
Appendix A. Customer Support and Error Codes

Service and Technical Support for SOMobjects
This service and technical support information applies for:

� SOMobjects Developer Toolkit, Version 2.1
� SOMobjects Workstation Enabler, Version 2.1
� SOMobjects Workgroup Enabler, Version 2.1

Notes: Customers in European, Middle Eastern, and African Countries should refer to the
separate Service Statement included with the product for service and technical support
instructions for this product.

Customers in Canada and Asia Pacific Countries should refer to the Service Statement
in the License Information Booklet for service and technical support instructions for this
product.

You Must Register for Service
Defect service for this product is available through April 30, 1996, or six months after the general
availability of a subsequent version of the product (or a product designated as a replacement
product), whichever occurs earlier.

Register by providing your company name, address, phone number, Internet address (if appli-
cable), contact person’s name, phone and FAX numbers (include area code). This information
can be sent via electronic mail as follows:

• IBM OS2BBS to userid: WZ00178

or

• Internet Commercial: somreg@austin.ibm.com

or

• CompuServe: GO IBMSOM
and then browse the News Flash for further registration information.

Within two working days of receipt of your registration, a service ID or password will be issued
to you, allowing access to the defect forum and technical support forum.

Defect Support
Defect service for this product is available through April 30, 1996, or six months after the general
availability of a subsequent version of the product (or a product designated as a replacement
product), whichever occurs earlier.

Defect service is provided by the IBM SOMobjects Development personnel via the following
Electronic Support Services:

• IBM OS/2 Bulletin Board System
via IBM TalkLink Electronic Conferencing Service

• Internet Commercial Electronic Network

• CompuServe

The IBM SOMobjects Development personnel will monitor these Electronic Support Services
between 9 a.m. and 6 p.m. CT, Monday through Friday, except holidays. Acknowledgement of
receipt of Defect Report will be within 24 hours for SOMobjects RUNTIME defects and 72 hours
for SOMobjects TOOLKIT defects, provided that the Defect Report is received by the
SOMobjects Technical Support personnel during the time period of 9 a.m. to 6 p.m. CT, Monday
through Friday.

A – 2 SOMobjects Developer Toolkit Users Guide

Technical Support
Technical support service for this product is available for ninety (90) days after receipt of your
service registration by SOMobjects Development personnel or until expiration of defect sup-
port, whichever occurs first.

Technical support service is provided by the IBM SOMobjects Development personnel via the
following Electronic Support Services:

• IBM OS/2 Bulletin Board System
via IBM TalkLink Electronic Conferencing Service

• Internet Commercial Electronic Network

• CompuServe

The IBM SOMobjects Development personnel will monitor these Electronic Support Services
between 9 a.m. and 6 p.m. CT, Monday through Friday, except holidays. Questions will be
answered in the order in which they are received. Extension of the technical support beyond the
expiration date will be offered on a fee basis. Information regarding this offering will be provided
on the service bulletin boards.

IBM OS/2 Bulletin Board System via TalkLink
The OS/2 Bulletin Board System (BBS) is implemented on the IBMLink facility. The OS/2 BBS is
provided to all Workstation Technical Coordinators (WTSC) in corporate IBMLink accounts and
all members of the OS/2 Developer’s Assistance Program (DAP) who have access to IBMLink.
You may contact your Technical Coordinator, if one has been identified by your company. If your
company does not currently utilize IBMLink, you can subscribe to TalkLink by calling
1–800–547–1283 (USA).

How to use the IBM OS/2 Bulletin Board System (OS2BBS) via TalkLink for service and support
for SOMobjects:

• To obtain technical support for non-defect “how-to” questions and answers:

– Logon to IBM OS2BBS system from IBMLink Main Menu screen
– Select “OS/2 Questions and Answer Bulletin Boards”
– Select “SOMHOWTO” CFORUM

• To submit a suspected defect report:

– Logon to IBM OS2BBS system from IBMLink Main Menu screen
– Select “OS/2 Questions and Answer Bulletin Boards”
– Select “SOMTKBUG” – if the suspected defect is with the SOM Toolkit
– Select “SOMRTBUG” – if the suspected defect is with the SOM Runtime

Note: When submitting a suspected defect report, please provide the following information:

– Your Company name and address.
– Your name, phone and FAX numbers.
– The hardware platform – (PS/2 Model ____, RS/6000 Model ____, or other__________).
– Operating System and level –
 (OS/2 Version ____, AIX Version ____, or DOS/Windows Version____).
– System configuration (memory, communication protocol, etc.).
– SOMobjects Version _____ (and CSD level _____, if applicable).
– Complete description of the problem.
– Complete test case to reproduce the problem, if applicable (with a minimum amount of
 code/data).

