Class which inherits from somf_MCollectible>New();
obj3 = <Your Class which inherits from somf_MCollectible>New();
d = somf_TDictionaryNew();

somf_TDictionary class

 110 SOMobjects Developer Toolkit

if (_somfAddKeyValuePairMMB(d, ev, obj2, obj3, TRUE) != SOMF_NIL)
 somPrintf(”\n problem adding obj2,obj3 to d\n”);

_somFree (d);
_somFree (obj2);
_somFree (obj3);

Original Class
somf_TDictionary

Related Information
Methods: somfAddKeyValuePairMM, somfAdd

somf_TDictionary class

 111Collection Classes Reference Manual

somfAssign Method

Purpose
Assigns a dictionary as being “equal” to a given source dictionary.

IDL Syntax
void somfAssign (in somf_TDictionary source);

Description
The somfAssign method assigns the dictionary receiving object to be “equal” to the source
dictionary object. That is, the method sets/resets the instance variables of the receiver to the
values of the source. This operation is logically equivalent to using the “=” operator.

C cannot handle methods from different classes having the same name when they inherit the
name from different parents. Thus, if any child of somf_TDictionary is used with any other
main collection class, then the name of the method must be fully qualified (for example:
somf_TDictionary_somfAssign). This is the only way the linker can tell them apart.

This is not a problem in C++. In C++ you could have referenced this method as:
 d–>somfAssign(ev, obj);

Parameters
receiver A pointer to an object of class somf_TDictionary.

ev A pointer to the Environment structure for the calling method.

source A pointer to the somf_TDictionary object to which the receiving object will be
set equal.

Return Value
None.

Example
somf_TDictionary d;
somf_TDictionary d2;
Environment *ev;

ev = somGetGlobalEnvironment();

d = somf_TDictionaryNew();
d2 = somf_TDictionaryNew();

/* Add some objects to d */

/* Assign d2 = d */
somf_TDictionary_somfAssign(d2,ev,d);

_somFree (d);
_somFree (d2);

Original Class
somf_TDictionary

somf_TDictionary class

 112 SOMobjects Developer Toolkit

somfCopyImplementation Method

Purpose
Returns a hash table that is a copy of the hash table in a given dictionary.

IDL Syntax
somf_THashTable somfCopyImplementation ();

Description
The somfCopyImplementation method returns a hash table that is a copy of the hash table in
the dictionary represented by the receiving object. Normally, a client program will not need to
invoke this method.

Parameters
receiver A pointer to an object of class somf_TDictionary.

ev A pointer to the Environment structure for the calling method.

Return Value
This method returns a pointer to the new somf_THashTable initialized to look like the hash
table of the receiving object.

Original Class
somf_TDictionary

somf_TDictionary class

 113Collection Classes Reference Manual

somfCount Method

Purpose
Gets the number of objects in a dictionary.

IDL Syntax
long somfCount ();

Description
The somfCount method determines the number of objects in the dictionary represented by the
receiving object.

C cannot handle methods from different classes having the same name when they inherit
the name from different parents. Since somf_TDictionary uses somf_THashTable, the name
of the method must be fully qualified (for example: somf_TDictionary_somfCount). This is the
only way the linker can tell them apart.

This is not a problem in C++. In C++ you could have referenced this method as:
 d–>somfCount(ev);

Parameters
receiver A pointer to an object of class somf_TDictionary.

ev A pointer to the Environment structure for the calling method.

Return Value
This method returns the number of objects in the receiving object.

Example
somf_TDictionary d;
<your Class which inherits from somf_MCollectible> obj;
Environment *ev;

ev = somGetGlobalEnvironment();

d = somf_TDictionaryNew();
obj = <your Class which inherits from somf_MCollectible>New();

somPrintf(”\n Count of d= %d\n”, somf_TDictionary_somfCount(d,ev));

_somFree (d);
_somFree (obj);

Original Class
somf_TCollection (overridden here)

somf_TDictionary class

 114 SOMobjects Developer Toolkit

somfCreateIterator Method

Purpose
Returns a new iterator that is suitable for iterating over the objects in this dictionary.

IDL Syntax
somf_TIterator somfCreateIterator ();

Description
The somfCreateIterator method returns a new iterator that is suitable for iterating over the
objects in the dictionary represented by the receiving object.

Note: This is one of two ways to initialize a somf_TDictionaryIterator to point to an instance
of a somf_TDictionary. The other way is to use the somf_TDictionaryIterator’s
initializer method described on page 153.

Parameters
receiver A pointer to an object of class somf_TDictionary.

ev A pointer to the Environment structure for the calling method.

Return Value
This method returns a pointer to the new iterator.

Example
somf_TDictionary d;
Environment *ev;
somf_TDictionaryIterator itr;

ev = somGetGlobalEnvironment();

d = somf_TDictionaryNew();
itr = (somf_TDictionaryIterator*) _somfCreateIterator(d,ev);

_somFree (d);
_somFree (itr);

Original Class
somf_TCollection (overridden here)

somf_TDictionary class

 115Collection Classes Reference Manual

somfCreateNewImplementationF Method

Purpose
Creates a new hash table for a dictionary, given its comparison test method.

IDL Syntax
somf_THashTable somfCreateNewImplementationF (
 in somf_MCollectibleCompareFn testfn);

Description
The somfCreateNewImplementationF method creates a new hash table for the dictionary
represented by the receiving object. The method also includes an argument that defines the
comparison test method applied to current/potential dictionary objects.

Normally, a client program does not invoke this method. However, if you create a new class that
inherits from this class, you might consider overriding this method in order to customize how a
somf_TDictionary object creates a new implementation.

When a somfCreateNewImplementation... method does not include arguments for the dictio-
nary’s table size, growth rate or rehash threshold, a default number of (key, value) pairs is
assumed for the initial size, and the table subsequently grows by a default number of pairs once
the dictionary contains a number of pairs that approaches the current table size.

Parameters
receiver A pointer to an object of class somf_TDictionary.

ev A pointer to the Environment structure for the calling method.

testfn A method pointer specifying either a somfIsEqual or somfIsSame method.

This argument should always be set to either
 somf_MCollectibleClassData.somfIsSame or
 somf_MCollectibleClassData.somfIsEqual.
This specification is necessary because SOM needs a pointer to the original
declaration of the method, which resides in somf_MCollectible. The
somf_TDictionary object will use this pointer to access the somfIsSame or
somfIsEqual method that was declared and defined in the object being
inserted into, or removed from, the somf_TDictionary object.

Return Value
This method returns a pointer to the new hash table.

Example
somf_THashTable ht2;
somf_TDictionary d;
Environment *ev;

ev = somGetGlobalEnvironment();
d = somf_TDictionaryNew();

ht2 = _somfCreateNewImplementationF
 (d, ev, somf_MCollectibleClassData.somfIsEqual);

_somFree (d);
_somFree (ht2);

somf_TDictionary class

 116 SOMobjects Developer Toolkit

Original Class
somf_TDictionary

Related Information
Methods: somfCreateNewImplementationFLLL, somfCreateNewImplementationFLL,
somfCreateNewImplementationFL

somf_TDictionary class

 117Collection Classes Reference Manual

somfCreateNewImplementationFL Method
Purpose

Creates a new hash table for a dictionary, given its comparison test method and its initial table
size.

IDL Syntax
somf_THashTable somfCreateNewImplementationFL (
 in somf_MCollectibleCompareFn testfn,
 in long tablesize);

Description
The somfCreateNewImplementationFL method creates a new hash table for the dictionary
represented by the receiving object. The method includes arguments that define the compari-
son test method applied to current/potential dictionary objects, and the initial size of the hash
table.

Normally, a client program does not invoke this method. However, if you create a new class that
inherits from this class, you might consider overriding this method in order to customize how a
somf_TDictionary object creates a new implementation.

When a somfCreateNewImplementation... method does not include arguments for the dictio-
nary’s growth rate or rehash threshold, the initial table size will grow by a default number of pairs
once the table contains a number of pairs that approaches the specified size.

Parameters
receiver A pointer to an object of class somf_TDictionary.

ev A pointer to the Environment structure for the calling method.

testfn A method pointer specifying either a somfIsEqual or somfIsSame method.

This argument should always be set to either
 somf_MCollectibleClassData.somfIsSame or
 somf_MCollectibleClassData.somfIsEqual.
This specification is necessary because SOM needs a pointer to the original
declaration of the method, which resides in somf_MCollectible. The
somf_TDictionary object will use this pointer to access the somfIsSame or
somfIsEqual method that was declared and defined in the object being
inserted into, or removed from, the somf_TDictionary object.

tablesize The initial size of the hash table in the dictionary, expressed as the number of
(key, value) pairs to expect.

Return Value
This method returns a pointer to the new hash table.

Example
somf_THashTable ht3;
somf_TDictionary d;
Environment *ev;

ev = somGetGlobalEnvironment();
d = somf_TDictionaryNew();

ht3 = _somfCreateNewImplementationFL
 (d, ev, somf_MCollectibleClassData.somfIsEqual, 23);

_somFree (d);
_somFree (ht3);

somf_TDictionary class

 118 SOMobjects Developer Toolkit

Original Class
somf_TDictionary

Related Information
Methods: somfCreateNewImplementationFLLL, somfCreateNewImplementationFLL,
somfCreateNewImplementationF

somf_TDictionary class

 119Collection Classes Reference Manual

somfCreateNewImplementationFLL Method

Purpose
Creates a new hash table for a dictionary, given its comparison test method, the initial table size,
and the table’s growth rate.

IDL Syntax
somf_THashTable somfCreateNewImplementationFLL (
 in somf_MCollectibleCompareFn testfn,
 in long tablesize,
 in long rate);

Description
The somfCreateNewImplementationFLL method creates a new hash table for the dictionary
represented by the receiving object. The method includes arguments that define the compari-
son test method applied to current/potential dictionary objects, the initial table size, and the
table’s growth rate.

Normally, a client program does not invoke this method. However, if you create a new class that
inherits from this class, you might consider overriding this method in order to customize how a
somf_TDictionary object creates a new implementation.

When a somfCreateNewImplementation... method does not include an argument for the
dictionary’s rehash threshold, the initial table size will increment by the number of pairs given as
the growth rate, once the table contains a number of pairs that approaches the specified size.

Parameters
receiver A pointer to an object of class somf_TDictionary.

ev A pointer to the Environment structure for the calling method.

testfn A method pointer specifying either a somfIsEqual or somfIsSame method.

This argument should always be set to either
 somf_MCollectibleClassData.somfIsSame or
 somf_MCollectibleClassData.somfIsEqual.
This specification is necessary because SOM needs a pointer to the original
declaration of the method, which resides in somf_MCollectible. The
somf_TDictionary object will use this pointer to access the somfIsSame or
somfIsEqual method that was declared and defined in the object being
inserted into, or removed from, the somf_TDictionary object.

tablesize The initial size of the hash table in the dictionary, expressed as the number of
(key, value) pairs to expect.

rate The growth rate of the hash table in the dictionary, expressed as the number of
(key, value) pairs by which to increment the allocated size when growth occurs.

Return Value
This method returns a pointer to the new hash table.

Example
somf_THashTable ht4;
somf_TDictionary d;
Environment *ev;

somf_TDictionary class

 120 SOMobjects Developer Toolkit

ev = somGetGlobalEnvironment();
d = somf_TDictionaryNew();

ht4 = _somfCreateNewImplementationFLL
 (d, ev, somf_MCollectibleClassData.somfIsEqual, 23, 20);

_somFree (d);
_somFree (ht4);

Original Class
somf_TDictionary

Related Information
Methods: somfCreateNewImplementationFLLL, somfCreateNewImplementationFL,
somfCreateNewImplementationF

somf_TDictionary class

 121Collection Classes Reference Manual

somfCreateNewImplementationFLLL Method

Purpose
Creates a new hash table for a dictionary, given its comparison test method, the initial table size,
the table’s growth rate, and the table’s rehash threshold.

IDL Syntax
somf_THashTable somfCreateNewImplementationFLLL (
 in somf_MCollectibleCompareFn testfn,
 in long tablesize,
 in long rate,
 in long threshold);

Description
The somfCreateNewImplementationFLLL method creates a new hash table for the dictio-
nary represented by the receiving object. The hash table is fully specified by arguments that
define the comparison test method applied to current/potential dictionary objects, the initial
table size, the table’s growth rate, and the table’s rehash threshold.

Normally, a client program does not invoke this method. However, if you create a new class that
inherits from this class, you might consider overriding this method in order to customize how a
somf_TDictionary object creates a new implementation.

Parameters
receiver A pointer to an object of class somf_TDictionary.

ev A pointer to the Environment structure for the calling method.

testfn A method pointer specifying either a somfIsEqual or somfIsSame method.

This argument should always be set to either
 somf_MCollectibleClassData.somfIsSame or
 somf_MCollectibleClassData.somfIsEqual.
This specification is necessary because SOM needs a pointer to the original
declaration of the method, which resides in somf_MCollectible. The
somf_TDictionary object will use this pointer to access the somfIsSame or
somfIsEqual method that was declared and defined in the object being
inserted into, or removed from, the somf_TDictionary object.

tablesize The initial size of the hash table in the dictionary, expressed as the number of
(key, value) pairs to expect.

rate The growth rate of the hash table in the dictionary, expressed as the number of
(key, value) pairs by which to increment the allocated size when growth occurs.

threshold The rehash threshold of the hash table in the dictionary, expressed as the
percentage of how full the dictionary may become before it grows in allocated
size.

Return Value
This method returns a pointer to the new hash table.

somf_TDictionary class

 122 SOMobjects Developer Toolkit

Example
somf_THashTable ht1;
somf_TDictionary d;
Environment *ev;

ev = somGetGlobalEnvironment();
d = somf_TDictionaryNew();

ht1 = _somfCreateNewImplementationFLLL
 (d, ev, somf_MCollectibleClassData.somfIsEqual, 23, 20, 80);

_somFree (d);
_somFree (ht1);

Original Class
somf_TDictionary

Related Information
Methods: somfCreateNewImplementationFLL, somfCreateNewImplementationFL,
somfCreateNewImplementationF

somf_TDictionary class

 123Collection Classes Reference Manual

somfDeleteAll Method

Purpose
Removes all of the (key, value) pairs from a dictionary and deallocates the storage that these
objects might have owned. (That is, the destructor function is called for each object in the
dictionary.)

IDL Syntax
void somfDeleteAll ();

Description
The somfDeleteAll method removes all of the objects from the dictionary collection repre-
sented by the receiving object. Also, it deallocates the storage that these objects might have
owned (that is, the destructor function is called for each object in the dictionary).

Be careful with somfDeleteAll. Since a collection only contains pointers to objects (rather than
the objects themselves), somfDeleteAll can cause a problem if a pointer to an object appears
more than once. For example, if multiple pointers to ‘A’ exists, or if a single pointer to ’A’ is in the
collection multiple times, the behavior of the code is undefined, because it will try to delete ‘A’
multiple times. If you think there is a chance that an object could appear in the collection more
than once, you should consider using somfRemoveAll to remove the objects from the collec-
tion and deleting them some other way.

C cannot handle methods from different classes having the same name when they inherit
the name from different parents. Since somf_TDictionary uses somf_THashTable, then the
name of this method must be fully qualified (for example: somf_TDictionary_somfDeleteAll).
This is the only way the linker can tell them apart.

This is not a problem in C++. In C++ you could have referenced this method as:
 d–>somfDeleteAll(ev);

Parameters
receiver A pointer to an object of class somf_TDictionary.

ev A pointer to the Environment structure for the calling method.

Return Value
None.

Example
somf_TDictionary d;
Environment *ev;

ev = somGetGlobalEnvironment();

d = somf_TDictionaryNew();

/* Add some objects in the somf_TDictionary */

/* Remove all the objects AND DELETE THEM */
somf_TDictionary_somfDeleteAll(d,ev);

_somFree (d);

Original Class
somf_TCollection (overridden here)

somf_TDictionary class

 124 SOMobjects Developer Toolkit

Related Information
Methods: somfDeleteAllKeys, somfDeleteAllValues, somfDeleteKey

somf_TDictionary class

 125Collection Classes Reference Manual

somfDeleteAllKeys Method

Purpose
Removes all of the (key, value) pairs from a dictionary. The procedure resets the count to zero
and calls the destructor on every key in the dictionary.

IDL Syntax
void somfDeleteAllKeys ();

Description
The somfDeleteAllKeys method removes all of the (key, value) pairs from a dictionary. The
procedure resets the count to zero and calls the destructor on every key in the dictionary.
However, the program still owns the objects representing the values of the (key, value) pairs.

C cannot handle methods from different classes having the same name when they inherit
the name from different parents. Since somf_TDictionary uses somf_THashTable, then the
name of this method must be fully qualified (as somf_TDictionary_somfDeleteAllKeys, for
example). This is the only way the linker can tell them apart.

This is not a problem in C++. In C++ you could have referenced this method as:
 d–>somfDeleteAllKeys(ev);

Parameters
receiver A pointer to an object of class somf_TDictionary.

ev A pointer to the Environment structure for the calling method.

Return Value
None.

Example
somf_TDictionary d;
Environment *ev;

ev = somGetGlobalEnvironment();

d = somf_TDictionaryNew();

/* Add some objects in the somf_TDictionary */

/* Remove all the objects AND DELETE ALL THE KEYS */
somf_TDictionary_somfDeleteAllKeys(d,ev);

_somFree (d);

Original Class
somf_TDictionary

Related Information
Methods: somfDeleteAll, somfDeleteAllValues, somfDeleteKey

somf_TDictionary class

 126 SOMobjects Developer Toolkit

somfDeleteAllValues Method

Purpose
Removes all of the (key, value) pairs from a dictionary. The procedure resets the count to zero
and calls the destructor on every value in the hash table.

IDL Syntax
void somfDeleteAllValues ();

Description
The somfDeleteAllValues method removes all of the (key, value) pairs from a dictionary. The
procedure resets the count to zero and calls the destructor on every value in the hash table.
However, the program still owns the objects representing the keys of the (key, value) pairs.

Because a dictionary only contains pointers to objects (rather than the objects themselves),
somfDeleteAllValues can cause a problem if a pointer to an object appears more than once.
For example, if pointer ‘A’ exists in the collection multiple times, the behavior of the code is
undefined, because it will try to delete ‘A’ multiple times. If you think there is a chance that an
object could appear more than once, you should consider using somfRemoveAll to remove the
objects from the dictionary and deleting them some other way.

C cannot handle methods from different classes having the same name when they inherit the
name from different parents. Since somf_TDictionary uses somf_THashTable, the name of
this method will have to be fully qualified (as somf_TDictionary_somfDeleteAllValues, for
example). This is the only way the linker can tell them apart.

This is not a problem in C++. In C++ you could have referenced this method as:
 d–>somfDeleteAllValues(ev);

Parameters
receiver A pointer to an object of class somf_TDictionary.

ev A pointer to the Environment structure for the calling method.

Return Value
None.

Example
somf_TDictionary d;
Environment *ev;

ev = somGetGlobalEnvironment();

d = somf_TDictionaryNew();

/* Add some objects in the somf_TDictionary */

/* Remove all the objects AND DELETE ALL THE VALUES */
somf_TDictionary_somfDeleteAllValues(d,ev);

_somFree (d);

Original Class
somf_TDictionary

Related Information
Methods: somfDeleteAllKeys, somfDeleteAll, somfDeleteKey

somf_TDictionary class

 127Collection Classes Reference Manual

somfDeleteKey Method

Purpose
Deletes a specified key from the associated (key, value) pair, and removes the (key, value) pair
from the dictionary.

IDL Syntax
somf_MCollectible somfDeleteKey (in somf_MCollectible key);

Description
The somfDeleteKey method deletes the specified key from the associated (key, value) pair.
The method also removes the (key, value) pair from the dictionary represented by the receiving
object. The method returns a pointer to the value from the (key, value) pair.

Parameters
receiver A pointer to an object of class somf_TDictionary.

ev A pointer to the Environment structure for the calling method.

key A pointer to a somf_MCollectible object that is the key of the associated pair
to be deleted.

Return Value
There are two possible valid return values for this method:

somf_MCollectible
A pointer to the value that was removed because the key was deleted.

SOMF_NIL The key object was not found.

Example
somf_TDictionary d;
<Your Class which inherits from somf_MCollectible> obj;
Environment *ev;

ev = somGetGlobalEnvironment();

obj = <Your Class which inherits from somf_MCollectible>New();
d = somf_TDictionaryNew();

/* Remove the key,value pair AND DELETE THE KEY */
if (_somfDeleteKey(d, ev, obj) == SOMF_NIL)
 somPrintf(” Why did DeleteKey say obj wasn’t in d? \n”);

_somFree (d);

Original Class
somf_TDictionary

Related Information
Methods: somfDeleteAllKeys, somfDeleteAllValues, somfDeleteAll

somf_TDictionary class

 128 SOMobjects Developer Toolkit

somfGetHashFunction Method

Purpose
Returns a pointer to the hash function used by a given dictionary.