A – 3A. Customer Support and Error Codes

Internet Commercial Electronic Network
How to use Internet for service and support for SOMobjects:

• To obtain technical support, for non-defect “how-to” questions and answers:

– Via USENET Newsgroup at: comp.unix.aix
Note: Include the word “SOM” in the subject line.

• To submit a suspected defect report:

– Send EMAIL to: sombug@austin.ibm.com

Note: When submitting a suspected defect report, please provide the following information:

– Your Company name and address.
– Your name, phone and FAX numbers.
– Your Internet address.
– The hardware platform (PS/2 Model ____, RS/6000 Model ____, or other__________).
– Operating System and level –
 (OS/2 Version ____, AIX Version ____, or DOS/Windows Version____).
– System configuration (memory, communication protocol, etc.).
– SOMobjects Version _____ (and CSD level _____, if applicable).
– Complete description of the problem.
– Complete test case to reproduce the problem, if applicable (with a minimum amount of
 code/data).

CompuServe
How to use CompuServe for service and support for SOMobjects:

• From any CompuServe prompt, enter: GO IBMSOM

Note: When submitting a suspected defect report, please provide the following information:

– Your Company name and address.
– Your name, phone and FAX numbers.
– The hardware platform (PS/2 Model ____, RS/6000 Model ____, or other__________).
– Operating System and level –
 (OS/2 Version ____, AIX Version ____, or DOS/Windows Version____).
– System configuration (memory, communication protocol, etc.).
– SOMobjects Version _____ (and CSD level _____, if applicable).
– Complete description of the problem.
– Complete test case to reproduce the problem, if applicable (with a minimum amount of
 code/data).

If you are not currently a member of CompuServe, you can subscribe by calling (USA)
1–800–524–3388 and asking for Representative 239.

A – 4 SOMobjects Developer Toolkit Users Guide

SOM Kernel Error Codes
Following are error codes with messages/explanations for the SOM kernel and the various
frameworks of the SOMobjects Developer Toolkit.

Value Symbolic Name and Description

20011 SOMERROR_CCNullClass
The somDescendedFrom method was passed a null class argument.

20029 SOMERROR_SompntOverflow
The internal buffer used in somPrintf overflowed.

20039 SOMERROR_MethodNotFound
somFindMethodOk failed to find the indicated method.

20049 SOMERROR_StaticMethodTableOverflow
A Method–table overflow occurred in somAddStaticMethod.

20059 SOMERROR_DefaultMethod
The somDefaultMethod procedure was called; a defined method probably
was not added before it was invoked.

20069 SOMERROR_MissingMethod
The specified method was not defined on the target object.

20079 SOMERROR_BadVersion
An attempt to load, create, or use a version of a class-object implementation is
incompatible with the using program.