IDL Syntax
somf_MCollectibleHashFn somfGetHashFunction ();

Description
The somfGetHashFunction method returns a pointer to the hash function used by the dictio-
nary that is the method’s receiving object.

C cannot handle methods from different classes having the same name when they inherit the
name from different parents. Since somf_TDictionary uses somf_THashTable, the name of
this method will have to be fully qualified (as somf_TDictionary_somfGetHashFunction, for
example). This is the only way the linker can tell them apart.

This is not a problem in C++. In C++ you could have referenced this method as:
 d–>somfGetHashFunction(ev);

Parameters
receiver A pointer to an object of class somf_TDictionary.

ev A pointer to the Environment structure for the calling method.

Return Value
This method returns a pointer to the somfHash method used by this dictionary.

Example
somf_TDictionary d;
Environment *ev;

ev = somGetGlobalEnvironment();

d = somf_TDictionaryNew();

if ((somf_TDictionary_somfGetHashFunction(d,ev)) !=
 somf_MCollectibleClassData.somfHash)
 somPrintf(”\n What Hash Function are we using?\n”);

_somFree (d);

Original Class
somf_TDictionary

Related Information
Methods: somfSetHashFunction

somf_TDictionary class

 129Collection Classes Reference Manual

somfKeyAtM Method
Purpose

Gets a dictionary’s first key that has a specified val as its associated value. Note: This method
involves a slow search.

IDL Syntax
somf_MCollectible somfKeyAtM (in somf_MCollectible val);

Description
The somfKeyAtM method finds the key of the first (key, value) pair whose value is the specified
argument val, and returns a pointer to the key. Note that this method involves a slow search of
the dictionary.

Parameters
receiver A pointer to an object of class somf_TDictionary.

ev A pointer to the Environment structure for the calling method.

val A pointer to a somf_MCollectible that is the value to be searched for.

Return Value
There are two possible valid return values for this method:

somf_MCollectible
A pointer to the dictionary’s first key that has val as the value of the associated
(key, value) pair.

SOMF_NIL The value was not found in the dictionary.

Example
somf_TDictionary d;
<your Class which inherits from somf_MCollectible> key;
<your Class which inherits from somf_MCollectible> value;
Environment *ev;

ev = somGetGlobalEnvironment();

d = somf_TDictionaryNew();
value = <your Class which inherits from somf_MCollectible>New();

/* Add a lot of objects to d */

key = _somfKeyAtM(d, ev, value);
if (key == SOMF_NIL)
 somPrintf(” value is no longer in d\n”);
else
{
 /* do something with the key */
}

_somFree (d);
_somFree (value);

Original Class
somf_TDictionary

Related Information
Methods: somfKeyAtMF

somf_TDictionary class

 130 SOMobjects Developer Toolkit

somfKeyAtMF Method

Purpose
Gets a dictionary’s first key that has a specified val as its associated value. The method includes
an argument specifying the method to be used for comparing the values. Note: This method
involves a slow search.

IDL Syntax
somf_MCollectible somfKeyAtMF (

in somf_MCollectible val,
 in somf_MCollectibleCompareFn testfn);

Description
The somfKeyAtMF method finds the key of the first (key, value) pair whose value is the
specified argument val, and returns a pointer to the key. The method includes an argument that
specifies whether somfIsEqual or somfIsSame should be used to compare the values. Note
that this method involves a slow search of the dictionary.

Parameters
receiver A pointer to an object of class somf_TDictionary.

ev A pointer to the Environment structure for the calling method.

val A pointer to a somf_MCollectible object that is the value to be searched for.

testfn A method pointer specifying either a somfIsEqual or somfIsSame method.

This argument should always be set to either
 somf_MCollectibleClassData.somfIsSame or
 somf_MCollectibleClassData.somfIsEqual.
This specification is necessary because SOM needs a pointer to the original
declaration of the method, which resides in somf_MCollectible. The
somf_TDictionary object will use this pointer to access the somfIsSame or
somfIsEqual method that was declared and defined in the object being
inserted into, or removed from, the somf_TDictionary object.

Return Value
There are two possible valid return values for this method:

somf_MCollectible
A pointer to the dictionary’s first key that has val as the value of the associated
(key, value) pair.

SOMF_NIL The value was not found in the dictionary.

Example
somf_TDictionary d;
<your Class which inherits from somf_MCollectible> key;
<your Class which inherits from somf_MCollectible> value;
Environment *ev;

ev = somGetGlobalEnvironment();

d = somf_TDictionaryNew();
value = <your Class which inherits from somf_MCollectible>New();

somf_TDictionary class

 131Collection Classes Reference Manual

/* Add a lot of objects to d */

key = _somfKeyAtMF(d, ev, value,
 somf_MCollectibleClassData.somfIsEqual);

if (key == SOMF_NIL)
 somPrintf(” value is no longer in d\n”);
else
{
 /* do something with the key */
}

_somFree (d);
_somFree (value);

Original Class
somf_TDictionary

Related Information
Methods: somfKeyAtM

somf_TDictionary class

 132 SOMobjects Developer Toolkit

somfMember Method
Purpose

Gets the key of a (key, value) pair in the dictionary, if it is found.

IDL Syntax
somf_MCollectible somfMember (in somf_MCollectible key);

Description
The somfMember method determines whether the (key, value) pair corresponding to a speci-
fied key is in the dictionary and, if so, returns a pointer to the key object.

C cannot handle methods from different classes having the same name when they inherit the
name from different parents. Since somf_TDictionary uses somf_THashTable, then the
name of the method will have to be fully qualified (as somf_TDictionary_somfMember, for
example). This is the only way the linker can tell them apart.

This is not a problem in C++. In C++ you could have referenced this method as:
 d–>somfMember(ev, obj);

Parameters
receiver A pointer to an object of class somf_TDictionary.

ev A pointer to the Environment structure for the calling method.

key A pointer to the somf_MCollectible key of the (key, value) pair that may or
may not be in the dictionary.

Return Value
There are two possible valid return values for this method:

somf_MCollectible
A pointer to the key of the (key, value) pair that the method determined as the
member.

SOMF_NIL The object was not found.

Example
somf_TDictionary d;
<your Class which inherits from somf_MCollectible> obj;
Environment *ev;

ev = somGetGlobalEnvironment();

d = somf_TDictionaryNew();
obj = <your Class which inherits from somf_MCollectible>New();

/* Add some objects to d */

/* See if obj is in d */
if (somf_TDictionary_somfMember(d, ev, obj) == SOMF_NIL)
 somPrintf(”\n obj is NOT in d\n”);
else
 somPrintf(”\n obj IS in d\n”);

_somFree (d);

Original Class
somf_TCollection (overridden here)

somf_TDictionary class

 133Collection Classes Reference Manual

somfRemove Method
Purpose

Removes from the dictionary the (key, value) pair associated with a given key.

IDL Syntax
somf_MCollectible somfRemove (in somf_MCollectible key);

Description
The somfRemove method removes from the dictionary the (key, value) pair associated with the
specified key object.

C cannot handle methods from different classes having the same name when they inherit the
name from different parents. Since somf_TDictionary uses somf_THashTable, then the
name of the method will have to be fully qualified (as somf_TDictionary_somfRemove, for
example). This is the only way the linker can tell them apart.

This is not a problem in C++. In C++ you could have referenced this method as:
 d–>somfRemove(ev, obj);

Parameters
receiver A pointer to an object of class somf_TDictionary.

ev A pointer to the Environment structure for the calling method.

key A pointer to the somf_MCollectible object representing the key to be removed
from the dictionary.

Return Value
There are two possible valid return values for this method:

somf_MCollectible
A pointer to the value of the (key, value) pair that was removed.

SOMF_NIL The key object was not found.

Example
somf_TDictionary d;
<your Class which inherits from somf_MCollectible> key;
Environment *ev;

ev = somGetGlobalEnvironment();

d = somf_TDictionaryNew();
key = <your Class which inherits from somf_MCollectible>New();

/* Add a lot of objects to d */

if (somf_TDictionary_somfRemove(d, ev, key) == SOMF_NIL)
 somPrintf(” Why did Remove say key was not removed?\n”);

_somFree (d);
_somFree (key);

Original Class
somf_TCollection (overridden here)

Related Information
Methods: somfRemoveAll

somf_TDictionary class

 134 SOMobjects Developer Toolkit

somfRemoveAll Method

Purpose
Removes all of the (key, value) pairs from a dictionary.

IDL Syntax
void somfRemoveAll ();

Description
The somfRemoveAll method removes all of the (key, value) pairs from the dictionary that is the
receiving object.

C cannot handle methods from different classes having the same name when they inherit the
name from different parents. Since somf_TDictionary uses somf_THashTable, the name of
the method will have to be fully qualified (for example: somf_TDictionary_somfRemoveAll).
This is the only way the linker can tell them apart.

This is not a problem in C++. In C++ you could have referenced this method as:
 d–>somfRemoveAll(ev);

Parameters
receiver A pointer to an object of class somf_TDictionary.

ev A pointer to the Environment structure for the calling method.

Return Value
None.

Example
somf_TDictionary d;
Environment *ev;

ev = somGetGlobalEnvironment();

d = somf_TDictionaryNew();

/* Add a lot of objects to d */

/* remove all the objects from d */
somf_TDictionary_somfRemoveAll(d,ev);

_somFree (d);

Original Class
somf_TCollection (overridden here)

Related Information
Methods: somfRemove

somf_TDictionary class

 135Collection Classes Reference Manual

somfSetHashFunction Method
Purpose

Sets a dictionary’s hash-function pointer to a given method.

IDL Syntax
void somfSetHashFunction (in somf_MCollectibleHashFn fn);

Description
The somfSetHashFunction method sets the pointer for the dictionary’s hash function to the
specified method fn. By default, this pointer is set to somf_MCollectible’s somfHash method
(which is usually overridden in the objects that are added to the hash table). Normally, a client
program does not invoke this method.

C cannot handle methods from different classes having the same name when they inherit the
name from different parents. Since somf_TDictionary uses somf_THashTable, the name of
this method will have to be fully qualified (as somf_TDictionary_somfSetHashFunction, for
example). This is the only way the linker can tell them apart.

This is not a problem in C++. In C++ you could have referenced this method as:
 d–>somfSetHashFunction(ev);

Parameters
receiver A pointer to an object of class somf_TDictionary.

ev A pointer to the Environment structure for the calling method.

fn A method pointer specifying a somfHash type method.

This argument should always be set to
 somf_MCollectibleClassData.somfHash
This specification is necessary because SOM needs a pointer to the original
declaration of the method, which resides in somf_MCollectible. The
somf_TDictionary object will use this pointer to access the somfHash
method that was declared and defined in the object being inserted into, or
removed from, the somf_TDictionary object.

Return Value
None.

Example
somf_TDictionary d;
Environment *ev;

ev = somGetGlobalEnvironment();

d = somf_TDictionaryNew();

somf_TDictionary_somfSetHashFunction(d, ev,
 somf_MCollectibleClassData.somfHash);

_somFree (d);

Original Class
somf_TDictionary

Related Information
Methods: somfGetHashFunction

somf_TDictionary class

 136 SOMobjects Developer Toolkit

somfTDictionaryInitD Method

Purpose
Initializes a new dictionary, setting it equal to another specified dictionary.

IDL Syntax
somf_TDictionary somfTDictionaryInitD (in somf_TDictionary dictionary);

Description
The somfTDictionaryInitD method initializes the new dictionary represented by the receiving
object. The method also sets the new dictionary equal to another specified dictionary. This
implies that the instance data of the new dictionary will be set equal to those of the source
dictionary.

Note: You cannot override this method.

Parameters
receiver A pointer to an object of class somf_TDictionary.

ev A pointer to the Environment structure for the calling method.

dictionary A pointer to the dictionary to which the receiving object will be equal.

Return Value
This method returns a pointer to an initialized somf_TDictionary object representing the new
dictionary.

Example
somf_TDictionary d2;
somf_TDictionary d7;
Environment *ev;

ev = somGetGlobalEnvironment();

d2 = somf_TDictionaryNew();
d7 = somf_TDictionaryNew();
_somfTDictionaryInitD(d7, ev, d2);

_somFree (d2);
_somFree (d7);

Original Class
somf_TDictionary

Related Information
Methods: somfTDictionaryInitFLL, somfTDictionaryInitFL, somfTDictionaryInitF,
somfTDictionaryInitLLF, somfTDictionaryInitLL, somfTDictionaryInitL

somf_TDictionary class

 137Collection Classes Reference Manual

somfTDictionaryInitF Method

Purpose
Initializes a new dictionary, given its comparison test method.

IDL Syntax
somf_TDictionary somfTDictionaryInitF (in somf_MCollectibleCompareFn testfn);

Description
The somfTDictionaryInitF method initializes a new dictionary, given its comparison test
method.

When a somfDictionaryInit... method does not include arguments for the dictionary’s table
size or growth rate, a default number of (key, value) pairs is assumed for the initial size, and the
table subsequently grows by a default number of pairs once the dictionary contains a number of
pairs approaching the current table size.

Note: You cannot override this method.

Parameters
receiver A pointer to an object of class somf_TDictionary.

ev A pointer to the Environment structure for the calling method.

testfn A method pointer specifying either a somfIsEqual or somfIsSame method.

This argument should always be set to either
 somf_MCollectibleClassData.somfIsSame or
 somf_MCollectibleClassData.somfIsEqual.
This specification is necessary because SOM needs a pointer to the original
declaration of the method, which resides in somf_MCollectible. The
somf_TDictionary object will use this pointer to access the somfIsSame or
somfIsEqual method that was declared and defined in the object being
inserted into, or removed from, the somf_TDictionary object.

Return Value
This method returns a pointer to an initialized somf_TDictionary object representing the new
dictionary.

Example
somf_TDictionary d3;
Environment *ev;

ev = somGetGlobalEnvironment();

d3 = somf_TDictionaryNew();
_somfTDictionaryInitF(d3, ev,
 somf_MCollectibleClassData.somfIsEqual);

_somFree (d3);

Original Class
somf_TDictionary

Related Information
Methods: somfTDictionaryInitFLL, somfTDictionaryInitFL, somfTDictionaryInitLLF,
somfTDictionaryInitLL, somfTDictionaryInitL, somfTDictionaryInitD

somf_TDictionary class

 138 SOMobjects Developer Toolkit

somfTDictionaryInitFL Method
Purpose

Initializes a new dictionary, given its comparison test method and its initial size.

IDL Syntax
somf_TDictionary somfTDictionaryInitFL (

in somf_MCollectibleCompareFn testfn,
 in long sizeHint);

Description
The somfTDictionaryInitFL method initializes a new dictionary, given its comparison test
method and its initial size.

When a somfDictionaryInit... method does not include an argument for the dictionary’s growth
rate, the initial table size will grow by a default number of pairs once the table contains a number
of pairs that approaches the specified size.

Note: You cannot override this method.

Parameters
receiver A pointer to an object of class somf_TDictionary.

ev A pointer to the Environment structure for the calling method.

testfn A method pointer specifying either a somfIsEqual or somfIsSame method.

This argument should always be set to either
 somf_MCollectibleClassData.somfIsSame or
 somf_MCollectibleClassData.somfIsEqual.
This specification is necessary because SOM needs a pointer to the original
declaration of the method, which resides in somf_MCollectible. The
somf_TDictionary object will use this pointer to access the somfIsSame or
somfIsEqual method that was declared and defined in the object being
inserted into, or removed from, the somf_TDictionary object.

sizeHint The initial size of the dictionary, expressed as the number of (key, value) pairs
to expect.

Return Value
This method returns a pointer to an initialized somf_TDictionary object representing the new
dictionary.

Example
somf_TDictionary d2;
Environment *ev;

ev = somGetGlobalEnvironment();

d2 = somf_TDictionaryNew();
_somfTDictionaryInitFL(d2, ev,
 somf_MCollectibleClassData.somfIsEqual, 8);

_somFree (d2);

Original Class
somf_TDictionary

Related Information
Methods: somfTDictionaryInitFLL, somfTDictionaryInitF, somfTDictionaryInitLLF,
somfTDictionaryInitLL, somfTDictionaryInitL, somfTDictionaryInitD

somf_TDictionary class

 139Collection Classes Reference Manual

somfTDictionaryInitFLL Method

Purpose
Initializes a new dictionary, given its comparison test method, its initial size, and its initial growth
rate. Note: This method is equivalent to the somfTDictionaryInitLLF method.

IDL Syntax
somf_TDictionary somfTDictionaryInitFLL (

in somf_MCollectibleCompareFn testfn,
 in long sizeHint,
 in long growthRate);

Description
The somfTDictionaryInitFLL method initializes a new dictionary, given its comparison test
method, its initial size, and its growth rate.

Note: You cannot override this method.

Parameters
receiver A pointer to an object of class somf_TDictionary.

ev A pointer to the Environment structure for the calling method.

testfn A method pointer specifying either a somfIsEqual or somfIsSame method.

This argument should always be set to either
 somf_MCollectibleClassData.somfIsSame or
 somf_MCollectibleClassData.somfIsEqual.
This specification is necessary because SOM needs a pointer to the original
declaration of the method, which resides in somf_MCollectible. The
somf_TDictionary object will use this pointer to access the somfIsSame or
somfIsEqual method that was declared and defined in the object being
inserted into, or removed from, the somf_TDictionary object.

sizeHint The initial size of the dictionary, expressed as the number of (key, value) pairs
to expect.

growthRate The initial growth rate, expressed as the number of (key, value) pairs by which
to increment the allocated size when growth occurs.

Return Value
This method returns a pointer to the initialized somf_TDictionary object representing the new
dictionary.

Example
somf_TDictionary d1;
Environment *ev;

ev = somGetGlobalEnvironment();

d1 = somf_TDictionaryNew();
_somfTDictionaryInitFLL(d1, ev,
 somf_MCollectibleClassData.somfIsEqual, 8, 8);

_somFree (d1);

somf_TDictionary class

 140 SOMobjects Developer Toolkit

Original Class
somf_TDictionary

Related Information
Methods: somfTDictionaryInitFL, somfTDictionaryInitF, somfTDictionaryInitLLF,
somfTDictionaryInitLL, somfTDictionaryInitL, somfTDictionaryInitD

somf_TDictionary class

 141Collection Classes Reference Manual

somfTDictionaryInitL Method

Purpose
Initializes a new dictionary, given its initial size.

IDL Syntax
somf_TDictionary somfTDictionaryInitL (in long sizeHint);

Description
The somfTDictionaryInitL method initializes a new dictionary, given its initial size.

When a somfDictionaryInit... method does not include an argument for the dictionary’s growth
rate, the initial table size will grow by a default number of pairs once the table contains a number
of pairs that approaches the specified size. When a comparison method is not specified, the
default somfIsEqual method is used unless the somfSetHashFunction method has changed
it to somfIsSame.

Note: You cannot override this method.

Parameters
receiver A pointer to an object of class somf_TDictionary.

ev A pointer to the Environment structure for the calling method.

sizeHint The initial size of the dictionary, expressed as the number of (key, value) pairs
to expect.

Return Value
This method returns a pointer to an initialized somf_TDictionary object representing the new
dictionary.

Example
somf_TDictionary d6;
Environment *ev;

ev = somGetGlobalEnvironment();

d6 = somf_TDictionaryNew();
_somfTDictionaryInitL(d6, ev, 8);

_somFree (d6);

Original Class
somf_TDictionary

Related Information
Methods: somfTDictionaryInitFLL, somfTDictionaryInitFL, somfTDictionaryInitF,
somfTDictionaryInitLLF, somfTDictionaryInitLL, somfTDictionaryInitD

somf_TDictionary class

 142 SOMobjects Developer Toolkit

somfTDictionaryInitLL Method

Purpose
Initializes a new dictionary, given its initial size and its initial growth rate.

IDL Syntax
somf_TDictionary somfTDictionaryInitLL (

in long sizeHint,
 in long growthRate);

Description
The somfTDictionaryInitLL method initializes a new dictionary, given its initial size and its
initial growth rate. The default somfIsEqual method is used as the comparison method, unless
the somfSetHashFunction method has changed it to somfIsSame.

Note: You cannot override this method.

Parameters
receiver A pointer to an object of class somf_TDictionary.

ev A pointer to the Environment structure for the calling method.

sizeHint The initial size of the dictionary, expressed as the number of (key, value) pairs
to expect.

growthRate The initial growth rate, expressed as the number of (key, value) pairs by which
to increment the allocated size when growth occurs.

Return Value
This method returns a pointer to an initialized somf_TDictionary object representing the new
dictionary.

Example
somf_TDictionary d5;
Environment *ev;

ev = somGetGlobalEnvironment();

d5 = somf_TDictionaryNew();
_somfTDictionaryInitLL(d5, ev, 8, 8);

_somFree (d5);

Original Class
somf_TDictionary

Related Information
Methods: somfTDictionaryInitFLL, somfTDictionaryInitFL, somfTDictionaryInitF,
somfTDictionaryInitLLF, somfTDictionaryInitL, somfTDictionaryInitD

somf_TDictionary class

 143Collection Classes Reference Manual

somfTDictionaryInitLLF Method

Purpose
Initializes a new dictionary, given its initial size, its initial growth rate, and its comparison test
method. Note: This method is equivalent to the somfTDictionaryInitFLL method.

IDL Syntax
somf_TDictionary somfTDictionaryInitLLF (

in long sizeHint,
 in long growthRate,
 in somf_MCollectibleCompareFn testfn);

Description
The somfTDictionaryInitLLF method initializes a new dictionary, given its initial size, its initial
growth rate, and its comparison test method.

Note: You cannot override this method.

Parameters
receiver A pointer to an object of class somf_TDictionary.

ev A pointer to the Environment structure for the calling method.

sizeHint The initial size of the dictionary, expressed as the number of (key, value) pairs
to expect.

growthRate The initial growth rate, expressed as the number of (key, value) pairs by which
to increment the allocated size when growth occurs.

testfn A method pointer specifying either a somfIsEqual or somfIsSame method.

This argument should always be set to either
 somf_MCollectibleClassData.somfIsSame or
 somf_MCollectibleClassData.somfIsEqual.
This specification is necessary because SOM needs a pointer to the original
declaration of the method, which resides in somf_MCollectible. The
somf_TDictionary object will use this pointer to access the somfIsSame or
somfIsEqual method that was declared and defined in the object being
inserted into, or removed from, the somf_TDictionary object.

Return Value
This method returns a pointer to an initialized somf_TDictionary object representing the new
dictionary.

Example
somf_TDictionary d4;
Environment *ev;

ev = somGetGlobalEnvironment();

d4 = somf_TDictionaryNew();
_somfTDictionaryInitLLF(d4, ev, 8, 8,
 somf_MCollectibleClassData.somfIsEqual);

_somFree (d4);

somf_TDictionary class

 144 SOMobjects Developer Toolkit

Original Class
somf_TDictionary

Related Information
Methods: somfTDictionaryInitFLL, somfTDictionaryInitFL, somfTDictionaryInitF,
somfTDictionaryInitLL, somfTDictionaryInitL, somfTDictionaryInitD

somf_TDictionary class

 145Collection Classes Reference Manual

somfValueAt Method

Purpose
Gets the value associated with a given key for a (key, value) pair in a dictionary.

IDL Syntax
somf_MCollectible somfValueAt (in somf_MCollectible key);

Description
The somfValueAt method finds the value associated with the specified key for a (key, value)
pair in a dictionary, and returns a pointer to the value.

Parameters
receiver A pointer to an object of class somf_TDictionary.

ev A pointer to the Environment structure for the calling method.

key A pointer to a somf_MCollectible object that is the key to be searched for.

Return Value
There are two possible valid return values for this method:

somf_MCollectible
A pointer to the somf_MCollectible object that is the value associated with the
key.

SOMF_NIL The key was not found in the dictionary.

Example
somf_TDictionary d;
somf_MCollectible value;
<your Class which inherits from somf_MCollectible> key;
Environment *ev;

ev = somGetGlobalEnvironment();

d = somf_TDictionaryNew();
key = <your Class which inherits from somf_MCollectible>New();

/* Add a lot of objects to d */

value = _somfValueAt(d, ev, key);

_somFree (d);
_somFree (key);

Original Class
somf_TDictionary

somf_TDictionaryIterator class

 146 SOMobjects Developer Toolkit

somf_TDictionaryIterator Class

Description
The somf_TDictionaryIterator class defines an iterator for the somf_TDictionary class that
will iterate over all of the objects in a dictionary.

When you link, include the following library reference to get access to this class: somtk

Warning: Do not be misled by the interface of methods in this class. Recall that each entry in a
somf_TDictionary is actually an object of the somf_TAssoc class that holds a (key, value)
pair. Thus, the somfFirst and somfNext methods in the somf_TDictionaryIterator class
actually return somf_TAssoc objects, not simply objects of the somf_MCollectible class. You
must handle the return values as if they were somf_TAssoc’s.

Although the methods in this class are reentrant, the class is not thread-safe on multi-thread
applications. If a pointer to an instance of this class will be passed to multiple threads, the code
in those threads must guarantee thread-safe usage of the class.

File Stem
tdictitr

Base
somf_TIterator

Metaclass
SOMClass

Ancestor Classes
somf_TIterator, SOMObject

New Methods
somfTDictionaryIteratorInit

Overriding Methods
somInit
somUninit
somfFirst
somfNext
somfRemove

somf_TDictionaryIterator class

 147Collection Classes Reference Manual

somfFirst Method

Purpose
Resets the iterator and returns the first (key, value) pair from a dictionary.

IDL Syntax
somf_MCollectible somfFirst ();

Description
The somfFirst method resets the iterator and returns the first (key, value) pair from the
dictionary of the dictionary iterator represented by the receiving object.

This resets the iterator to the beginning of the dictionary. This is true not only for the first time you
use the iterator; it is also true if other operations on the dictionary cause the iterator to be
invalidated. In the second case, the method also revalidates the iterator.

Do not be misled by this method’s interface, which is inherited from the somf_TIterator class.
The only objects returned with somfFirst are (key, value) pairs of the somf_TAssoc class. You
cannot use the return value as a generic somf_MCollectible object.

C cannot handle methods from different classes having the same name when they inherit the
name from different parents. somfFirst is a method name declared in multiple parents (for
example: somf_TSequence, somf_TIterator, etc.). You will probably have to fully qualify the
method name (for example: somf_TDictionaryIterator_somfFirst). This is the only way the
linker can tell them apart.

This is not a problem in C++. In C++ you could have referenced this method as:
 itr–>somfFirst(ev);

Parameters
receiver A pointer to an object of class somf_TDictionaryIterator.

ev A pointer to the Environment structure for the calling method.

Return Value
This method returns a pointer to the first somf_MCollectible object in the dictionary. Or,
SOMF_NIL is returned if the collection is empty.

Example
somf_TDictionary d;
Environment *ev;
somf_TDictionaryIterator itr;
somf_TAssoc itrobj;
somf_MCollectible objk;
somf_MCollectible objv;

ev = somGetGlobalEnvironment();

d = somf_TDictionaryNew();
itr = somf_TDictionaryIteratorNew();
_somfTDictionaryIteratorInit(itr, ev, d);

/* Add some object to d */

/* Iterate through the TDictionary */
itrobj = somf_TDictionaryIterator_somfFirst(itr,ev);

somf_TDictionaryIterator class

 148 SOMobjects Developer Toolkit

while (itrobj != SOMF_NIL)
{
 objk = _somfGetKey(itrobj,ev);
 objv = _somfGetValue(itrobj,ev);

 /* Do something with objk or objv */

 itrobj = _somfNext(itr,ev);
}

_somFree (d);
_somFree (itr);

Original Class
somf_TIterator (overridden here)

Related Information
Methods: somfNext

somf_TDictionaryIterator class

 149Collection Classes Reference Manual

somfNext Method

Purpose
Gets the next (key, value) pair in the dictionary of a given dictionary iterator.

IDL Syntax
somf_MCollectible somfNext ();

Description
The somfNext method determines the next (key, value) pair in the dictionary of the specified
dictionary iterator. The method also returns a pointer to the next (key, value) pair, if found.
Objects are retrieved in an order that reflects the “ordered-ness” of the dictionary (or the lack of
ordering on the dictionary objects).

Do not be misled by this method’s interface, which is inherited from the somf_TIterator class.
The only objects returned with somfNext are (key, value) pairs of the somf_TAssoc class. You
cannot use the return value as a generic somf_MCollectible object.

If the dictionary has changed since the last time somfFirst was called (other than through the
use of the somfRemove method of this iterator), this method will fail.

C cannot handle methods from different classes having the same name when they inherit the
name from different parents. Thus, if any child of somf_TIterator is used with an object of the
somf_TPrimitiveLinkedListIterator class, then the name of the method must be fully qualified
(for example: somf_TDictionaryIterator_somfNext). This is the only way the linker can tell
them apart.

This is not a problem in C++. In C++ you could have referenced this method as:
 itr–>somfNext(ev);

Parameters
receiver A pointer to an object of class somf_TDictionaryIterator.

ev A pointer to the Environment structure for the calling method.

Return Value
There are two possible valid return values for this method:

somf_MCollectible
A pointer to the next somf_MCollectible object in the dictionary.

SOMF_NIL The end of the dictionary has been reached.

Example
somf_TDictionary d;
Environment *ev;
somf_TDictionaryIterator itr;
somf_TAssoc itrobj;
somf_MCollectible objk;
somf_MCollectible objv;

ev = somGetGlobalEnvironment();

d = somf_TDictionaryNew();
itr = somf_TDictionaryIteratorNew();
_somfTDictionaryIteratorInit(itr, ev, d);

somf_TDictionaryIterator class

 150 SOMobjects Developer Toolkit

/* Add some object to d */

/* Iterate through the TDictionary */
itrobj = somf_TDictionaryIterator_somfFirst(itr,ev);
while (itrobj != SOMF_NIL)
{
 objk = _somfGetKey(itrobj,ev);
 objv = _somfGetValue(obj,ev);

 /* Do something with objk or objv */

 itrobj = _somfNext(itr,ev);
}

_somFree (d);
_somFree (itr);

Original Class
somf_TIterator (overridden here)

Related Information
Methods: somfFirst

somf_TDictionaryIterator class

 151Collection Classes Reference Manual

somfRemove Method

Purpose
Removes the current (key, value) pair (the one just returned by somfFirst or somfNext) from
the dictionary.

IDL Syntax
void somfRemove ();

Description
The somfRemove method removes the current (key, value) pair (the object just returned by
somfFirst or somfNext) from the dictionary that corresponds to the dictionary iterator repre-
sented by the receiving object.

The somfRemove method is the only way to remove a (key, value) object from a dictionary
during iteration. However, if multiple iterators are in process, all the other iterators are invali-
dated, just as if some other kind of change had occurred in the dictionary.

If the dictionary has changed since the last time somfFirst was called (other than through the
use of the somfRemove method of this iterator), this method will fail.

C cannot handle methods from different classes having the same name when they inherit the
name from different parents. somfRemove is a method name declared in multiple parents (for
example: somf_TCollection, somf_THashTable, somf_TIterator, etc.) You will probably
have to fully qualify the method name (as somf_TDictionaryIterator_somfRemove, for ex-
ample). This is the only way the linker can tell them apart.

This is not a problem in C++. In C++ you could have referenced this method as:
 itr–>somfRemove(ev);

Parameters
receiver A pointer to an object of class somf_TDictionaryIterator.

ev A pointer to the Environment structure for the calling method.

Return Value
None.

Example
somf_TDictionary d;
Environment *ev;
somf_TDictionaryIterator itr;
somf_MCollectible itrobj;

ev = somGetGlobalEnvironment();

d = somf_TDictionaryNew();
itr = somf_TDictionaryIteratorNew();
_somfTDictionaryIteratorInit(itr, ev, d);

/* Add some objects to d */

/* Use the Iterator’s Remove to remove the first object */
itrobj = somf_TDictionaryIterator_somfFirst(itr,ev);
somf_TDictionaryIterator_somfRemove(itr,ev);

somf_TDictionaryIterator class

 152 SOMobjects Developer Toolkit

_somFree (d);
_somFree (itr);

Original Class
somf_TIterator (overridden here)

somf_TDictionaryIterator class

 153Collection Classes Reference Manual

somfTDictionaryIteratorInit Method

Purpose
Initializes a somf_TDictionaryIterator iterator for a specified dictionary.

IDL Syntax
somf_TDictionaryIterator somfTDictionaryIteratorInit (in somf_TDictionary h);

Description
The somfTDictionaryIteratorInit method initializes an iterator of somf_TDictionaryIterator
class, given the somf_TDictionary dictionary over which iteration is needed.

Note: This is one of two ways to initialize a somf_TDictionaryIterator to point to an instance
of a somf_TDictionary dictionary. The other way is to use the somf_TDictionary
class’s somfCreateIterator method described on page 114.

Note: You cannot override this method.

Parameters
receiver A pointer to an object of class somf_TDictionaryIterator.

ev A pointer to the Environment structure for the calling method.

h A pointer to the dictionary object that the receiving object will iterate over.

Return Value
This method returns a pointer to an initialized somf_TDictionaryIterator object.

Example
somf_TDictionary d;
Environment *ev;
somf_TDictionaryIterator itr;

ev = somGetGlobalEnvironment();

d = somf_TDictionaryNew();
itr = somf_TDictionaryIteratorNew();
_somfTDictionaryIteratorInit(itr, ev, d);

_somFree (d);
_somFree (itr);

Original Class
somf_TDictionaryIterator

somf_THashTable class

 154 SOMobjects Developer Toolkit

somf_THashTable Class
Description

Every hash table contains a set of (key, value) pairs that associate a key with a value. Hash
tables provide fast lookup of a value when given its associated key, even if there are a large
number of entries in the table. Methods are provided for the usual operations (insert, delete, and
so forth) as well as for controlling when rehashing will occur, and the growth of the table when a
rehash occurs.

When you link, include the following library reference to get access to this class: somtk

As for the somf_TDictionary class, each entry in a somf_THashTable is actually an object of
the somf_TAssoc class that holds a (key, value) pair. In most cases, this use of a
somf_TAssoc object is transparent to the user. However, you need to be aware of this
somf_TAssoc usage, because some somf_THashTable methods address the data as sepa-
rate “key” and “value” parts of a pair, whereas other methods accept or return a
single somf_TAssoc object representing the (key, value) pair.

The somf_THashTable class is very similar to somf_TDictionary. The primary difference is
that somf_THashTable inherits directly from the somf_MCollectible class, whereas
somf_TDictionary is another level down, inheriting from somf_TCollection. (Recall that all
main collection classes except somf_THashTable inherit from the somf_TCollection class.)
The other distinction is that the somf_THashTable class uses the somfIsSame method as its
default comparison function, whereas somf_TDictionary uses somfIsEqual.

Objects inserted into a somf_THashTable collection must inherit from somf_MCollectible.
In addition, they should override the somfHash method, and the somfIsEqual method. These
methods are used internally by objects of the somf_THashTable class.

Because somf_THashTable takes somf_MCollectible objects as members, any class that
inherits from somf_MCollectible can be a member of the hash table. This means, for example,
that you can have a hash table containing somf_TDeque objects, or objects of any main
collection class.

Note: The somf_THashTable class uses the somfIsSame method as the default comparison
function. That is, if key1=”Bart” and key2=”Bart”, key1 and key2 are not the
same. Only key1 is the same as key1. If you don’t want to use the somfIsSame method
to equate entries, use one of the initialization methods to change to the somfIsEqual
method. Just be aware that if the comparison methods are changed, the objects in-
serted into the somf_THashTable must have somfIsEqual and somfHash overrid-
den.

Note: This Hash Table does not allow two (key, value) pairs to have the same key. Two
separate, distinct pairs can hash to the same hash value, but the instantiation of each
original key must be unique.

Although the methods in this class are reentrant, the class is not thread-safe on multi-thread
applications. If a pointer to an instance of this class will be passed to multiple threads, the code
in those threads must guarantee thread-safe usage of the class.

File Stem
thash

Base
somf_MCollectible

Metaclass
SOMClass

somf_THashTable class

 155Collection Classes Reference Manual

Ancestor Classes
somf_MCollectible, SOMObject

New Methods
somfCount
somfRemove
somfDelete
somfMember
somfRemoveAll
somfDeleteAll
somfDeleteAllKeys
somfDeleteAllValues
somfAddMMB
somfAddMM
somfGrow
somfRetrieve
somfSetGrowthRate
somfSetRehashThreshold
somfGetGrowthRate
somfGetRehashThreshold
somfSetHashFunction
somfGetHashFunction
somfAssign,
somfTHashTableInitFLLL
somfTHashTableInitFLL
somfTHashTableInitFL
somfTHashTableInitH

Overriding Methods
somInit
somUninit

somf_THashTable class

 156 SOMobjects Developer Toolkit

somfAddMM Method

Purpose
Adds a (key, value) pair to the hash table. This method will replace a copy (a pair having the
same key) if one already exists.

IDL Syntax
somf_MCollectible somfAddMM (

in somf_MCollectible key,
 in somf_MCollectible value);

Description
The somfAddMM method adds the specified (key, value) pair to the hash table. If the hash
table contains an existing (key,value) pair for key, the method removes the existing value, adds
the new value, and returns the existing value of the conflicting (key, value) pair.

Using the specified key and value arguments, this method transparently creates an object of
the somf_TAssoc class, before adding the new (key, value) pair to the hash table.

Note: You cannot override this method.

Parameters
receiver A pointer to an object of class somf_THashTable.

ev A pointer to the Environment structure for the calling method.

key A pointer to a somf_MCollectible object that will be the key of the associated
pair.

value A pointer to a somf_MCollectible object that will be the value of the
associated pair.

Return Value
There are two possible valid return values for this method:

somf_MCollectible
A pointer to the somf_MCollectible object that was removed when value was
inserted.

SOMF_NIL No object had to be removed to add the new (key, value) pair.

Example
somf_THashTable ht;
<Your Class which inherits from somf_MCollectible> obj;
<Your Class which inherits from somf_MCollectible> obj2;
Environment *ev;

ev = somGetGlobalEnvironment();

obj = <Your Class which inherits from somf_MCollectible>New();
obj2 = <Your Class which inherits from somf_MCollectible>New();
ht = somf_THashTableNew();

if (_somfAddMM(ht, ev, obj, obj2) != SOMF_NIL)
 somPrintf(”\n problem adding obj,obj2 to ht\n”);

_somFree (ht);

somf_THashTable class

 157Collection Classes Reference Manual

_somFree (obj);
_somFree (obj2);

Original Class
somf_THashTable

Related Information
Methods: somfAddMMB

somf_THashTable class

 158 SOMobjects Developer Toolkit

somfAddMMB Method

Purpose
Adds a (key, value) pair to the hash table, unless the boolean argument prohibits replacement of
a copy (a pair with the same key).

IDL Syntax
somf_MCollectible somfAddMMB (

in somf_MCollectible key,
 in somf_MCollectible value,
 in boolean replace);

Description
The somfAddMMB method adds the stipulated key/value pair to the hash table represented by
the receiving object, unless the boolean argument prohibits replacement of a conflicting
(key, value) pair.

If replace = TRUE, the (key, value) pair is added to the hash table regardless of whether a copy
(that is, a pair having the same key) already exists. Otherwise, if replace = FALSE, then the
(key, value) pair is added to the hash table only if a copy does not exist.

Using the specified key and value arguments, this method transparently creates an object of
the somf_TAssoc class, before adding the new (key, value) pair to the hash table.

Note: You cannot override this method.

Parameters
receiver A pointer to an object of class somf_THashTable.

ev A pointer to the Environment structure for the calling method.

key A pointer to a somf_MCollectible object that is the key of the associated pair.

value A pointer to a somf_MCollectible object that is the value of the associated
pair.

replace A boolean indicating whether an already existing pair with an identical key
should be replaced.

Return Value
There are two possible valid return values for this method:

somf_MCollectible
A pointer to the somf_MCollectible value that had to be removed in order to
add a new (key, value) pair.

SOMF_NIL No somf_MCollectible value had to be removed in order to add the pair.

Example
somf_THashTable ht;
<Your Class which inherits from somf_MCollectible> obj2;
<Your Class which inherits from somf_MCollectible> obj3;
Environment *ev;

ev = somGetGlobalEnvironment();

obj2 = <Your Class which inherits from somf_MCollectible>New();
obj3 = <Your Class which inherits from somf_MCollectible>New();
ht = somf_THashTableNew();

somf_THashTable class

 159Collection Classes Reference Manual

if (_somfAddMMB(ht, ev, obj2, obj3, FALSE) != SOMF_NIL)
 somPrintf(”\n problem adding obj2,obj3 to ht\n”);

_somFree (ht);
_somFree (obj2);
_somFree (obj3);

Original Class
somf_THashTable

Related Information
Methods: somfAddMM

somf_THashTable class

 160 SOMobjects Developer Toolkit

somfAssign Method

Purpose
Assigns a hash table as being equal to a given source hash table.

IDL Syntax
void somfAssign (in somf_THashTable source);

Description
The somfAssign method assigns the hash-table receiving object to be “equal” to the source
hash table object. That is, the method sets/resets the instance variables of the receiver to the
values of the source. This operation is logically equivalent to using the “=” operator.

C cannot handle methods from different classes having the same name when they inherit the
name from different parents. Thus, if any child of somf_THashTable is used with any other
main collection class, then the name of the method must be fully qualified (for example:
somf_THashTable_somfAssign). This is the only way the linker can tell them apart.