20089 SOMERROR_NullId
The SOM_CheckId was given a null ID to check.

20099 SOMERROR_OutOfMemory
Memory is exhausted.

20109 SOMERROR_TestObjectFailure
The somObjectTest found problems with the object it was testing.

20119 SOMERROR_FailedTest
The somTest detected a failure; generated only by test code.

20121 SOMERROR_ClassNotFound
The somFindClass could not find the requested class.

20131 SOMERROR_OldMethod
An old-style method name was used; change to an appropriate name.

20149 SOMERROR_CouldNotStartup
The somEnvironmentNew failed to complete.

20159 SOMERROR_NotRegistered
The somUnloadClassFile argument was not a registered class.

20169 SOMERROR_BadOverride
The somOverrideSMethod was invoked for a method that was not defined in
a parent class.

20179 SOMERROR_NotImplementedYet
The method raising the error message is not implemented yet.

20189 SOMERROR_MustOverride
The method raising the error message should have been overridden.

A – 5A. Customer Support and Error Codes

20199 SOMERROR_BadArgument
An argument to a core SOM method failed a validity test.

20219 SOMERROR_NoParentClass
During the creation of a class object, the parent class could not be found.

20229 SOMERROR_NoMetaClass
During the creation of a class object, the metaclass object could not be found.

A – 6 SOMobjects Developer Toolkit Users Guide

DSOM Error Codes
The following table lists the error codes that may be encountered when using DSOM. (Obsolete
messages have been removed, thus message numbers do not compose a full sequence.)

Value Description

30001 SOMDERROR_NoMemory
Memory is exhausted.

30002 SOMDERROR_NotImplemented
Function or method has a null implementation.

30004 SOMDERROR_IO
I/O error while accessing a file located in SOMDDIR.

30008 SOMDERROR_HostAddress
Unable to retrieve local host address.

30019 SOMDERROR_NoMessages
No messages available (and caller specified “no wait”).

30020 SOMDERROR_UnknownAddress
Invalid client or server address.

30023 SOMDERROR_CommTimeOut
Communications timeout. Make sure the DSOM daemon is running.

30026 SOMDERROR_NoHostName
Unable to get host name.

30029 SOMDERROR_BadEnvironment
Invalid Environment value in request message.

30031 SOMDERROR_BadNVList
Invalid Named Value List (NVList).

30032 SOMDERROR_BadFlag
Bad flag in NVList item.

30033 SOMDERROR_BadLength
Bad length in NVList item.

30034 SOMDERROR_BadObjref
Invalid object reference.

30036 SOMDERROR_UnknownReposId
Attempt to use invalid Interface Repository identifier.

30037 SOMDERROR_NVListAccess
Invalid NVList object in request message.

30038 SOMDERROR_NVIndexError
Attempt to use an out-of-range NVList index.

30039 SOMDERROR_SysTime
Error retrieving system time.

30041 SOMDERROR_CouldNotStartProcess
System error: Unable to start a new process.

30042 SOMDERROR_NoServerClass
No SOMDServer (sub)class specified for server implementation.

30043 SOMDERROR_NoSOMDInit
SOM or DSOM has not been initialized.

A – 7A. Customer Support and Error Codes

30045 SOMDERROR_NoImplDatabase
Could not open Implementation Repository database.

30046 SOMDERROR_ImplNotFound
Implementation not found in implementation repository.

30047 SOMDERROR_ClassNotFound
Class not found in implementation repository.

30048 SOMDERROR_ServerNotFound
Server not found in somdd’s active server table.

30049 SOMDERROR_ServerAlreadyExists
Server already exists in somdd’s active server table.

30050 SOMDERROR_ServerNotActive
Server is not active.

30052 SOMDERROR_ObjectNotFound
Could not find desired object.

30053 SOMDERROR_NoParentClass
Unable to find / load parent class during proxy class creation.

30055 SOMDERROR_BadTypeCode
Invalid type code.

30056 SOMDERROR_BadDescriptor
Invalid method descriptor.

30059 SOMDERROR_KeyNotFound
Internal object key not found.

30060 SOMDERROR_CtxInvalidPropName
Illegal context property name.

30061 SOMDERROR_CtxNoPropFound
Could not find property name in context.

30062 SOMDERROR_CtxStartScopeNotFound
Could not find specified context start scope.

30063 SOMDERROR_CtxAccess
Error accessing context object.

30064 SOMDERROR_CouldNotStartThread
System error: Unable to start a new thread.

30065 SOMDERROR_AccessDenied
System error: Access to a system resource (file, queue, shared
memory, etc.) is denied.

30066 SOMDERROR_BadParm
Invalid parameter supplied to an operating system call.

30072 SOMDERROR_NoSpace
System error: No space left on device.

30089 SOMDERROR_WrongRefType
Operation attempted on an object reference is incompatible with the
reference type.

30090 SOMDERROR_MustOverride
This method has no default implementation and must be overridden.

30091 SOMDERROR_NoSocketsClass
Could not find/load Sockets class.

A – 8 SOMobjects Developer Toolkit Users Guide

30092 SOMDERROR_EManRegData
Unable to register DSOM events with the Event Manager.

30093 SOMDERROR_NoRemoteComm
Remote communications is disabled (for Workstation DSOM).

30096 SOMDERROR_GlobalAtomError
 On Windows only, an error occurred while adding a segment name to

the Windows atom table.
30097 SOMDERROR_NamedMemoryTableError
 On Windows only, an error occurred while creating or deleting a