This is not a problem in C++. In C++ you could have referenced this method as:
 d–>somfAssign(ev, obj);

Parameters
receiver A pointer to an object of class somf_THashTable.

ev A pointer to the Environment structure for the calling method.

source A pointer to the somf_THashTable to which the receiving object should be set
equal.

Return Value
None.

Example
somf_THashTable h1;
somf_THashTable h2;
Environment *ev;

ev = somGetGlobalEnvironment();
h1 = somf_THashTableNew();
h2 = somf_THashTableNew();

/* Add a lot of objects to h1 */

/* Assign h2 to the contents of h1 */
somf_THashTable_somfAssign(h2,ev,h1);

_somFree (h1);
_somFree (h2);

Original Class
somf_THashTable

somf_THashTable class

 161Collection Classes Reference Manual

somfCount Method

Purpose
Gets the number of objects in the hash table.

IDL Syntax
long somfCount ();

Description
The somfCount method determines the number of objects in the hash table represented by the
receiving object, and returns the count as a long.

C cannot handle methods from different classes having the same name when they inherit the
name from different parents. Thus, if any child of somf_TCollection is used with a child of
somf_THashTable, then the name of the method will have to be fully qualified (example:
somf_THashTable_somfCount). This is the only way the linker can tell them apart.

This is not a problem in C++. In C++ you could have referenced this method as:
 d–>somfCount(ev);

Note: You cannot override this method.

Parameters
receiver A pointer to an object of class somf_THashTable.

ev A pointer to the Environment structure for the calling method.

Return Value
This method returns the number of objects in the hash table.

Example
somf_THashTable ht;
Environment *ev;

ev = somGetGlobalEnvironment();

ht = somf_THashTableNew();

/* Add some objects to ht */

/* Print the number of objects in ht */
somPrintf(”\n Count of ht= %d\n”, somf_THashTable_somfCount(ht,ev));

_somFree (ht);

Original Class
somf_THashTable

somf_THashTable class

 162 SOMobjects Developer Toolkit

somfDelete Method

Purpose
Deletes a given key and removes the associated (key, value) pair from a hash table, returning a
pointer to the value that was removed.

IDL Syntax
somf_MCollectible somfDelete (in somf_MCollectible key);

Description
The somfDelete method deletes the specified key, and removes the corresponding
(key, value) pair from the hash table. The method returns a pointer to the value from the
(key, value) pair.

Warning: Be careful with somfDelete. A hash table does not contain copies of the objects; it
contains pointers to the objects. Using somfDelete deletes the original object.

Warning: If an attempt is made to delete a somf_MCollectible object that has already been
deleted, this will cause a segmentation violation.

Note: You cannot override this method.

Parameters
receiver A pointer to an object of class somf_THashTable.

ev A pointer to the Environment structure for the calling method.

key A pointer to a somf_MCollectible object that is the key of the (key, value) pair
to be deleted.

Return Value
There are two possible valid return values for this method:

somf_MCollectible
A pointer to the value that was removed because the key was deleted.

SOMF_NIL The key object was not found.

Example
somf_THashTable ht;
<Your Class which inherits from somf_MCollectible> obj;
Environment *ev;

ev = somGetGlobalEnvironment();

obj = <Your Class which inherits from somf_MCollectible>New();
ht = somf_THashTableNew();

/* Add a lot of objects to ht */

/* Remove all occurrences of obj from ht AND DELETE obj */
if (_somfDelete(ht, ev, obj) == SOMF_NIL)
 somPrintf(” Why did Delete say obj wasn’t in ht? \n”);

_somFree (ht);

somf_THashTable class

 163Collection Classes Reference Manual

Original Class
somf_THashTable

Related Information
Methods: somfDeleteAll, somfDeleteAllKeys, somfDeleteAllValues

somf_THashTable class

 164 SOMobjects Developer Toolkit

somfDeleteAll Method

Purpose
Removes all of the (key, value) pairs from a hash table and deallocates the storage that these
pairs might have owned. (That is, the destructor function is called for each object in the hash
table).

IDL Syntax
void somfDeleteAll ();

Description
The somfDeleteAll method removes all of the (key, value) pairs from the hash table repre-
sented by the receiving object. It also deallocates the storage that these pairs might have owned
(that is, the destructor function is called for each object in the hash table).

Be careful with somfDeleteAll. Since a collection only contains pointers to objects (rather than
the objects themselves), somfDeleteAll can cause a problem if a pointer to an object appears
more than once. For example, if multiple pointers to ‘A’ exists, or if a single pointer to ’A’ is in the
collection multiple times, the behavior of the code is undefined, because it will try to delete ‘A’
multiple times. If you think there is a chance that an object could appear in the collection more
than once, you should consider using somfRemoveAll to remove the objects from the collec-
tion and deleting them some other way.

C cannot handle methods from different classes having the same name when they inherit the
name from different parents. Thus, if any child of somf_TCollection is used with a child of
somf_THashTable, then the name of the method will have to be fully qualified (example:
somf_THashTable_somfDeleteAll). This is the only way the linker can tell them apart.

This is not a problem in C++. In C++ you could have referenced this method as:
 d–>somfDeleteAll(ev);

Note: You cannot override this method.

Parameters
receiver A pointer to an object of class somf_THashTable.

ev A pointer to the Environment structure for the calling method.

Return Value
None.

Example
somf_THashTable ht;
Environment *ev;

ev = somGetGlobalEnvironment();

ht = somf_THashTableNew();

/* Add a lot of objects to ht */

/* Remove all objects from ht AND DELETE THEM */
somf_THashTable_somfDeleteAll(ht,ev);

_somFree (ht);

somf_THashTable class

 165Collection Classes Reference Manual

Original Class
somf_THashTable

Related Information
Methods: somfDelete, somfDeleteAllKeys, somfDeleteAllValues

somf_THashTable class

 166 SOMobjects Developer Toolkit

somfDeleteAllKeys Method

Purpose
Removes all of the (key, value) pairs from a hash-table receiving object. However, the program
still owns the values of the (key, value) pairs.

IDL Syntax
void somfDeleteAllKeys ();

Description
The somfDeleteAllKeys method removes all of the (key, value) pairs from the hash table,
deallocates the storage that these objects might have owned, and resets the count to zero.
(That is, the destructor function is called for each key in the hash table.) However, the program
still owns the objects representing the values of the (key, value) pairs.

Warning: Be careful with somfDeleteAllKeys. A hash table does not contain copies of the
objects; it contains pointers to the objects. Using somfDeleteAllKeys deletes the original
object.

Warning: If an attempt is made to delete a somf_MCollectible object that has already been
deleted, this will cause a segmentation violation.

C cannot handle methods from different classes having the same name when they inherit the
name from different parents. Thus, if any child of somf_TCollection is used with a child of
somf_THashTable, then the name of the method will have to be fully qualified (example:
somf_THashTable_somfDeleteAllKeys). This is the only way the linker can tell them apart.

This is not a problem in C++. In C++ you could have referenced this method as:
 d–>somfDeleteAllKeys(ev);

Note: You cannot override this method.

Parameters
receiver A pointer to an object of class somf_THashTable.

ev A pointer to the Environment structure for the calling method.

Return Value
None.

Example
somf_THashTable ht;
Environment *ev;

ev = somGetGlobalEnvironment();

ht = somf_THashTableNew();

/* Add a lot of objects to ht */

/* Remove all objects from ht AND DELETE ALL THE KEYS */
somf_THashTable_somfDeleteAllKeys(ht,ev);

_somFree (ht);

somf_THashTable class

 167Collection Classes Reference Manual

Original Class
somf_THashTable

Related Information
Methods: somfDeleteAll, somfDelete, somfDeleteAllValues

somf_THashTable class

 168 SOMobjects Developer Toolkit

somfDeleteAllValues Method

Purpose
Removes all of the (key, value) pairs from a hash table. However, the program still owns the keys
of the (key, value) pairs.

IDL Syntax
void somfDeleteAllValues ();

Description
The somfDeleteAllValues method removes all of the (key, value) pairs from the hash table
represented by the receiving object. It also deallocates the storage that these objects might
have owned and resets the count to zero (that is, the destructor function is called for each value
in the hash table.) However, the program still owns the objects representing the keys of the
(key, value) pairs.

Warning: Be careful with somfDeleteAllValues. A hash table does not contain copies of the
objects; it contains pointers to the objects. Using somfDeleteAllValues deletes the original
object.

Warning: If an attempt is made to delete a somf_MCollectible object that has already been
deleted, this will cause a segmentation violation.

C cannot handle methods from different classes having the same name when they inherit the
name from different parents. Thus, if any child of somf_TCollection is used with a child of
somf_THashTable, then the name of the method will have to be fully qualified (example:
somf_THashTable_somfDeleteAllValues). This is the only way the linker can tell them apart.

This is not a problem in C++. In C++ you could have referenced this method as:
 d–>somfDeleteAllValues(ev);

Note: You cannot override this method.

Parameters
receiver A pointer to an object of class somf_THashTable.

ev A pointer to the Environment structure for the calling method.

Return Value
None.

Example
somf_THashTable ht;
Environment *ev;

ev = somGetGlobalEnvironment();
ht = somf_THashTableNew();

/* Add a lot of objects to ht */

/* Remove all objects from ht AND DELETE ALL THE VALUES */
somf_THashTable_somfDeleteAllValues(ht,ev);

_somFree (ht);

somf_THashTable class

 169Collection Classes Reference Manual

Original Class
somf_THashTable

Related Information
Methods: somfDeleteAll, somfDeleteAllKeys, somfDelete

somf_THashTable class

 170 SOMobjects Developer Toolkit

somfGetGrowthRate Method

Purpose
Gets the growth rate of a given hash table.

IDL Syntax
long somfGetGrowthRate ();

Description
The somfGetGrowthRate method returns the growth rate of the hash table represented by the
receiving object.

Note: You cannot override this method.

Parameters
receiver A pointer to an object of class somf_THashTable.

ev A pointer to the Environment structure for the calling method.

Return Value
This method returns the growth rate for the hash table.

Example
somf_THashTable ht;
Environment *ev;

ev = somGetGlobalEnvironment();

ht = somf_THashTableNew();

somPrintf(” Rate should be 20 and is %d \n”,
 _somfGetGrowthRate(ht,ev);

_somFree (ht);

Original Class
somf_THashTable

Related Information
Methods: somfSetGrowthRate

somf_THashTable class

 171Collection Classes Reference Manual

somfGetHashFunction Method

Purpose
Gets the hash function used by a given hash table.

IDL Syntax
somf_MCollectibleHashFn somfGetHashFunction ();

Description
The somfGetHashFunction method returns the hash function used by the hash table repre-
sented by the receiving object.

C cannot handle methods from different classes having the same name when they inherit the
name from different parents. Thus, if a child of somf_THashTable is used with a child of
somf_TDictionary or somf_TSet, then the name of the method will have to be fully qualified
(example: somf_THashTable_somfGetHashFunction). This is the only way the linker can tell
them apart.

This is not a problem in C++. In C++ you could have referenced this method as:
 d–>somfGetHashFunction(ev);

Note: You cannot override this method.

Parameters
receiver A pointer to an object of class somf_THashTable.

ev A pointer to the Environment structure for the calling method.

Return Value
This method returns a pointer to the hash function.

Example
somf_THashTable ht;
Environment *ev;

ev = somGetGlobalEnvironment();

ht = somf_THashTableNew();

if ((somf_THashTable_somfGetHashFunction(ht,ev)) !=
 somf_MCollectibleClassData.somfHash)
 somPrintf(”\n What Hash Function are we using?\n”);

_somFree (ht);

Original Class
somf_THashTable

Related Information
Methods: somfSetHashFunction

somf_THashTable class

 172 SOMobjects Developer Toolkit

somfGetRehashThreshold Method

Purpose
Gets the rehash threshold of a given hash table.

IDL Syntax
long somfGetRehashThreshold ();

Description
The somfGetRehashThreshold method returns the rehash threshold of the hash table repre-
sented by the receiving object. The rehash threshold is the percentage of how full the hash table
should be before it needs to grow. For example: 80 means 80% of the hash table should be full
before the table needs to grow.

Note: You cannot override this method.

Parameters
receiver A pointer to an object of class somf_THashTable.

ev A pointer to the Environment structure for the calling method.

Return Value
This method returns the rehash threshold of the hash table.

Example
somf_THashTable ht;
Environment *ev;

ev = somGetGlobalEnvironment();

ht = somf_THashTableNew();

somPrintf(” RehashThreshold should be 80 and is %d \n”,
 _somfGetRehashThreshold(ht,ev));

_somFree (ht);

Original Class
somf_THashTable

Related Information
Methods: somfSetRehashThreshold

somf_THashTable class

 173Collection Classes Reference Manual

somfGrow Method

Purpose
Grows a given hash table.

IDL Syntax
void somfGrow ();

Description
The somfGrow method increases the size allocation for the hash table represented by the
receiving object. Growth is determined by the growth rate argument (if any) specified in the
initialization method for the hash table, or by the growth rate in the somfSetGrowthRate
method.

Note: You cannot override this method.

Parameters
receiver A pointer to an object of class somf_THashTable.

ev A pointer to the Environment structure for the calling method.

Return Value
None.

Example
somf_THashTable ht;
Environment *ev;

ev = somGetGlobalEnvironment();
ht = somf_THashTableNew();

/* Add a lot of objects to ht */

_somfGrow(ht,ev);

_somFree (ht);

Original Class
somf_THashTable

somf_THashTable class

 174 SOMobjects Developer Toolkit

somfMember Method
Purpose

Gets the key of a (key, value) pair in a hash table, if it is found.

IDL Syntax
somf_MCollectible somfMember (in somf_MCollectible key);

Description
The somfMember method determines whether the (key, value) pair corresponding to a speci-
fied key is in the hash table represented by the receiving object and, if so, returns a pointer to
the key object.

C cannot handle methods from different classes having the same name when they inherit the
name from different parents. Thus, if any child of somf_TCollection is used with a child of
somf_THashTable, then the name of the method will have to be fully qualified (example:
somf_THashTable_somfMember). This is the only way the linker can tell them apart.

This is not a problem in C++. In C++ you could have referenced this method as:
 d–>somfMember(ev, key);

Note: You cannot override this method.

Parameters
receiver A pointer to an object of class somf_THashTable.

ev A pointer to the Environment structure for the calling method.

key A pointer to the somf_MCollectible key of the (key, value) pair that may or
may not be a member of the Hash Table.

Return Value
There are two possible valid return values for this method:

somf_MCollectible
A pointer to the key of the (key, value) pair the method determined as the
member.

SOMF_NIL The object was not found.

Example
somf_THashTable ht;
<Your Class which inherits from somf_MCollectible> obj;
Environment *ev;

ev = somGetGlobalEnvironment();

obj = <Your Class which inherits from somf_MCollectible>New();
ht = somf_THashTableNew();

/* Add a lot of objects to ht */

/* See if obj is in ht */
if (somf_THashTable_somfMember(ht, ev,obj) != SOMF_NIL)
 somPrintf(”\n obj IS in ht\n”);
else
 somPrintf(”\n obj is NOT in ht\n”);

_somFree (ht);

Original Class
somf_THashTable

somf_THashTable class

 175Collection Classes Reference Manual

somfRemove Method
Purpose

Removes from the hash table the (key, value) pair associated with a given key.

IDL Syntax
somf_MCollectible somfRemove (in somf_MCollectible key);

Description
The somfRemove method removes from the hash table the (key, value) pair associated with
the specified key object, and returns a pointer to the value that was removed.

C cannot handle methods from different classes having the same name when they inherit the
name from different parents. somfRemove is a method name declared in multiple parents (for
example: somf_TCollection, somf_THashTable, somf_TIterator, etc.) You will probably
have to fully qualify the method name (for example: somf_THashTable_somfRemove). This
is the only way the linker can tell them apart.

This is not a problem in C++. In C++ you could have referenced this method as:
 d–>somfRemove(ev, key);

Note: You cannot override this method.

Parameters
receiver A pointer to an object of class somf_THashTable.

ev A pointer to the Environment structure for the calling method.

key A pointer to the somf_MCollectible key of the (key, value) pair to be removed.

Return Value
There are two possible valid return values for this method:

somf_MCollectible
A pointer to the value of the (key, value) pair that was removed.

SOMF_NIL The key object was not found.

Example
somf_THashTable ht;
<your Class which inherits from somf_MCollectible> key;
Environment *ev;

ev = somGetGlobalEnvironment();

ht = somf_THashTableNew();
key = <your Class which inherits from somf_MCollectible>New();

/* Add a lot of objects to ht */

if (somf_THashTable_somfRemove(ht, ev, key) == SOMF_NIL)
 somPrintf(” Why did Remove say key was not removed?\n”);

_somFree (ht);
_somFree (key);

Original Class
somf_THashTable

Related Information
Methods: somfRemoveAll

somf_THashTable class

 176 SOMobjects Developer Toolkit

somfRemoveAll Method

Purpose
Removes all of the (key, value) pairs from a hash table.

IDL Syntax
void somfRemoveAll ();

Description
The somfRemoveAll method removes all of the (key, value) pairs from the hash table that is
the receiving object.

C cannot handle methods from different classes having the same name when they inherit the
name from different parents. Thus, if any child of somf_TCollection is used with a child of
somf_THashTable, then the name of the method will have to be fully qualified (example:
somf_THashTable_somfRemoveAll). This is the only way the linker can tell them apart.

This is not a problem in C++. In C++ you could have referenced this method as:
 d–>somfRemoveAll(ev);

Note: You cannot override this method.

Parameters
receiver A pointer to an object of class somf_THashTable.

ev A pointer to the Environment structure for the calling method.

Return Value
None.

Example
somf_THashTable ht;
Environment *ev;

ev = somGetGlobalEnvironment();
ht = somf_THashTableNew();

/* Add a lot of objects to ht */

/* Remove all the objects from ht */
somf_THashTable_somfRemoveAll(ht,ev);

_somFree (ht);

Original Class
somf_THashTable

Related Information
Methods: somfRemove

somf_THashTable class

 177Collection Classes Reference Manual

somfRetrieve Method

Purpose
Retrieves the value associated with a given key for a (key, value) pair in a hash table.

IDL Syntax
somf_MCollectible somfRetrieve (in somf_MCollectible key);

Description
The somfRetrieve method finds the value associated with the specified key for a (key, value)
pair in a hash table, and returns a pointer to the value.

Note: You cannot override this method.

Parameters
receiver A pointer to an object of class somf_THashTable.

ev A pointer to the Environment structure for the calling method.

key A pointer to the somf_MCollectible key for the associated value to be
retrieved.

Return Value
There are two possible valid return values for this method:

somf_MCollectible
A pointer to the value associated with the given key.

SOMF_NIL The key was not found in the hash table.

Example
somf_THashTable ht;
<Your Class which inherits from somf_MCollectible> key;
<Your Class which inherits from somf_MCollectible> value;
Environment *ev;

ev = somGetGlobalEnvironment();

key = <Your Class which inherits from somf_MCollectible>New();
ht = somf_THashTableNew();

/* Add some objects to ht */

/* Determine the value associated with key */
value = _somfRetrieve(ht, ev, key);

_somFree (ht);
_somFree (key);

Original Class
somf_THashTable

somf_THashTable class

 178 SOMobjects Developer Toolkit

somfSetGrowthRate Method

Purpose
Sets the growth rate of a hash table.

IDL Syntax
void somfSetGrowthRate (in long rate);

Description
The somfSetGrowthRate method sets the growth rate of the hash table represented by the
receiving object.

Note: You cannot override this method.

Parameters
receiver A pointer to an object of class somf_THashTable.

ev A pointer to the Environment structure for the calling method.

rate The growth rate, expressed as the number of (key, value) pairs by which to
expand the table size when it grows.

Return Value
None.

Example
somf_THashTable ht;
Environment *ev;

ev = somGetGlobalEnvironment();

ht = somf_THashTableNew();

_somfSetGrowthRate(ht, ev, 20);

_somFree (ht);

Original Class
somf_THashTable

Related Information
Methods: somfGetGrowthRate

somf_THashTable class

 179Collection Classes Reference Manual

somfSetHashFunction Method

Purpose
Sets a hash table’s hash function to a given function.

IDL Syntax
void somfSetHashFunction (in somf_MCollectibleHashFn fn);

Description
The somfSetHashFunction method sets the pointer for the hash table’s hash function to the
specified method fn. By default, this pointer is set to somf_MCollectible’s somfHash method
(which is usually overridden in the objects that are added to the hash table). Normally, a client
program does not invoke this method.

C cannot handle methods from different classes having the same name when they inherit the
name from different parents. Thus, if a child of somf_THashTable is used with a child of
somf_TDictionary or somf_TSet, then the name of the method will have to be fully qualified
(example: somf_THashTable_somfSetHashFunction). This is the only way the linker can tell
them apart.

This is not a problem in C++. In C++ you could have referenced this method as:
 d–>somfSetHashFunction(ev, fn);

Note: You cannot override this method.

Parameters
receiver A pointer to an object of class somf_THashTable.

ev A pointer to the Environment structure for the calling method.

fn A method pointer specifying a somfHash type method.

This argument should always be set to
 somf_MCollectibleClassData.somfHash
This specification is necessary because SOM needs a pointer to the original
declaration of the method, which resides in somf_MCollectible. The
somf_THashTable object will use this pointer to access the somfHash
method that was declared and defined in the object being inserted into, or
removed from, the somf_THashTable object.

Return Value
None.

Example
somf_THashTable ht;
Environment *ev;

ev = somGetGlobalEnvironment();

ht = somf_THashTableNew();

somf_THashTable_somfSetHashFunction(ht, ev,

somf_MCollectibleClassData.somfHash);

_somFree (ht);

somf_THashTable class

 180 SOMobjects Developer Toolkit

Original Class
somf_THashTable

Related Information
Methods: somfGetHashFunction

somf_THashTable class

 181Collection Classes Reference Manual

somfSetRehashThreshold Method

Purpose
Sets the rehash threshold of a hash table.

IDL Syntax
void somfSetRehashThreshold (in long threshold);

Description
The somfSetRehashThreshold method sets the rehash threshold of the hash table repre-
sented by the receiving object.

Note: You cannot override this method.

Parameters
receiver A pointer to an object of class somf_THashTable.

ev A pointer to the Environment structure for the calling method.

threshold The rehash threshold, expressed as the percentage of how full the hash table
may become before it grows in size. For example: 80 means 80%.

Return Value
None.

Example
somf_THashTable ht;
Environment *ev;

ev = somGetGlobalEnvironment();

ht = somf_THashTableNew();

_somfSetRehashThreshold(ht, ev, 80);

_somFree (ht);

Original Class
somf_THashTable

Related Information
Methods: somfGetRehashThreshold

somf_THashTable class

 182 SOMobjects Developer Toolkit

somfTHashTableInitFL Method

Purpose
Initializes a new hash table, given its comparison test method and its initial table size.

IDL Syntax
somf_THashTable somfTHashTableInitFL (

in somf_MCollectibleCompareFn testfn,
 in long tablesize);

Description
The somfTHashTableInitFL method initializes a new hash table, given its comparison test
method and its initial table size.

Note: You cannot override this method.

Parameters
receiver A pointer to an object of class somf_THashTable.

ev A pointer to the Environment structure for the calling method.

testfn A method pointer specifying either a somfIsEqual or somfIsSame method.
This method is used to compare two keys in the hash table.

This argument should always be set to either
 somf_MCollectibleClassData.somfIsSame or
 somf_MCollectibleClassData.somfIsEqual.
This specification is necessary because SOM needs a pointer to the original
declaration of the method, which resides in somf_MCollectible. The
somf_THashTable object will use this pointer to access the somfIsSame or
somfIsEqual method that was declared and defined in the object being
inserted into, or removed from, the somf_THashTable object.

tablesize The initial size of the hash table, expressed as the number of (key, value) pairs
that are expected.

Return Value
This method returns a pointer to an initialized somf_THashTable object.

Example
somf_THashTable h3;
Environment *ev;

ev = somGetGlobalEnvironment();

h3 = somf_THashTableNew();
_somfTHashTableInitFL(h3, ev,
 somf_MCollectibleClassData.somfIsEqual, 23);

_somFree (h3);

Original Class
somf_THashTable

Related Information
Methods: somfTHashTableInitFLLL, somfTHashTableInitFLL, somfTHashTableInitH

somf_THashTable class

 183Collection Classes Reference Manual

somfTHashTableInitFLL Method
Purpose

Initializes a new hash table, given its comparison test method, its initial table size, and its initial
growth rate.

IDL Syntax
somf_THashTable somfTHashTableInitFLL (

in somf_MCollectibleCompareFn testfn,
 in long tablesize,
 in long rate);

Description
The somfTHashTableInitFLL method initializes a new hash table, given its comparison test
method, its initial table size, and its initial growth rate.

Note: You cannot override this method.

Parameters
receiver A pointer to an object of class somf_THashTable.

ev A pointer to the Environment structure for the calling method.

testfn A method pointer specifying either a somfIsEqual or somfIsSame method.
This method is used to compare two keys in the hash table.

This argument should always be set to either
 somf_MCollectibleClassData.somfIsSame or
 somf_MCollectibleClassData.somfIsEqual.
This specification is necessary because SOM needs a pointer to the original
declaration of the method, which resides in somf_MCollectible. The
somf_THashTable object will use this pointer to access the somfIsSame or
somfIsEqual method that was declared and defined in the object being
inserted into, or removed from, the somf_THashTable object.

tablesize The initial size of the hash table, expressed as the number of (key, value) pairs
that are expected.

rate The growth rate, expressed as the number of (key, value) pairs by which to
expand the table size when it grows.

Return Value
This method returns a pointer to an initialized somf_THashTable object.

Example
somf_THashTable h2;
Environment *ev;

ev = somGetGlobalEnvironment();

h2 = somf_THashTableNew();
_somfTHashTableInitFLL(h2, ev,
 somf_MCollectibleClassData.somfIsEqual, 23, 20);

_somFree (h2);

Original Class
somf_THashTable

Related Information
Methods: somfTHashTableInitFLLL, somfTHashTableInitFL, somfTHashTableInitH

somf_THashTable class

 184 SOMobjects Developer Toolkit

somfTHashTableInitFLLL Method

Purpose
Initializes a new hash table, given its comparison test method, its initial table size, its initial
growth rate, and its rehash threshold.

IDL Syntax
somf_THashTable somfTHashTableInitFLLL (

in somf_MCollectibleCompareFn testfn,
 in long tablesize,
 in long rate,
 in long threshold);

Description
The somfTHashTableInitFLLL method initializes a new hash table, given its comparison test
method, its initial table size, its initial growth rate, and its rehash threshold.

Note: You cannot override this method.

Parameters
receiver A pointer to an object of class somf_THashTable.

ev A pointer to the Environment structure for the calling method.

testfn A method pointer specifying either a somfIsEqual or somfIsSame method.
This method is used to compare two keys in the hash table.

This argument should always be set to either
 somf_MCollectibleClassData.somfIsSame or
 somf_MCollectibleClassData.somfIsEqual.
This specification is necessary because SOM needs a pointer to the original
declaration of the method, which resides in somf_MCollectible. The
somf_THashTable object will use this pointer to access the somfIsSame or
somfIsEqual method that was declared and defined in the object being
inserted into, or removed from, the somf_THashTable object.

tablesize The initial size of the hash table, expressed as the number of (key, value) pairs
that are expected.

rate The growth rate, expressed as the number of (key, value) pairs by which to
expand the table size when it grows.

threshold The rehash threshold, expressed as the percentage of how full the hash table
may become before it grows in size.

Return Value
This method returns a pointer to an initialized somf_THashTable object.

Example
somf_THashTable h1;
Environment *ev;

ev = somGetGlobalEnvironment();

h1 = somf_THashTableNew();
_somfTHashTableInitFLLL(h1, ev,
 somf_MCollectibleClassData.somfIsEqual, 23, 20, 80);

_somFree (h1);

somf_THashTable class

 185Collection Classes Reference Manual

Original Class
somf_THashTable

Related Information
Methods: somfTHashTableInitFLL, somfTHashTableInitFL, somfTHashTableInitH

somf_THashTable class

 186 SOMobjects Developer Toolkit

somfTHashTableInitH Method

Purpose
Initializes a new hash table, setting it equal to another specified hash table.

IDL Syntax
somf_THashTable somfTHashTableInitH (in somf_THashTable h);

Description
The somfTHashTableInitH method initializes the new hash table represented by the receiving
object. The method also sets the new hash table equal to another specified hash table. This
implies that the instance data of the new hash table will be set equal to those of the source hash
table.

Note: You cannot override this method.

Parameters
receiver A pointer to an object of class somf_THashTable.

ev A pointer to the Environment structure for the calling method.

h A pointer to the hash table the receiving object will be equal to.

Return Value
This method returns a pointer to an initialized somf_THashTable object.

Example
somf_THashTable h4;
somf_THashTable h2;
Environment *ev;

ev = somGetGlobalEnvironment();

h2 = somf_THashTableNew();
h4 = somf_THashTableNew();
_somfTHashTableInitH(h4, ev, h2);

_somFree (h2);
_somFree (h4);

Original Class
somf_THashTable

Related Information
Methods: somfTHashTableInitFLLL, somfTHashTableInitFLL, somfTHashTableInitFL

somf_THashTableIterator class

 187Collection Classes Reference Manual

somf_THashTableIterator Class

Description
The somf_THashTableIterator class defines an iterator for the somf_THashTable class that
will iterate over all of the objects in a hash table.

When you link, include the following library reference to get access to this class: somtk

Warning: Do not be misled by the interface of methods in this class. Recall that each entry in a
somf_THashTable is actually an object of the somf_TAssoc class that holds a (key, value)
pair. Thus, the somfFirst and somfNext methods in the somf_THashTableIterator class
actually return somf_TAssoc objects, not simply objects of the somf_MCollectible class. You
must handle the return values as if they were somf_TAssoc’s.

Although the methods in this class are reentrant, the class is not thread-safe on multi-thread
applications. If a pointer to an instance of this class is to be passed to multiple threads, the code
in those threads must guarantee thread-safe usage of the class.

File Stem
thashitr

Base
somf_TIterator

Metaclass
SOMClass

Ancestor Classes
somf_TIterator, SOMObject

New Methods
somfTHashTableIteratorInit

Overriding Methods
somInit
somUninit
somfFirst
somfNext
somfRemove

somf_THashTableIterator class

 188 SOMobjects Developer Toolkit

somfFirst Method

Purpose
Resets the iterator and returns the first (key, value) pair of a hash table.

IDL Syntax
somf_MCollectible somfFirst ();

Description
The somfFirst method resets the iterator and returns the first (key, value) pair in the hash table
that corresponds to the specified hash-table iterator.

This resets the iterator to the beginning of the hash table. This is true not only for the first time
you use the iterator; it is also true if other operations on the hash table cause the iterator to be
invalidated. In the second case, the method also revalidates the iterator.

Do not be misled by this method’s interface, which is inherited from the somf_TIterator class.
The only objects returned with somfFirst are (key, value) pairs of the somf_TAssoc class. You
cannot use the return value as a generic somf_MCollectible object.

C cannot handle methods from different classes having the same name when they inherit the
name from different parents. somfFirst is a method name declared in multiple parents (for
example: somf_TSequence, somf_TIterator, etc.). You will probably have to fully qualify the
method name (for example: somf_THashTableIterator_somfFirst). This is the only way the
linker can tell them apart.

This is not a problem in C++. In C++ you could have referenced this method as:
 itr–>somfFirst(ev);

Parameters
receiver A pointer to an object of class somf_THashTableIterator.

ev A pointer to the Environment structure for the calling method.

Return Value
This method returns a pointer to the first somf_MCollectible in the hash table. Or, SOMF_NIL is
returned if the collection is empty.

Example
somf_THashTable ht;
Environment *ev;
somf_THashTableIterator itr;
somf_TAssoc itrobj;
somf_MCollectible objk;
somf_MCollectible objv;

ev = somGetGlobalEnvironment();

ht = somf_THashTableNew();
itr = somf_THashTableIteratorNew();
_somfTHashTableIteratorInit(itr, ev, ht);

/* Add some object to d */

somf_THashTableIterator class

 189Collection Classes Reference Manual

/* Iterate through the THashTable */
itrobj = somf_THashTableIterator_somfFirst(itr,ev);
while (itrobj != SOMF_NIL)
{
 objk = _somfGetKey(itrobj,ev);
 objv = _somfGetValue(itrobj,ev);

 /* Do something with objk or objv */

 itrobj = _somfNext(itr,ev);
}

_somFree (ht);
_somFree (itr);

Original Class
somf_TIterator (overridden here)

Related Information
Methods: somfNext

somf_THashTableIterator class

 190 SOMobjects Developer Toolkit

somfNext Method

Purpose
Gets the next (key, value) pair from the hash table of a given hash-table iterator.

IDL Syntax
somf_MCollectible somfNext ();

Description
The somfNext method determines the next (key, value) pair in the hash table of the specified
hash table iterator. The method also returns a pointer to the next (key, value) pair, if found.
Objects are retrieved in an order that reflects the “ordered-ness” of the hash table (or the lack of
ordering on the hash table objects).

Do not be misled by this method’s interface, which is inherited from the somf_TIterator class.
The only objects returned with somfNext are (key, value) pairs of the somf_TAssoc class. You
cannot use the return value as a generic somf_MCollectible object.

If the somf_THashTable has changed (other than through the use of the somfRemove
method of this iterator) since the last time the somfFirst method was called, the iterator
becomes invalid and will fail if asked to find the next object. For example, if the somfAdd
method were called after starting to iterate through the hash table, the iterator then would not
allow iteration to continue. The iterator must be reset, and the easiest way to do that is to call the
iterator’s somfFirst method and start over.

C cannot handle methods from different classes having the same name when they inherit the
name from different parents. Thus, if any child of somf_TIterator is used with a child of
somf_TPrimitiveLinkedListIterator, then the name of the method will have to be fully qualified
(example: somf_THashTableIterator_somfNext). This is the only way the linker can tell them
apart.

This is not a problem in C++. In C++ you could have referenced this method as:
 itr–>somfNext(ev);

Parameters
receiver A pointer to an object of class somf_THashTableIterator.

ev A pointer to the Environment structure for the calling method.

Return Value
There are two possible valid return values for this method:

somf_MCollectible
A pointer to the next somf_MCollectible object in the collection.

SOMF_NIL The end of the collection has been reached.

Example
somf_THashTable ht;
Environment *ev;
somf_THashTableIterator itr;
somf_TAssoc itrobj;
somf_MCollectible objk;
somf_MCollectible objv;

ev = somGetGlobalEnvironment();

somf_THashTableIterator class

 191Collection Classes Reference Manual

ht = somf_THashTableNew();
itr = somf_THashTableIteratorNew();
_somfTHashTableIteratorInit(itr, ev, ht);

/* Add some object to d */

/* Iterate through the THashTable */
itrobj = somf_THashTableIterator_somfFirst(itr,ev);
while (itrobj != SOMF_NIL)
{
 objk = _somfGetKey(itrobj,ev);
 objv = _somfGetValue(itrobj,ev);

 /* Do something with objk or objv */

 itrobj = _somfNext(itr,ev);
}

_somFree (ht);
_somFree (itr);

Original Class
somf_TIterator (overridden here)

Related Information
Methods: somfFirst

somf_THashTableIterator class

 192 SOMobjects Developer Toolkit

somfRemove Method

Purpose
Removes the current (key, value) pair (the one just returned by somfFirst or somfNext) from
the hash table.

IDL Syntax
void somfRemove ();

Description
The somfRemove method removes the current (key, value) pair (the object just returned by
somfFirst or somfNext) from the hash table that corresponds to the hash table iterator
represented by the receiving object.

The somfRemove method is the only way to remove a (key, value) object from a hash table
during iteration. However, if multiple iterators are in process, all the other iterators are invali-
dated, just as if some other kind of change had occurred in the hash table.

If the hash table has changed since the last time somfFirst was called (other than through the
use of the somfRemove method of this iterator), this method will fail.

C cannot handle methods from different classes having the same name when they inherit the
name from different parents. somfRemove is a method name declared in multiple parents (for
example: somf_TCollection, somf_THashTable, somf_TIterator, etc.) You will probably
have to fully qualify the method name (for example: somf_THashTableIterator_somfRe-
move). This is the only way the linker can tell them apart.

This is not a problem in C++. In C++ you could have referenced this method as:
 itr–>somfRemove(ev);

Parameters
receiver A pointer to an object of class somf_THashTableIterator.

ev A pointer to the Environment structure for the calling method.

Return Value
None.

Example
somf_THashTable ht;
Environment *ev;
somf_THashTableIterator itr;
somf_MCollectible itrobj;

ev = somGetGlobalEnvironment();

ht = somf_THashTableNew();
itr = somf_THashTableIteratorNew();
_somfTHashTableIteratorInit(itr, ev, ht);

/* Add some objects to ht */

/* Use the Iterator’s Remove to remove the first object */
itrobj = somf_THashTableIterator_somfFirst(itr,ev);
somf_THashTableIterator_somfRemove(itr,ev);

somf_THashTableIterator class

 193Collection Classes Reference Manual

_somFree (ht);
_somFree (itr);

Original Class
somf_TIterator (overridden here)

somf_THashTableIterator class

 194 SOMobjects Developer Toolkit

somfTHashTableIteratorInit Method

Purpose
Initializes a somf_THashTableIterator iterator, given its corresponding hash table.

IDL Syntax
somf_THashTableIterator somfTHashTableIteratorInit (in somf_THashTable h);

Description
The somfTHashTableIteratorInit method initializes a somf_THashTableIterator iterator,
given the somf_THashTable hash table over which iteration is needed.

Note: This is the only way to initialize a somf_THashTableIterator iterator to point to an
instance of a somf_THashTable object.

Note: You cannot override this method.

Parameters
receiver A pointer to an object of class somf_THashTableIterator.

ev A pointer to the Environment structure for the calling method.

h A pointer to the hash table the receiving object will iterate over.

Return Value
This method returns a pointer to an initialized somf_THashTableIterator object.

Example
somf_THashTable ht;
Environment *ev;
somf_THashTableIterator itr;

ev = somGetGlobalEnvironment();

ht = somf_THashTableNew();
itr = somf_THashTableIteratorNew();
_somfTHashTableIteratorInit(itr, ev, ht);

_somFree (ht);
_somFree (itr);

Original Class
somf_THashTableIterator

somf_TIterator class

 195Collection Classes Reference Manual

somf_TIterator Class

Description
Each of the main collection classes has a corresponding iterator class. An iterator for a particu-
lar collection object (data structure) will iterate over all of the objects contained therein. The
somf_TIterator class is the abstract base class for all iterator classes, defining the generic
methods used for iteration.

When you link, include the following library reference to get access to this class: somtk

If you create classes that inherit from the somf_TIterator class, the new classes must override
the methods somfFirst and somfNext.

When creating an iterator for an unordered collection, your classes should inherit from
somf_TIterator. (When creating an iterator for an ordered collection, your classes should
inherit from somf_TSequenceIterator). The somf_TIterator class provides the pure virtual
functions that constitute the framework for the methods that should be available in an iterator for
an unordered collection.

File Stem
titeratr

Base
SOMObject

Metaclass
SOMClass

Ancestor Classes
SOMObject

New Methods
somfNext
somfFirst
somfRemove

Overriding Methods
None

somf_TIterator class

 196 SOMobjects Developer Toolkit

somfFirst Method

Purpose
Resets the iterator and returns the first object of a collection.

IDL Syntax
somf_MCollectible somfFirst ();

Description
The somfFirst method resets the iterator and returns the first object of the collection that
corresponds to the iterator represented by the receiving object.

This resets the iterator to the beginning of the collection. This is true not only for the first time you
use the iterator; it is also true if other operations on the collection cause the iterator to be
invalidated. In the second case, the method also revalidates the iterator.

Every class that inherits from somf_TIterator must override this method for the class to work
correctly.

C cannot handle methods from different classes having the same name when they inherit the
name from different parents. somfFirst is a method name declared in multiple parents (for
example: somf_TSequence, somf_TIterator, etc.). You will probably have to fully qualify the
method name (for example: somf_TDictionaryIterator_somfFirst). This is the only way the
linker can tell them apart.

This is not a problem in C++. In C++ you could have referenced this method as:
 itr–>somfFirst(ev);

Parameters
receiver A pointer to an object of class somf_TIterator.

ev A pointer to the Environment structure for the calling method.

Return Value
This method returns a pointer to the first somf_MCollectible object in the collection.

Example
You cannot use this method directly from this class; it must be overridden. If you invoke this
method directly, an error message is written and processing will end. For examples of how this
method looks when it is invoked, see somf_TSetIterator or somf_TDictionaryIterator, or any
of the other classes that inherit from somf_TIterator.

Original Class
somf_TIterator

Related Information
Methods: somfNext

somf_TIterator class

 197Collection Classes Reference Manual

somfNext Method

Purpose
Gets the next object in a collection.

IDL Syntax
somf_MCollectible somfNext ();

Description
The somfNext method determines the next object in the collection that corresponds to the
iterator represented by the receiving object and, if found, returns a pointer to the object. Objects
are retrieved in an order that reflects the “ordered-ness” of the collection (or the lack of ordering
on the collection objects).

Every class that inherits from this class must override this method for the class to work correctly.