(named) shared memory segment.
30098 SOMDERROR_WMQUIT

On Windows only, indicates DSOM received a Windows WM_QUIT
message. The developer of a server application should check for
SOMDERROR_WMQUIT returned from method execute_request_loop
and handle the error by cleaning up and exiting.

30105 SOMDERROR_DuplicateImplEntry
 Implementation repository identifier already exists. Add wait time
 between ‘regimpl’ calls.
30106 SOMDERROR_InvalidSOMSOCKETS
 SOMSOCKETS environment variable set incorrectly.
30107 SOMDERROR_IRNotFound
 Interface Repository not found.
30108 SOMDERROR_ClassNotInIR
 Attempt to create an object whose Class is not in the Interface Repository.
30110 SOMDERROR_SocketError
 A communications socket error has occurred. Make sure the DSOM

daemon is running.
30111 SOMDERROR_PacketError
 A communications packet error has occurred.
30112 SOMDERROR_Marshal
 A marshalling error has occurred.
30113 SOMDERROR_NotProcessOwner
 On AIX only, the server cannot be killed because you are not the
 process owner.
30114 SOMDERROR_ServerInactive
 The requested server is not running.
30115 SOMDERROR_ServerDisabled
 The server has been disabled by the program servmgr.
XXXXX SOMDERROR_OperatingSystem
 On AIX, this is the value of the C error variable “errno” defined in errno.h;

on OS/2 and Windows, it is the DOS API return code.

A – 9A. Customer Support and Error Codes

Persistence Framework Error Codes
Methods of the Persistence Framework return a sompException, exception. The exception
contains a primary and secondary value. The primary value will contain either
SOMPERROR_SYSTEM_ERROR or SOMPERROR_FRAMEWORK_ERROR. The former is re-
turned when the originating error comes from the underlying C library. The latter is returned
when the error was detected within the Persistence Framework.

When the primary field is SOMPERROR_SYSTEM_ERROR, secondary will contain the actual
error returned from the C library (the value normally found in the C variable “errno”).

When the primary field is SOMPERROR_FRAMEWORK_ERROR, secondary will contain one of
the following errors, defined in “somperr.idl”:

Value Description

10 SOMPERROR_OBJ_ALREADY_REGISTERED
Attempted to register an object that was already registered. This is an internal
error.

11 SOMPERROR_COULD_NOT_FIND_DIR
The system ID assigner attempted to use the path specified in the environment
variable SOMP_PERSIST to find the file containing the last assigned ID, and the
path did not exist. Check the value of SOMP_PERSIST and make sure it points
to a valid pathname.

12 SOMPERROR_IOGROUP_EMPTY
One of the I/O Group Managers was asked to write an empty I/OGroup. This is
an internal error.

13 SOMPERROR_COULD_NOT_RESTORE_OBJ
A request was made to restore an object. The ID indicated a valid file, but the
requested object was not in the file. This error may occur if a class object was
not created prior to calling sompRestoreObject.

14 SOMPERROR_OBJ_IS_NOT_PERSISTENT
Attempted to store an object whose class is not derived from
SOMPPersistentObject. Only objects derived from SOMPPersistentObject
can be stored.