C cannot handle methods from different classes having the same name when they inherit the
name from different parents. Thus, if any child of somf_TIterator is used with a child of
somf_TPrimitiveLinkedListIterator, then the name of the method will have to be fully qualified
(example: somf_TDictionaryIterator_somfNext). This is the only way the linker can tell them
apart.

This is not a problem in C++. In C++ you could have referenced this method as:
 itr–>somfNext(ev);

If the collection has changed since the last time somfFirst was called (other than through the
use of the somfRemove method of this iterator), this method will fail.

Parameters
receiver A pointer to an object of class somf_TIterator.

ev A pointer to the Environment structure for the calling method.

Return Value
There are two possible valid return values for this method:

somf_MCollectible
A pointer to the next somf_MCollectible object in the collection.

SOMF_NIL The end of the collection has been reached.

Example
You cannot use this method directly from this class; it must be overridden. If you invoke this
method directly, an error message is written and processing will end. For examples of how this
method looks when it is invoked, see somf_TSetIterator or somf_TDictionaryIterator, or any
of the other classes that inherit from somf_TIterator.

Original Class
somf_TIterator

Related Information
Methods: somfFirst

somf_TIterator class

 198 SOMobjects Developer Toolkit

somfRemove Method

Purpose
Removes the current object (the one just returned by somfFirst or somfNext) from a collection.

IDL Syntax
void somfRemove ();

Description
The somfRemove method removes the current object (the one just returned by somfFirst or
somfNext) from the collection that corresponds to the iterator represented by the receiving
object.

Every class that inherits from this class must override this method for the class to work correctly.

This method is the only way to remove an object from a collection during iteration. However, if
multiple iterators are in process, all other iterators are invalidated, just as if some other kind of
change had occurred in the collection.

If the collection has changed since the last time somfFirst was called (other than through the
use of the somfRemove method of this iterator), this method will fail.

C cannot handle methods from different classes having the same name when they inherit the
name from different parents. somfRemove is a method name declared in multiple parents (for
example: somf_TCollection, somf_THashTable, somf_TIterator, etc.) You will probably
have to fully qualify the method name (as somf_TDictionaryIterator_somfRemove, for ex-
ample). This is the only way the linker can tell them apart.

This is not a problem in C++. In C++ you could have referenced this method as:
 itr–>somfRemove(ev);

Parameters
receiver A pointer to an object of class somf_TIterator.

ev A pointer to the Environment structure for the calling method.

Return Value
None.

Example
You cannot use this method directly from this class; it must be overridden. If you invoke this
method directly, an error message is written and processing will end. For examples of how this
method looks when it is invoked, see somf_TSetIterator or somf_TDictionaryIterator, or any
of the other classes that inherit from somf_TIterator.

Original Class
somf_TIterator

somf_TPrimitiveLinkedList class

 199Collection Classes Reference Manual

somf_TPrimitiveLinkedList Class

Description
This class describes a primitive linked list — a sequence of zero or more items, each linked to
the item in front and to the item behind it.

When you link, include the following library reference to get access to this class: somtk

Objects that are inserted into a collection object of the somf_TPrimitiveLinkedList class must
inherit from the somf_MLinkable class.

Warning: The somf_TPrimitiveLinkedList class uses the left and right pointers of the
somf_MLinkable characteristics to link together the objects in a list. This means no object can
appear in the list more than once, since it only has one set of pointers to indicate its position in
the somf_TPrimitiveLinkedList. If you insert an object more than once, the behavior is
undefined, and could result in an infinite loop. If you need to insert an object more than once, you
should consider using a somf_TDeque collection instead. For the same reasons, an item
cannot appear in two different linked lists, because the same undefined behavior would result.

Although the methods in this class are reentrant, the class is not thread-safe on multi-thread
applications. If a pointer to an instance of this class will be passed to multiple threads, the code
in those threads must guarantee thread-safe usage of the class.

File Stem
tpll

Base
SOMObject

Metaclass
SOMClass

Ancestor Classes
SOMObject

New Methods
somfCount
somfRemove
somfRemoveAll,
somfRemoveFirst
somfRemoveLast
somfAddBefore
somfAddAfter
somfAddFirst
somfAddLast
somfAfter
somfBefore
somfFirst
somfLast

Overriding Methods
somInit
somUninit

somf_TPrimitiveLinkedList class

 200 SOMobjects Developer Toolkit

somfAddAfter Method

Purpose
Adds an object into a list after a given existing object.

IDL Syntax
void somfAddAfter (

in somf_MLinkable existing,
 in somf_MLinkable obj);

Description
The somfAddAfter method adds the object obj into the specified list after the designated
existing object.

Parameters
receiver A pointer to an object of class somf_TPrimitiveLinkedList.

ev A pointer to the Environment structure for the calling method.

existing A pointer to the somf_MLinkable object that obj will be added after.

obj A pointer to the somf_MLinkable object that will be added.

Return Value
None.

Example
somf_TPrimitiveLinkedList l;
<Your Class which inherits from MLinkable> obj;
<Your Class which inherits from MLinkable> obj2;
Environment *ev;

ev = somGetGlobalEnvironment();

l = somf_TPrimitiveLinkedListNew();
obj = <Your Class which inherits from MLinkable>New();
obj2 = <Your Class which inherits from MLinkable>New();

/* Add obj2 to l after obj */
_somfAddFirst(l, ev, obj);
_somfAddAfter(l, ev, obj, obj2);

_somFree (l);
_somFree (obj);
_somFree (obj2);

Original Class
somf_TPrimitiveLinkedList

Related Information
Methods: somfAddBefore, somfAddFirst, somfAddLast

somf_TPrimitiveLinkedList class

 201Collection Classes Reference Manual

somfAddBefore Method

Purpose
Adds an object into a list before a given existing object.

IDL Syntax
void somfAddBefore (

in somf_MLinkable existing,
 in somf_MLinkable obj);

Description
The somfAddBefore method adds the object obj into the specified list before the designated
existing object.

Parameters
receiver A pointer to an object of class somf_TPrimitiveLinkedList.

ev A pointer to the Environment structure for the calling method.

existing A pointer to the somf_MLinkable object that obj will be added in front of.

obj A pointer to the somf_MLinkable object that will be added.

Return Value
None.

Example
somf_TPrimitiveLinkedList l;
<Your Class which inherits from MLinkable> obj;
<Your Class which inherits from MLinkable> obj2;
Environment *ev;

ev = somGetGlobalEnvironment();

l = somf_TPrimitiveLinkedListNew();
obj = <Your Class which inherits from MLinkable>New();
obj2 = <Your Class which inherits from MLinkable>New();

/* Add obj2 to l before obj */
_somfAddFirst(l, ev, obj);
_somfAddBefore(l, ev, obj, obj2);

_somFree (l);
_somFree (obj);
_somFree (obj2);

Original Class
somf_TPrimitiveLinkedList

Related Information
Methods: somfAddAfter, somfAddFirst, somfAddLast

somf_TPrimitiveLinkedList class

 202 SOMobjects Developer Toolkit

somfAddFirst Method

Purpose
Adds an object as the first object in a list.

IDL Syntax
void somfAddFirst (in somf_MLinkable obj);

Description
The somfAddFirst method adds the object obj as the first object in the specified list.

Parameters
receiver A pointer to an object of class somf_TPrimitiveLinkedList.

ev A pointer to the Environment structure for the calling method.

obj A pointer to the somf_MLinkable that will be added.

Return Value
None.

Example
somf_TPrimitiveLinkedList l;
<Your Class which inherits from MLinkable> obj;
Environment *ev;

ev = somGetGlobalEnvironment();

l = somf_TPrimitiveLinkedListNew();
obj = <Your Class which inherits from MLinkable>New();

/* Add obj to the front of l */
_somfAddFirst(l, ev, obj);

_somFree (l);
_somFree (obj);

Original Class
somf_TPrimitiveLinkedList

Related Information
Methods: somfAddAfter, somfAddBefore, somfAddLast

somf_TPrimitiveLinkedList class

 203Collection Classes Reference Manual

somfAddLast Method

Purpose
Adds an object as the last object in a given list.

IDL Syntax
void somfAddLast (in somf_MLinkable obj);

Description
The somfAddLast method adds the object obj as the last object in the specified list.

Parameters
receiver A pointer to an object of class somf_TPrimitiveLinkedList.

ev A pointer to the Environment structure for the calling method.

obj A pointer to the somf_MLinkable that will be added.

Return Value
None.

Example
somf_TPrimitiveLinkedList l;
<Your Class which inherits from MLinkable> obj;
Environment *ev;

ev = somGetGlobalEnvironment();

l = somf_TPrimitiveLinkedListNew();
obj = <Your Class which inherits from MLinkable>New();

/* Add obj to the end of l */
_somfAddLast(l, ev, obj);

_somFree (l);
_somFree (obj);

Original Class
somf_TPrimitiveLinkedList

Related Information
Methods: somfAddAfter, somfAddBefore, somfAddFirst

somf_TPrimitiveLinkedList class

 204 SOMobjects Developer Toolkit

somfAfter Method

Purpose
Gets the object that comes after a given existing object in a list.

IDL Syntax
somf_MLinkable somfAfter (in somf_MLinkable existingobj);

Description
The somfAfter method returns the object that comes after the object existingobj in the specified
list.

Parameters
receiver A pointer to an object of class somf_TPrimitiveLinkedList.

ev A pointer to the Environment structure for the calling method.

existingobj A pointer to the somf_MLinkable that is in front of the returned object.

Return Value
There are two possible valid return values for this method:

somf_MLinkable
A pointer to the somf_MLinkable object after the existingobj object.

SOMF_NIL Nothing is after existingobj.

Example
somf_TPrimitiveLinkedList l;
<Your Class which inherits from MLinkable> obj;
somf_MLinkable obj2;
Environment *ev;

ev = somGetGlobalEnvironment();

l = somf_TPrimitiveLinkedListNew();
obj = <Your Class which inherits from MLinkable>New();

/* Add a lot of objects to l */

/* Determine the object in l after obj */
obj2 = _somfAfter(l, ev, obj);

_somFree (l);
_somFree (obj);

Original Class
somf_TPrimitiveLinkedList

Related Information
Methods: somfBefore

somf_TPrimitiveLinkedList class

 205Collection Classes Reference Manual

somfBefore Method

Purpose
Returns the object that comes before a given existing object in a list.

IDL Syntax
somf_MLinkable somfBefore (in somf_MLinkable existingobj);

Description
The somfBefore method returns the object that comes before the object existingobj in the
specified list.

Parameters
receiver A pointer to an object of class somf_TPrimitiveLinkedList.

ev A pointer to the Environment structure for the calling method.

existingobj A pointer to the somf_MLinkable object that comes after the returned object.

Return Value
There are two possible valid return values for this method:

somf_MLinkable
A pointer to the somf_MLinkable object before the existingobj object.

SOMF_NIL Nothing is before the existingobj.

Example
somf_TPrimitiveLinkedList l;
<Your Class which inherits from MLinkable> obj;
somf_MLinkable obj2;
Environment *ev;

ev = somGetGlobalEnvironment();

l = somf_TPrimitiveLinkedListNew();
obj = <Your Class which inherits from MLinkable>New();

/* Add a lot of objects to l */

/* Determine the object in l before obj */
obj2 = _somfBefore(l, ev, obj);

_somFree (l);
_somFree (obj);

Original Class
somf_TPrimitiveLinkedList

Related Information
Methods: somfAfter

somf_TPrimitiveLinkedList class

 206 SOMobjects Developer Toolkit

somfCount Method

Purpose
Gets the number of objects in a given list.

IDL Syntax
unsigned long somfCount ();

Description
The somfCount method determines the number of objects in the specified list, and returns the
number.

Parameters
receiver A pointer to an object of class somf_TPrimitiveLinkedList.

ev A pointer to the Environment structure for the calling method.

Return Value
This method returns the number of objects in the specified list.

Example
somf_TPrimitiveLinkedList l;
Environment *ev;

ev = somGetGlobalEnvironment();

l = somf_TPrimitiveLinkedListNew();

/* Add some objects to l */

/* Print the number of objects in ht */
somPrintf(”\n Count of l= %d\n”,
 somf_TPrimitiveLinkedList_somfCount(l,ev));

_somFree (l);

Original Class
somf_TPrimitiveLinkedList

somf_TPrimitiveLinkedList class

 207Collection Classes Reference Manual

somfFirst Method

Purpose
Gets the first object in a given list.

IDL Syntax
somf_MLinkable somfFirst ();

Description
The somfFirst method returns the first object in the specified list.

C cannot handle methods from different classes having the same name when they inherit the
name from different parents. somfFirst is a method name declared in multiple parents (for
example: somf_TSequence, somf_TIterator, etc.). You will probably have to fully qualify the
method name (for example: somf_TPrimitiveLinkedList_somfFirst). This is the only way the
linker can tell them apart.

This is not a problem in C++. In C++ you could have referenced this method as:
 pll–>somfFirst(ev);

Parameters
receiver A pointer to an object of class somf_TPrimitiveLinkedList.

ev A pointer to the Environment structure for the calling method.

Return Value
There are two possible valid return values for this method:

somf_MLinkable
A pointer to the first somf_MLinkable object in the list.

SOMF_NIL Nothing is in the list.

Example
somf_TPrimitiveLinkedList l;
somf_MLinkable obj;
Environment *ev;

ev = somGetGlobalEnvironment();

l = somf_TPrimitiveLinkedListNew();

/* Add a lot of objects to l */

/* Determine the first object in l */
obj = somf_TPrimitiveLinkedList_somfFirst(l,ev);

_somFree (l);

Original Class
somf_TPrimitiveLinkedList

Related Information
Methods: somfLast

somf_TPrimitiveLinkedList class

 208 SOMobjects Developer Toolkit

somfLast Method

Purpose
Gets the last object in a given list.

IDL Syntax
somf_MLinkable somfLast ();

Description
The somfLast method returns the last object in the specified list.

C cannot handle methods from different classes having the same name when they inherit the
name from different parents. somfLast is a method name declared in multiple parents (for
example: somf_TSequenceIterator, somf_TSequence, etc.). You will probably have to fully
qualify the method name (for example: somf_TPrimitiveLinkedList_somfLast). This is the
only way the linker can tell them apart.

This is not a problem in C++. In C++ you could have referenced this method as:
 pll–>somfLast(ev);

Parameters
receiver A pointer to an object of class somf_TPrimitiveLinkedList.

ev A pointer to the Environment structure for the calling method.

Return Value
There are two possible valid return values for this method:

somf_MLinkable
A pointer to the last somf_MLinkable object in the list.

SOMF_NIL Nothing is in the list.

Example
somf_TPrimitiveLinkedList l;
somf_MLinkable obj;
Environment *ev;

ev = somGetGlobalEnvironment();

l = somf_TPrimitiveLinkedListNew();

/* Add a lot of objects to l */

/* Determine the last object in l */
obj = somf_TPrimitiveLinkedList_somfLast(l,ev);

_somFree (l);

Original Class
somf_TPrimitiveLinkedList

Related Information
Methods: somfFirst

somf_TPrimitiveLinkedList class

 209Collection Classes Reference Manual

somfRemove Method

Purpose
Removes a somf_MLinkable object from a given list.

IDL Syntax
void somfRemove (in somf_MLinkable aLink);

Description
The somfRemove method removes the specified somf_MLinkable object from the desig-
nated list.

C cannot handle methods from different classes having the same name when they inherit the
name from different parents. somfRemove is a method name declared in multiple parents (for
example: somf_TCollection, somf_THashTable, somf_TIterator, etc.) You will probably
have to fully qualify the method name (as somf_TPrimitiveLinkedList_somfRemove, for
example). This is the only way the linker can tell them apart.

This is not a problem in C++. In C++ you could have referenced this method as:
 pll–>somfRemove(ev, obj);

Parameters
receiver A pointer to an object of class somf_TPrimitiveLinkedList.

ev A pointer to the Environment structure for the calling method.

aLink A pointer to the somf_MLinkable object to be removed.

Return Value
None.

Example
somf_TPrimitiveLinkedList l;
<Your Class which inherits from MLinkable> obj;
Environment *ev;

ev = somGetGlobalEnvironment();

l = somf_TPrimitiveLinkedListNew();
obj = <Your Class which inherits from MLinkable>New();

/* Add a lot of objects to l */

/* Remove obj from l */
somf_TPrimitiveLinkedList_somfRemove(l, ev, obj);

_somFree (l);
_somFree (obj);

Original Class
somf_TPrimitiveLinkedList

Related Information
Methods: somfRemoveAll, somfRemoveFirst, somfRemoveLast

somf_TPrimitiveLinkedList class

 210 SOMobjects Developer Toolkit

somfRemoveAll Method

Purpose
Removes all of the objects from a given list.

IDL Syntax
void somfRemoveAll ();

Description
The somfRemoveAll method removes all of the objects from the list represented by the
receiving object.

Parameters
receiver A pointer to an object of class somf_TPrimitiveLinkedList.

ev A pointer to the Environment structure for the calling method.

Return Value
None.

Example
somf_TPrimitiveLinkedList l;
<Your Class which inherits from MLinkable> obj;
Environment *ev;

ev = somGetGlobalEnvironment();

l = somf_TPrimitiveLinkedListNew();
obj = <Your Class which inherits from MLinkable>New();

/* Add a lot of objects to l */

/* Remove all of the objects from l */
somf_TPrimitiveLinkedList_somfRemoveAll(l,ev);

_somFree (l);
_somFree (obj);

Original Class
somf_TPrimitiveLinkedList

Related Information
Methods: somfRemove, somfRemoveFirst, somfRemoveLast

somf_TPrimitiveLinkedList class

 211Collection Classes Reference Manual

somfRemoveFirst Method

Purpose
Removes the first object from a given list.

IDL Syntax
somf_MLinkable somfRemoveFirst ();

Description
The somfRemoveFirst method removes the first object from the list represented by the
receiving object.

Parameters
receiver A pointer to an object of class somf_TPrimitiveLinkedList.

ev A pointer to the Environment structure for the calling method.

Return Value
There are two possible valid return values for this method:

somf_MLinkable
A pointer to the somf_MLinkable object removed from the list.

SOMF_NIL Nothing is in the list.

Example
somf_TPrimitiveLinkedList l;
Environment *ev;

ev = somGetGlobalEnvironment();

l = somf_TPrimitiveLinkedListNew();

/* Add some objects to l */

/* Remove the first object */
if (_somfRemoveFirst(l,ev) == SOMF_NIL)
 somPrintf(” The list is empty\n”);

_somFree (l);

Original Class
somf_TPrimitiveLinkedList

Related Information
Methods: somfRemove, somfRemoveAll, somfRemoveLast

somf_TPrimitiveLinkedList class

 212 SOMobjects Developer Toolkit

somfRemoveLast Method

Purpose
Removes the last object from a given list.

IDL Syntax
somf_MLinkable somfRemoveLast ();

Description
The somfRemoveLast method removes the last object from the list represented by the receiv-
ing object.

Parameters
receiver A pointer to an object of class somf_TPrimitiveLinkedList.

ev A pointer to the Environment structure for the calling method.

Return Value
There are two possible valid return values for this method:

somf_MLinkable
A pointer to the somf_MLinkable object removed from the list.

SOMF_NIL Nothing is in the list.

Example
somf_TPrimitiveLinkedList l;
Environment *ev;

ev = somGetGlobalEnvironment();

l = somf_TPrimitiveLinkedListNew();

/* Add some objects to l */

/* Remove the last object */
if (_somfRemoveLast(l,ev) == SOMF_NIL)
 somPrintf(” The list is empty\n”);

_somFree (l);

Original Class
somf_TPrimitiveLinkedList

Related Information
Methods: somfRemove, somfRemoveAll, somfRemoveFirst

somf_TPrimitiveLinkedListIterator class

 213Collection Classes Reference Manual

somf_TPrimitiveLinkedListIterator Class

Description
This class defines an iterator for the somf_TPrimitiveLinkedList class that will iterate over all
of the objects in a primitive linked list.

When you link, include the following library reference to get access to this class: somtk

Although the methods in this class are reentrant, the class is not thread-safe on multi-thread
applications. If a pointer to an instance of this class will be passed to multiple threads, the code
in those threads must guarantee thread-safe usage of the class.

File Stem
tpllitr

Base
SOMObject

Metaclass
SOMClass

Ancestor Classes
SOMObject

New Methods
somfFirst
somfNext
somfLast
somfPrevious
somfTPrimitiveLinkedListIteratorInit

Overriding Methods
somUninit

somf_TPrimitiveLinkedListIterator class

 214 SOMobjects Developer Toolkit

somfFirst Method

Purpose
Resets the iterator and returns the first element of a given list.

IDL Syntax
somf_MLinkable somfFirst ();

Description
The somfFirst method resets the iterator and returns the first element of the list that corre-
sponds to the iterator represented by the receiving object.

Note: The somf_TPrimitiveLinkedListIterator class does not inherit from somf_TIterator.
This method may look like the somf_TIterator method, but there is no connection.

C cannot handle methods from different classes having the same name when they inherit the
name from different parents. somfFirst is a method name declared in multiple parents (for
example: somf_TSequence, somf_TIterator, etc.). You will probably have to fully qualify the
method name (for example: somf_TPrimitiveLinkedListIterator_somfFirst). This is the only
way the linker can tell them apart.

This is not a problem in C++. In C++ you could have referenced this method as:
 itr–>somfFirst(ev);

Parameters
receiver A pointer to an object of class somf_TPrimitiveLinkedListIterator.

ev A pointer to the Environment structure for the calling method.

Return Value
There are two possible valid return values for this method:

somf_MLinkable
A pointer to the first somf_MLinkable object in the list.

SOMF_NIL Nothing is in the list.

Example
somf_TPrimitiveLinkedList l;
somf_MLinkable obj;
somf_TPrimitiveLinkedListIterator itr;
Environment *ev;

ev = somGetGlobalEnvironment();

l = somf_TPrimitiveLinkedListNew();
itr = somf_TPrimitiveLinkedListIteratorNew();
_somfTPrimitiveLinkedListIteratorInit(itr, ev, l);

/* Add a lot of objects to l */

somf_TPrimitiveLinkedListIterator class

 215Collection Classes Reference Manual

/* Iterate through l */
obj = somf_TPrimitiveLinkedListIterator_somfFirst(itr,ev);
while (obj != SOMF_NIL)
{
 /* do something with obj */

 obj = _somfNext(itr,ev);
}

_somFree (l);
_somFree (itr);

Original Class
somf_TPrimitiveLinkedListIterator

Related Information
Methods: somfNext

somf_TPrimitiveLinkedListIterator class

 216 SOMobjects Developer Toolkit

somfLast Method
Purpose

Retrieves the last object from a given list.

IDL Syntax
somf_MLinkable somfLast ();

Description
The somfLast method determines the last object in the list that corresponds to the iterator
represented by the receiving object and, if found, returns a pointer to the object.

C cannot handle methods from different classes having the same name when they inherit the
name from different parents. somfLast is a method name declared in multiple parents (for
example: somf_TSequenceIterator, somf_TSequence, etc.). You will probably have to fully
qualify the method name (for example: somf_TPrimitiveLinkedListIterator_somfLast). This
is the only way the linker can tell them apart.

This is not a problem in C++. In C++ you could have referenced this method as:
 itr–>somfLast(ev);

Parameters
receiver A pointer to an object of class somf_TPrimitiveLinkedListIterator.

ev A pointer to the Environment structure for the calling method.

Return Value
There are two possible valid return values for this method:

somf_MLinkable
A pointer to the last somf_MLinkable object in the list.

SOMF_NIL Nothing is in the list.

Example
somf_TPrimitiveLinkedList l;
somf_MLinkable obj;
somf_TPrimitiveLinkedListIterator itr;
Environment *ev;

ev = somGetGlobalEnvironment();

l = somf_TPrimitiveLinkedListNew();
itr = somf_TPrimitiveLinkedListIteratorNew();
_somfTPrimitiveLinkedListIteratorInit(itr, ev, l);

/* Add a lot of objects to l */

/* Find the last object in l */
obj = somf_TPrimitiveLinkedList_somfLast(l,ev);

_somFree (l);
_somFree (itr);

Original Class
somf_TPrimitiveLinkedListIterator

Related Information
Methods: somfPrevious

somf_TPrimitiveLinkedListIterator class

 217Collection Classes Reference Manual

somfNext Method

Purpose
Gets the next object in a list.

IDL Syntax
somf_MLinkable somfNext ();

Description
The somfNext method determines the next object in the list that corresponds to the iterator
represented by the receiving object and, if found, returns a pointer to the object.

Note: The somf_TPrimitiveLinkedListIterator class does not inherit from somf_TIterator.
This method may look like the somf_TIterator method, but there is no connection.

C cannot handle methods from different classes having the same name when they inherit the
name from different parents. Thus, if any child of somf_TPrimitiveLinkedListIterator is used
with somf_TIterator, then the name of the method will have to be fully qualified (example:
somf_TPrimitiveLinkedListIterator_somfNext). This is the only way the linker can tell them
apart.

This is not a problem in C++. In C++ you could have referenced this method as:
 itr–>somfNext(ev);

Parameters
receiver A pointer to an object of class somf_TPrimitiveLinkedListIterator.

ev A pointer to the Environment structure for the calling method.

Return Value
There are two possible valid return values for this method:

somf_MLinkable
A pointer to the next somf_MLinkable object in the list.

SOMF_NIL The end of the list has been reached.

Example
somf_TPrimitiveLinkedList l;
somf_MLinkable obj;
somf_TPrimitiveLinkedListIterator itr;
Environment *ev;

ev = somGetGlobalEnvironment();

l = somf_TPrimitiveLinkedListNew();
itr = somf_TPrimitiveLinkedListIteratorNew();
_somfTPrimitiveLinkedListIteratorInit(itr, ev, l);

/* Add a lot of objects to l */

somf_TPrimitiveLinkedListIterator class

 218 SOMobjects Developer Toolkit

/* Iterate through l */
obj = somf_TPrimitiveLinkedListIterator_somfFirst(itr,ev);
while (obj != SOMF_NIL)
{
 /* do something with obj */

 obj = _somfNext(itr,ev);
}

_somFree (l);
_somFree (itr);

Original Class
somf_TPrimitiveLinkedListIterator

Related Information
Methods: somfFirst

somf_TPrimitiveLinkedListIterator class

 219Collection Classes Reference Manual

somfPrevious Method
Purpose

Gets the previous object from a given list.

IDL Syntax
somf_MLinkable somfPrevious ();

Description
The somfPrevious method determines the previous object in the list that corresponds to the
iterator represented by the receiving object, and returns a pointer to the object.

C cannot handle methods from different classes having the same name when they inherit the
name from different parents. Thus, if any child of somf_TPrimitiveLinkedListIterator is used
with somf_TSequenceIterator, then the name of the method will have to be fully qualified
(for example: somf_TPrimitiveLinkedListIterator_somfPrevious). This is the only way the
linker can tell them apart.

This is not a problem in C++. In C++ you could have referenced this method as:
 itr–>somfPrevious(ev);

Parameters
receiver A pointer to an object of class somf_TPrimitiveLinkedListIterator.

ev A pointer to the Environment structure for the calling method.

Return Value
There are two possible valid return values for this method:

somf_MLinkable
A pointer to the somf_MLinkable object before the receiving object.

SOMF_NIL The beginning of the list has been reached.

Example
somf_TPrimitiveLinkedList l;
somf_MLinkable obj;
somf_TPrimitiveLinkedListIterator itr;
Environment *ev;

ev = somGetGlobalEnvironment();

l = somf_TPrimitiveLinkedListNew();
itr = somf_TPrimitiveLinkedListIteratorNew();
_somfTPrimitiveLinkedListIteratorInit(itr, ev, l);

/* Add a lot of objects to l */

/* Find the next to the last object in l */
somf_TPrimitiveLinkedList_somfLast(l,ev);
obj = _somfPrevious(next,ev);

_somFree (l);
_somFree (itr);

Original Class
somf_TPrimitiveLinkedListIterator

Related Information
Methods: somfLast

somf_TPrimitiveLinkedListIterator class

 220 SOMobjects Developer Toolkit

somfTPrimitiveLinkedListIteratorInit Method

Purpose
Initializes a somf_TPrimitiveLinkedListIterator object, establishing it as the iterator for a
given somf_TPrimitiveLinkedList linked list.

IDL Syntax
somf_TPrimitiveLinkedListIterator somfTPrimitiveLinkedListIteratorInit (
 in somf_TPrimitiveLinkedList list);

Description
The somfTPrimitiveLinkedListIteratorInit method initializes a given iterator object (the
somf_TPrimitiveLinkedListIterator receiving object) that will iterate over the specified
somf_TPrimitiveLinkedList list.

Note: You cannot override this method.

Parameters
receiver A pointer to an object of class somf_TPrimitiveLinkedListIterator.

ev A pointer to the Environment structure for the calling method.

list A pointer to the primitive linked list object that the receiving object will iterate
over.

Return Value
This method returns a pointer to an initialized somf_TPrimitiveLinkedListIterator iterator.

Example
somf_TPrimitiveLinkedList l;
Environment *ev;
somf_TPrimitiveLinkedListIterator itr;

ev = somGetGlobalEnvironment();

l = somf_TPrimitiveLinkedListNew();
itr = somf_TPrimitiveLinkedListIteratorNew();
_somfTPrimitiveLinkedListIteratorInit(itr, ev, l);

_somFree (l);
_somFree (itr);

Original Class
somf_TPrimitiveLinkedListIterator

somf_TPriorityQueue class

 221Collection Classes Reference Manual

somf_TPriorityQueue Class

Description
The somf_TPriorityQueue class is a subclass of somf_TCollection that keeps the objects of
a collection ordered based on some ordering function. Actually, the objects are partially ordered
in storage, but the somf_TPriorityQueue methods adjust for the partially ordered state.

Robert Sedgewick3 describes a Priority Queue as follows:

In many applications, records with keys must be processed in order, but not neces-
sarily in full sorted order and not necessarily all at once. Often a set of records must
be collected, then the largest processed, then perhaps more records collected, then
the next largest processed, and so forth. An appropriate data structure in such an
environment is one that supports the operations of inserting a new element and
deleting the largest element. Such a data structure, which can be contrasted with
queues (delete the oldest) and stacks (delete the newest) is called a priority queue.

When you link, include the following library reference to get access to this class: somtk

Note: The somf_TPriorityQueue class uses the somfIsEqual method as the default
comparison function. (That is, if key1=”Bart” and key2=”Bart”, then key1 and
key2 are equal.) If you do not want to use the somfIsEqual method to equate entries,
use the initialization methods to change to the somfIsSame method.

Objects that are inserted into a somf_TPriorityQueue collection should override the methods
somfIsEqual, somfIsLessThan, somfIsGreaterThan, and somfHash.

Although the methods in this class are reentrant, the class is not thread-safe on multi-thread
applications. If a pointer to an instance of this class will be passed to multiple threads, the code
in those threads must guarantee thread-safe usage of the class.

File Stem
tpq

Base
somf_TCollection

Metaclass
SOMClass

Ancestor Classes
somf_TCollection, somf_MCollectible, SOMObject

New Methods
somfInsert
somfPop
somfPeek
somfReplace
somfSetEqualityComparisonFunction
somfGetEqualityComparisonFunction
somfAssign
somfTPriorityQueueInitF
somfTPriorityQueueInitP

3. Robert Sedgewick, Algorithms in C++ (Addison–Wesley Publishing Company, 1992), p. 145.

somf_TPriorityQueue class

 222 SOMobjects Developer Toolkit

Overriding Methods
somInit
somUninit
somfAdd
somfRemove
somfRemoveAll
somfDeleteAll
somfCount
somfMember
somfCreateIterator

somf_TPriorityQueue class

 223Collection Classes Reference Manual

somfAdd Method

Purpose
Adds a given obj to a priority queue.

IDL Syntax
somf_MCollectible somfAdd (in somf_MCollectible obj);

Description
The somfAdd method adds the specified object obj to the priority queue represented by the
receiving object.

Parameters
receiver A pointer to an object of class somf_TPriorityQueue.

ev A pointer to the Environment structure for the calling method.

obj A pointer to a somf_MCollectible object that will be added to the receiving
object.

Return Value
This method returns a pointer to the somf_MCollectible object added.

Example
somf_TPriorityQueue pq;
<Your Class which inherits from somf_MOrderableCollectible> obj;
Environment *ev;

ev = somGetGlobalEnvironment();

pq = somf_TPriorityQueueNew();
obj = <Your Class which inherits from somf_MOrderableCollectible>New();

/* Add obj to pq */
_somfAdd(pq,ev,obj);

_somFree (pq);
_somFree (obj);

Original Class
somf_TCollection (overridden here)

Related Information
Methods: somfInsert

somf_TPriorityQueue class

 224 SOMobjects Developer Toolkit

somfAssign Method

Purpose
Assigns a priority-queue receiving object as being equal to a given source priority queue.

IDL Syntax
void somfAssign (in somf_TPriorityQueue source);

Description
The somfAssign method assigns the instance of the priority queue used as the receiving object
to be equal to the source priority queue. That is, the method sets/resets the instance variables
of the receiver to the values of the source. This operation is logically equivalent to using the “=”
operator.

C cannot handle methods from different classes having the same name when they inherit the
name from different parents. Thus, if any child of somf_TPriorityQueue is used with any other
main collection class, then the name of the method will have to be fully qualified (example:
somf_TPriorityQueue_somfAssign). This is the only way the linker can tell them apart.

This is not a problem in C++. In C++ you could have referenced this method as:
 d–>somfAssign(ev, obj);

Parameters
receiver A pointer to an object of class somf_TPriorityQueue.

ev A pointer to the Environment structure for the calling method.

source A pointer to the somf_TPriorityQueue object the receiving object will be equal
to.

Return Value
None.

Example
somf_TPriorityQueue pq1;
somf_TPriorityQueue pq2;
Environment *ev;

ev = somGetGlobalEnvironment();

pq1 = somf_TPriorityQueueNew();
pq2 = somf_TPriorityQueueNew();

/* Add some objects to pq1 */

/* Assign pq2 = pq1 */
somf_TPriorityQueue_somfAssign(pq2,ev,pq1);

_somFree (pq1);
_somFree (pq2);

Original Class
somf_TPriorityQueue

somf_TPriorityQueue class

 225Collection Classes Reference Manual

somfCount Method

Purpose
Gets the number of objects in a given priority queue.

IDL Syntax
long somfCount ();

Description
The somfCount method determines the number of objects in the priority queue represented by
the receiving object, and returns the number.

C cannot handle methods from different classes having the same name when they inherit the
name from different parents. Thus, if any child of somf_TCollection is used with
somf_THashTable, then the name of the method will have to be fully qualified (example:
somf_TDictionary_somfCount). This is the only way the linker can tell them apart.

This is not a problem in C++. In C++ you could have referenced this method as:
 d–>somfCount(ev);

Parameters
receiver A pointer to an object of class somf_TPriorityQueue.

ev A pointer to the Environment structure for the calling method.

Return Value
This method returns the number of objects in the receiving object.

Example
somf_TPriorityQueue pq;
Environment *ev;

ev = somGetGlobalEnvironment();

pq = somf_TPriorityQueueNew();

/* Add some objects to pq */

/* Count the number of objects in pq */
somPrintf(”\n Count of pq= %d\n”, _somfCount(pq,ev));

_somFree (pq);

Original Class
somf_TCollection (overridden here)

somf_TPriorityQueue class

 226 SOMobjects Developer Toolkit

somfCreateIterator Method

Purpose
Returns a new iterator that is suitable for iterating over the objects in a given priority queue.

IDL Syntax
somf_TIterator somfCreateIterator ();

Description
The somfCreateIterator method returns a new iterator that is suitable for iterating over the
objects in the priority queue represented by the receiving object.

Note: This is one of two ways to initialize a somf_TPriorityQueueIterator to point to an
instance of the somf_TPriorityQueue class. The other way is to use the
somf_TPriorityQueueIterator’s initializer method described on page 245.

Parameters
receiver A pointer to an object of class somf_TPriorityQueue.

ev A pointer to the Environment structure for the calling method.

Return Value
This method returns a pointer to the new iterator.

Example
somf_TPriorityQueue pq;
Environment *ev;
somf_TPriorityQueueIterator itr;

ev = somGetGlobalEnvironment();

pq = somf_TPriorityQueueNew();
itr = (somf_TPriorityQueueIterator*) _somfCreateIterator(pq,ev);

_somFree (pq);
_somFree (itr);

Original Class
somf_TCollection (overridden here)

somf_TPriorityQueue class

 227Collection Classes Reference Manual

somfDeleteAll Method

Purpose
Removes all of the objects from a priority-queue receiving object and deallocates the storage
that these objects might have owned. (That is, the destructor function is called for each object in
the collection.)

IDL Syntax
void somfDeleteAll ();

Description
The somfDeleteAll method removes all of the objects from the priority queue represented by
the receiving object. The method also deallocates the storage that these objects might have
owned (that is, the destructor function is called for each object in the collection).

Be careful with somfDeleteAll. Since a collection only contains pointers to objects (rather than
the objects themselves), somfDeleteAll can cause a problem if a pointer to an object appears
more than once. For example, if multiple pointers to ‘A’ exists, or if a single pointer to ’A’ is in the
collection multiple times, the behavior of the code is undefined, because it will try to delete ‘A’
multiple times. If you think there is a chance that an object could appear in the collection more
than once, you should consider using somfRemoveAll to remove the objects from the collec-
tion and deleting them some other way.

C cannot handle methods from different classes having the same name when they inherit the
name from different parents. Thus, if any child of somf_TCollection is used with
somf_THashTable, then the name of the method will have to be fully qualified (example:
somf_TDictionary_somfDeleteAll). This is the only way the linker can tell them apart.

This is not a problem in C++. In C++ you could have referenced this method as:
 d–>somfDeleteAll(ev);

Parameters
receiver A pointer to an object of class somf_TPriorityQueue.

ev A pointer to the Environment structure for the calling method.

Return Value
None.

Example
somf_TPriorityQueue pq;
Environment *ev;

ev = somGetGlobalEnvironment();

pq = somf_TPriorityQueueNew();

/* Add objects to pq */

/* Remove all the objects from pq AND DELETE THEM */
_somfDeleteAll(pq,ev);

_somFree (pq);

Original Class
somf_TCollection (overridden here)

somf_TPriorityQueue class

 228 SOMobjects Developer Toolkit

somfGetEqualityComparisonFunction Method

Purpose
Gets the equality comparison function being used by the priority queue. The default equality
compare function is the somf_MCollectible class’s somfIsEqual.

IDL Syntax
somf_MCollectibleCompareFn somfGetEqualityComparisonFunction ();

Description
The somfGetEqualityComparisonFunction method returns the equality comparison func-
tion being used by the priority queue. By default, the equality compare function is the
somf_MCollectible class’s somfIsEqual method.

Note: Do not confuse this “equality compare function” with the somfCompare method. This
input argument is not used to determine priority.

Parameters
receiver A pointer to an object of class somf_TPriorityQueue.

ev A pointer to the Environment structure for the calling method.

Return Value
This method returns a pointer to the equality compare function being used by this instance of the
priority queue class.

Example
somf_TPriorityQueue pq;
Environment *ev;

ev = somGetGlobalEnvironment();

pq = somf_TPriorityQueueNew();

/* Add some objects to pq */

if (_somfGetEqualityComparisonFunction(pq,ev) !=
 somf_MCollectibleClassData.somfIsEqual)
{
 somPrintf(”\n What Compare Function are we using?\n”);
}

_somFree (pq);

Original Class
somf_TPriorityQueue

Related Information
Methods: somfSetEqualityComparisonFunction

somf_TPriorityQueue class

 229Collection Classes Reference Manual

somfInsert Method

Purpose
Inserts an object obj into the priority queue.

IDL Syntax
void somfInsert (in somf_MOrderableCollectible obj);

Description
The somfInsert method inserts the given object obj into the priority queue represented by the
receiving object.

This method is just like the somfAdd method, except that it does not return a pointer to the
somf_MCollectible object added.

Parameters
receiver A pointer to an object of class somf_TPriorityQueue.

ev A pointer to the Environment structure for the calling method.

obj A pointer to a somf_MOrderableCollectible object that will be added to the
receiving object.

Return Value
None.

Example
somf_TPriorityQueue pq;
<Your Class which inherits from somf_MOrderableCollectible> obj;
Environment *ev;

ev = somGetGlobalEnvironment();

pq = somf_TPriorityQueueNew();
obj = <Your Class which inherits from somf_MOrderableCollectible>New();

/* Add obj to pq */
_somfInsert(pq,ev,obj);

_somFree (pq);
_somFree (obj);

Original Class
somf_TPriorityQueue

Related Information
Methods: somfAdd

somf_TPriorityQueue class

 230 SOMobjects Developer Toolkit

somfMember Method

Purpose
Gets an object from a given priority queue.

IDL Syntax
somf_MCollectible somfMember (in somf_MCollectible obj);

Description
The somfMember method determines whether a specified object obj is in the priority queue
represented by the receiving object and, if so, returns a pointer to it.

C cannot handle methods from different classes having the same name when they inherit the
name from different parents. Thus, if any child of somf_TCollection is used with
somf_THashTable, then the name of the method will have to be fully qualified (example:
somf_TDictionary_somfMember). This is the only way the linker can tell them apart.

This is not a problem in C++. In C++ you could have referenced this method as:
 d–>somfMember(ev, obj);

Parameters
receiver A pointer to an object of class somf_TPriorityQueue.

ev A pointer to the Environment structure for the calling method.

obj A pointer to the somf_MCollectible that may or may not be a member of the
collection.

Return Value
There are two possible valid return values for this method:

somf_MCollectible
A pointer to the object the method determined as the member.

SOMF_NIL The object was not found.

Example
somf_TPriorityQueue pq;
<your Class which inherits from somf_MOrderableCollectible> obj;
Environment *ev;

ev = somGetGlobalEnvironment();

pq = somf_TPriorityQueueNew();
obj = <your Class which inherits from somf_MOrderableCollectible>New();

/* Add some objects to pq */

/* See if obj is in pq */
if (somf_TPriorityQueue_somfMember(pq, ev, obj) == SOMF_NIL)
 somPrintf(”\n obj is NOT in d\n”);
else
 somPrintf(”\n obj IS in d\n”);

_somFree (pq);

Original Class
somf_TCollection (overridden here)

somf_TPriorityQueue class

 231Collection Classes Reference Manual

somfPeek Method

Purpose
Determines the object with the “highest” priority in the priority queue, but does not remove it.

IDL Syntax
somf_MOrderableCollectible somfPeek ();

Description
The somfPeek method determines the object with the “highest” priority in the priority queue, but
does not remove it from the receiving object.

Parameters
receiver A pointer to an object of class somf_TPriorityQueue.

ev A pointer to the Environment structure for the calling method.

Return Value
There are two possible valid return values for this method:

somf_MOrderableCollectible
A pointer to the object with the “highest” priority in the priority queue.

SOMF_NIL No object remains in the priority queue.

Example
somf_TPriorityQueue pq;
somf_MOrderableCollectible obj;
Environment *ev;

ev = somGetGlobalEnvironment();

pq = somf_TPriorityQueueNew();

/* Add some objects to pq */

/* Look at the highest priority object */
if ((obj = (_somfPeek(pq,ev))) == SOMF_NIL)
 somPrintf(” Nothing is in pq\n”);

_somFree (pq);
_somFree (obj);

Original Class
somf_TPriorityQueue

Related Information
Methods: somfPop

somf_TPriorityQueue class

 232 SOMobjects Developer Toolkit

somfPop Method

Purpose
Gets the object with the “highest” priority from a given priority queue.

IDL Syntax
somf_MOrderableCollectible somfPop ();

Description
The somfPop method removes the object with the “highest” priority from the specified priority
queue, and returns a pointer to it.

Parameters
receiver A pointer to an object of class somf_TPriorityQueue.

ev A pointer to the Environment structure for the calling method.

Return Value
There are two possible valid return values for this method:

somf_MOrderableCollectible
A pointer to the highest-priority object that was removed from the priority
queue.

SOMF_NIL No object remains in the priority queue.

Example
somf_TPriorityQueue pq;
somf_MOrderableCollectible obj;
Environment *ev;

ev = somGetGlobalEnvironment();

pq = somf_TPriorityQueueNew();

/* Add some objects to pq */

/* Get the highest priority object */
if ((obj = (_somfPop(pq,ev))) == SOMF_NIL)
 somPrintf(” Nothing is in pq\n”);

_somFree (pq);
_somFree (obj);

Original Class
somf_TPriorityQueue

Related Information
Methods: somfPeek, somfReplace

somf_TPriorityQueue class

 233Collection Classes Reference Manual

somfRemove Method
Purpose

Removes an object obj from a given priority queue.

IDL Syntax
somf_MCollectible somfRemove (in somf_MCollectible obj);

Description
The somfRemove method removes the specified object obj from the priority queue repre-
sented by the receiving object.

C cannot handle methods from different classes having the same name when they inherit the
name from different parents. somfRemove is a method name declared in multiple parents (for
example: somf_TCollection, somf_THashTable, somf_TIterator, etc.) You will probably
have to fully qualify the method name (for example: somf_TPriorityQueue_somfRemove).
This is the only way the linker can tell them apart.

This is not a problem in C++. In C++ you could have referenced this method as:
 d–>somfRemove(ev, obj);

Parameters
receiver A pointer to an object of class somf_TPriorityQueue.

ev A pointer to the Environment structure for the calling method.

obj A pointer to the somf_MCollectible object to be removed from the priority
queue.

Return Value
There are two possible valid return values for this method:

somf_MCollectible
A pointer to the object that was actually removed.

SOMF_NIL The specified object was not found.

Example
somf_TPriorityQueue pq;
<your Class which inherits from somf_MOrderableCollectible> obj;
Environment *ev;

ev = somGetGlobalEnvironment();

pq = somf_TPriorityQueueNew();
obj = <your Class that inherits from somf_MOrderableCollectible>New();

/* Add objects to pq */

/* Remove obj from pq */
if (somf_TPriorityQueue_somfRemove(pq,ev,obj) == SOMF_NIL)
 somPrintf(” obj was not in pq\n”);

_somFree (pq);
_somFree (obj);

Original Class
somf_TCollection (overridden here)

Related Information
Methods: somfRemoveAll

somf_TPriorityQueue class

 234 SOMobjects Developer Toolkit

somfRemoveAll Method

Purpose
Removes all of the objects from a given priority queue.

IDL Syntax
void somfRemoveAll ();

Description
The somfRemoveAll method removes all of the objects from the priority queue represented by
the receiving object.

C cannot handle methods from different classes having the same name when they inherit the
name from different parents. Thus, if any child of somf_TCollection is used with
somf_THashTable, then the name of the method will have to be fully qualified (example:
somf_TPriorityQueue_somfRemoveAll). This is the only way the linker can tell them apart.

This is not a problem in C++. In C++ you could have referenced this method as:
 d–>somfRemoveAll(ev);

Parameters
receiver A pointer to an object of class somf_TPriorityQueue.

ev A pointer to the Environment structure for the calling method.

Return Value
None.

Example
somf_TPriorityQueue pq;
Environment *ev;

ev = somGetGlobalEnvironment();

pq = somf_TPriorityQueueNew();

/* Add objects to pq */

/* Remove all the objects from pq */
_somfRemoveAll(pq,ev);

_somFree (pq);

Original Class
somf_TCollection (overridden here)

Related Information
Methods: somfRemove

somf_TPriorityQueue class

 235Collection Classes Reference Manual

somfReplace Method

Purpose
Removes the object with the highest priority from a given priority queue, and then inserts an
object obj into the priority queue.

IDL Syntax
somf_MOrderableCollectible somfReplace (in somf_MOrderableCollectible obj);

Description
The somfReplace method removes the object with the highest priority from the priority queue
represented by the receiving object. It then inserts the given object obj into the priority queue.

Parameters
receiver A pointer to an object of class somf_TPriorityQueue.

ev A pointer to the Environment structure for the calling method.

obj A pointer to a somf_MOrderableCollectible that will be added to the
receiving object.

Return Value
There are two possible valid return values for this method:

somf_MOrderableCollectible
A pointer to the object with the “highest” priority that was removed from the
priority queue.

SOMF_NIL No object remained in the priority queue when the object obj was inserted.

Example
somf_TPriorityQueue pq;
<your Class which inherits from somf_MOrderableCollectible> obj;
Environment *ev;

ev = somGetGlobalEnvironment();

pq = somf_TPriorityQueueNew();
obj = <your Class which inherits from somf_MOrderableCollectible>New();

/* Add objects to pq */

if ((_somfReplace(pq,ev,obj)) == SOMF_NIL)
 somPrintf(” pq was empty\n”);

_somFree (pq);
_somFree (obj);

Original Class
somf_TPriorityQueue

Related Information
Methods: somfPop, somfInsert

somf_TPriorityQueue class

 236 SOMobjects Developer Toolkit

somfSetEqualityComparisonFunction Method

Purpose
Sets a method to be called as the equality comparison function when removing objects from the
queue, checking whether a given object is a member, and so on.

IDL Syntax
void somfSetEqualityComparisonFunction (in somf_MCollectibleCompareFn testfn)

Description
The somfSetEqualityComparisonFunction sets the method that will be called as the equality
comparison function when removing objects from the priority queue, checking whether a given
object is a member, and so forth. The default method is somfIsEqual. Normally, this default
method will not need to be changed.

Note: Do not confuse this “equality comparison function” with the somfCompare method in
somf_MOrderableCollectible. This input parameter is not used to determine priority.

Parameters
receiver A pointer to an object of class somf_TPriorityQueue.

ev A pointer to the Environment structure for the calling method.

testfn A method pointer specifying either a somfIsEqual or somfIsSame method.

This argument should always be set to either
 somf_MCollectibleClassData.somfIsSame or
 somf_MCollectibleClassData.somfIsEqual.
This specification is necessary because SOM needs a pointer to the original
declaration of the method, which resides in somf_MCollectible. The
somf_TPriorityQueue object will use this pointer to access the somfIsSame
or somfIsEqual method that was declared and defined in the object being
inserted into, or removed from, the somf_TPriorityQueue object.

Return Value
None.

Example
somf_TPriorityQueue pq;
Environment *ev;

ev = somGetGlobalEnvironment();

pq = somf_TPriorityQueueNew();

/* Add some objects to pq */

_somfSetEqualityComparisonFunction(pq,ev,
 somf_MCollectibleClassData.somfIsEqual);

_somFree (pq);

Original Class
somf_TPriorityQueue

Related Information
Methods: somfGetEqualityComparisonFunction

somf_TPriorityQueue class

 237Collection Classes Reference Manual

somfTPriorityQueueInitF Method
Purpose

Initializes a new priority queue, given a comparison test method.

IDL Syntax
somf_TPriorityQueue somfTPriorityQueueInitF (
 in somf_MOrderableCompareFn testfn);

Description
The somfTPriorityQueueInitF method initializes a new priority queue, given a comparison
test method that will be used to determine the priority of objects in the priority queue.

Note: This is the only way to set the comparison function used to determine priority for
instances of the class. If this method is not used, the somfIsLessThan method is used.

Note: You cannot override this method.

Parameters
receiver A pointer to an object of class somf_TPriorityQueue.

ev A pointer to the Environment structure for the calling method.

testfn The method to be used to determine the “priority” of the objects in the queue.
This determines whether “higher priority” objects are removed first or last.
Using the somfIsLessThan method means that smaller objects are removed
first and larger objects are removed last. Using the somfIsGreaterThan
method reverses this.

This should always be set to either
 somf_MOrderableCollectibleClassData.somfIsLessThan or
 somf_MOrderableCollectibleClassData.somfIsGreaterThan
This specification is necessary because SOM needs a pointer to the original
declaration of the method, which resides in somf_MOrderableCollectible.
The somf_TPriorityQueue object will use this pointer to access the
somfIsLessThan or somfIsGreaterThan method that was declared and
defined in the object being inserted into, or removed from, the
somf_TPriorityQueue object.

Return Value
This method returns a pointer to an initialized somf_TPriorityQueue object.

Example
somf_TPriorityQueue pq1;
Environment *ev;

ev = somGetGlobalEnvironment();

pq1 = somf_TPriorityQueueNew();
_somfTPriorityQueueInitF(pq1,ev,
 somf_MOrderableCollectibleClassData.somfIsLessThan);

_somFree (pq1);

Original Class
somf_TPriorityQueue

Related Information
Methods: somfTPriorityQueueInitP

somf_TPriorityQueue class

 238 SOMobjects Developer Toolkit

somfTPriorityQueueInitP Method

Purpose
Initializes a new priority queue, setting it equal to another specified priority queue.

IDL Syntax
somf_TPriorityQueue somfTPriorityQueueInitP (in somf_TPriorityQueue q);

Description
The somfTPriorityQueueInitP method initializes a new priority queue represented by the
receiving object. The method also sets the new priority queue equal to another specified
priority queue. This implies that the instance data of the new priority queue will be set equal to
those of the source priority queue.

Note: You cannot override this method.

Parameters
receiver A pointer to an object of class somf_TPriorityQueue.

ev A pointer to the Environment structure for the calling method.

q A pointer to the existing instance of somf_TPriorityQueue to which the new
priority queue will be set equal.

Return Value
This method returns a pointer to an initialized somf_TPriorityQueue object.

Example
somf_TPriorityQueue pq1;
somf_TPriorityQueue pq2;
Environment *ev;

ev = somGetGlobalEnvironment();

pq1 = somf_TPriorityQueueNew();
pq2 = somf_TPriorityQueueNew();
_somfTPriorityQueueInitP(pq2,ev,pq1);

_somFree (pq1);
_somFree (pq2);

Original Class
somf_TPriorityQueue

Related Information
Methods: somfTPriorityQueueInitF

somf_TPriorityQueueIterator class

 239Collection Classes Reference Manual

somf_TPriorityQueueIterator Class

Description
The somf_TPriorityQueueIterator class defines an iterator for somf_TPriorityQueue that
will iterate over all of the objects in a priority queue.

Note: A somf_TPriorityQueueIterator iterator does not return objects “in order,” because a
somf_TPriorityQueue is only partially ordered in storage.

When you link, include the following library reference to get access to this class: somtk

Although the methods in this class are reentrant, the class is not thread-safe on multi-thread
applications. If a pointer to an instance of this class will be passed to multiple threads, the code
in those threads must guarantee thread-safe usage of the class.

File Stem
tpqitr

Base
somf_TIterator

Metaclass
SOMClass

Ancestor Classes
somf_TIterator, SOMClass

New Methods
somfTPriorityQueueIteratorInit

Overriding Methods
somfNext
somfFirst
somfRemove

somf_TPriorityQueueIterator class

 240 SOMobjects Developer Toolkit

somfFirst Method

Purpose
Resets the iterator and returns the first object in a priority queue.

IDL Syntax
somf_MCollectible somfFirst ();

Description
The somfFirst method resets the somf_TPriorityQueueIterator iterator given as the receiv-
ing object. The method also returns the first object of the priority queue that corresponds to the
specified iterator.

This method resets the iterator to the beginning of the priority queue collection. This is true not
only the first time the iterator is used; it is also true if other operations on the collection cause the
iterator to be invalidated. In the second case, this method also revalidates the iterator.

C cannot handle methods from different classes having the same name when they inherit the
name from different parents. somfFirst is a method name declared in multiple parents (for
example: somf_TSequence, somf_TIterator, etc.). You will probably have to fully qualify the
method name (for example: somf_TPriorityQueueIterator_somfFirst). This is the only way
the linker can tell them apart.

This is not a problem in C++. In C++ you could have referenced this method as:
 itr–>somfFirst(ev);

Parameters
receiver A pointer to an object of class somf_TPriorityQueueIterator.

ev A pointer to the Environment structure for the calling method.

Return Value
This method returns a pointer to the first somf_MCollectible object in the priority queue
collection. Or, SOMF_NIL is returned if the collection is empty.

Example
somf_TPriorityQueue pq;
Environment *ev;
somf_TPriorityQueueIterator itr;
somf_MOrderableCollectible itrobj;

ev = somGetGlobalEnvironment();

pq = somf_TPriorityQueueNew();
itr = somf_TPriorityQueueIteratorNew();
_somfTPriorityQueueIteratorInit(itr, ev, pq);

/* Add some object to pq */

/* Iterate through the TPriorityQueue */
itrobj = _somfFirst(itr,ev);
while (itrobj != SOMF_NIL)
{
 /* do something with itrobj */
 itrobj = _somfNext(itr,ev);
}

somf_TPriorityQueueIterator class

 241Collection Classes Reference Manual

_somFree (pq);
_somFree (itr);

Original Class
somf_TIterator (overridden here)

Related Information
Methods: somfNext

somf_TPriorityQueueIterator class

 242 SOMobjects Developer Toolkit

somfNext Method

Purpose
Gets the next object in a priority queue.

IDL Syntax
somf_MCollectible somfNext ();

Description
The somfNext method determines the next object in the priority queue that corresponds to the
iterator represented by the receiving object and, if found, returns a pointer to it. Objects are
retrieved in an order that reflects the “ordered–ness” of the priority queue (or the lack of ordering
on the priority queue objects).

C cannot handle methods from different classes having the same name when they inherit the
name from different parents. Thus, if any child of somf_TIterator is used with a child of
somf_TPrimitiveLinkedListIterator, then the name of the method will have to be fully qualified
(for example: somf_TDictionaryIterator_somfNext). This is the only way the linker can tell
them apart.

This is not a problem in C++. In C++ you could have referenced this method as:
 itr–>somfNext(ev);

If the priority queue has changed since the last time somfFirst was called (other than through
the use of the somfRemove method of this iterator), this method will fail.

Parameters
receiver A pointer to an object of class somf_TPriorityQueueIterator.

ev A pointer to the Environment structure for the calling method.

Return Value
There are two possible valid return values for this method:

somf_MCollectible
A pointer to the next somf_MCollectible in the priority queue.

SOMF_NIL The end of the collection has been reached.

Example
somf_TPriorityQueue pq;
Environment *ev;
somf_TPriorityQueueIterator itr;
somf_MOrderableCollectible itrobj;

ev = somGetGlobalEnvironment();

pq = somf_TPriorityQueueNew();
itr = somf_TPriorityQueueIteratorNew();
_somfTPriorityQueueIteratorInit(itr, ev, pq);

/* Add some object to pq */

somf_TPriorityQueueIterator class

 243Collection Classes Reference Manual

/* Iterate through the TPriorityQueue */
itrobj = _somfFirst(itr,ev);
while (itrobj != SOMF_NIL)
{
 /* do something with itrobj */

 itrobj = _somfNext(itr,ev);
}

_somFree (pq);
_somFree (itr);

Original Class
somf_TIterator (overridden here)

Related Information
Methods: somfFirst

somf_TPriorityQueueIterator class

 244 SOMobjects Developer Toolkit

somfRemove Method
Purpose

Removes the current object (the one just returned by a somfFirst or somfNext method) from a
priority queue.

IDL Syntax
void somfRemove ();

Description
The somfRemove method removes the current object (the one just returned by somfFirst or
somfNext) from the priority queue that corresponds to the iterator represented by the receiving
object.

The somfRemove method is the only way to remove an object from a priority queue during
iteration. However, if multiple iterators are in process, all other iterators are invalidated, just as if
some other kind of change had occurred in the priority queue.

If the collection has changed (other than through the use of the somfRemove method of this
iterator) since the last time somfFirst was called, this method will fail.

C cannot handle methods from different classes having the same name when they inherit the
name from different parents. somfRemove is a method name declared in multiple parents (for
example: somf_TCollection, somf_THashTable, somf_TIterator, etc.) You will probably
have to fully qualify the method name (as somf_TPriorityQueueIterator_somfRemove, for
example). This is the only way the linker can tell them apart.

This is not a problem in C++. In C++ you could have referenced this method as:
 itr–>somfRemove(ev);

Parameters
receiver A pointer to an object of class somf_TPriorityQueueIterator.

ev A pointer to the Environment structure for the calling method.

Return Value
None.

Example
somf_TPriorityQueue pq;
Environment *ev;
somf_TPriorityQueueIterator itr;

ev = somGetGlobalEnvironment();

pq = somf_TPriorityQueueNew();
itr = somf_TPriorityQueueIteratorNew();
_somfTPriorityQueueIteratorInit(itr, ev, pq);

/* Add some object to pq */

/* Remove the first object in pq */
_somfFirst(itr,ev);
somf_TPriorityQueueIterator_somfRemove(itr,ev);

_somFree (pq);
_somFree (itr);

Original Class
somf_TIterator

somf_TPriorityQueueIterator class

 245Collection Classes Reference Manual

somfTPriorityQueueIteratorInit Method

Purpose
Initializes a new priority queue iterator, given the priority queue over which it will iterate.

IDL Syntax
somf_TPriorityQueueIterator somfTPriorityQueueIteratorInit (
 in somf_TPriorityQueue h);

Description
The somfTPriorityQueueIteratorInit method initializes a new somf_TPriorityQueueIterator
iterator, given the somf_TPriorityQueue object over which iteration is needed.

Note: This is one of two ways to initialize a somf_TPriorityQueueIterator iterator to point to
an instance of a somf_TPriorityQueue priority queue collection. The other way is to
use the somf_TPriorityQueue class’s somfCreateIterator method described on
page 226.

Note: You cannot override this method.

Parameters
receiver A pointer to an object of class somf_TPriorityQueueIterator.

ev A pointer to the Environment structure for the calling method.

h A pointer to the somf_TPriorityQueue object over which the receiving object
will iterate.

Return Value
This method returns a pointer to an initialized somf_TPriorityQueueIterator object.

Example
somf_TPriorityQueue pq;
Environment *ev;
somf_TPriorityQueueIterator itr;

ev = somGetGlobalEnvironment();

pq = somf_TPriorityQueueNew();
itr = somf_TPriorityQueueIteratorNew();
_somfTPriorityQueueIteratorInit(itr, ev, pq);

_somFree (pq);
_somFree (itr);

Original Class
somf_TPriorityQueueIterator

 246 SOMobjects Developer Toolkit