15 SOMPERROR_IOGROUP_NEWOBJ
Attempted to restore an object, but the appropriate class object could not be
found. Users with this error should put their object in a dynamically loadable file
or use their “<className>NewClass” function to create their class object
before attempting to restore objects. If the objects are already in a DLL, ensure
that:

– The SOMInitModule function for the DLL executes the procedure
 <className>NewClass for the class which can not be restored.
– On OS/2, ensure that the SOMInitModule entry point uses the “system”
 linkage convention (see samples).
– The class definition in question has the “dllname” modifier. For example, if
 your dll was named foo.dll, you should have dllname=”foo.dll”; in your
 .idl file.
– That you have updated the interface repository for your class. Assuming
 foo.idl, you can update the IR by running
 ”sc –sir –u foo.idl”
– Ensure environment variable SOMIR points to the correct interface
 repository file.

A – 10 SOMobjects Developer Toolkit Users Guide

When all else fails, explicitly call the <className>NewClass procedure of
your class before attempting to restore it.

16 SOMPERROR_IOGROUP_NOTREAD
Attempted to read an object whose I/O Group has never been read. This is an
internal error.

17 SOMPERROR_OBJ_IS_NOT_INITIALIZED
Attempted to store an object which was not properly initialized. You need to
initialize your persistent object with a persistent ID before storing it.

18 SOMPERROR_PFW_INIT_FAILED
Failure to instantiate either the SOMPPersistentStorageMgr or other internal
classes. This is an internal error.

19 SOMPERROR_ED_INVALID_DATA_TYPE
Default Encoder/Decoder (SOMPAttrEncoderDecoder) attempted to read in
some data, but could not recognize the data type. This could indicate a
corrupted data file or an internal error.

20 SOMPERROR_BAD_OBJECT_ID_STRING
You have attempted to initialize a persistent ID with a string that is not of the
appropriate syntax. The correct form of a persistent ID is:

 <IOGroupMgrClassName>:<IOGroupName>:<GroupKey>

where:

 <IOGroupMgrClassName> is the class name of an I/O Group Manager
class. The framework supplies two: SOMPAscii and SOMPBinary,

 <IOGroupName> is a name understandable to the I/O Group Manager
Class. SOMPAscii and SOMPBinary expect this name to be a file name, and

 <GroupKey> is a key number.

If this error occurs during restore, either the ID you have passed to the
Persistent Storage Mgr is incorrect, or possibly the ID of an object embedded in
the object you are attempting to restore is incorrect. The string ID read from
storage may have been corrupted on disk.

21 SOMPERROR_INVALID_OBJECT_TYPE
One of the media interfaces attempted to determine the type of an object and
couldn’t. This could indicate a corrupted data file or an internal error.

22 SOMPERROR_ENC_DEC_NOT_FOUND
The class object of the encoder/decoder you are attempting to use can not be
found. To determine what class the framework is attempting to find you can
invoke the method

 sompGetEncoderDecoderName

on the objects of the class you are attempting to save/restore.

This error is typically the result of specifying a user written encoder/
decoder class (via either method sompSetEncoderDecoderName or
sompSetClassLevelEncoderDecoderName) without first ensuring that its
class object exists. Execute either the “NewClass” procedure of the
encoder/decoder class or ensure that it is installed correctly in a DLL (see
SOMPERROR_IOGROUP_NEWOBJ).

If the encoder/decoder class name is SOMPAttrEncodeDecoder, then there is
a problem with the framework.

A – 11A. Customer Support and Error Codes

23 SOMPERROR_IOGROUP_DOES_NOT_EXIST
SOMPPersistentStorageMgr was trying to read or delete an object, but
couldn’t find the I/O Group. For SOMPAscii and SOMPBinary, this means the
file could not be found. This error is the result of sompGroupExists method
returning FALSE.

24 SOMPERROR_OBJECT_NOT_FOUND
The object could not be restored or deleted because it could not be found.
Ensure that the SOMP_PERSIST environment variable is set the same as when
you stored the object.

If the file appears to be there but you still can’t restore, perhaps there is an
upper/lower case difference in the name of the file. The framework is case
sensitive.

25 SOMPERROR_INTERFACE_NOT_FOUND
One of the I/O Group Managers was attempting to copy a group and could not
find the appropriate Media Interface. This is an internal error.

26 SOMPERROR_NOT_STORING_OBJECTS
sompAddObjectToWriteSet has been called; however, because the
SOMPPersistentStorageMgr is not currently storing objects, there is no write
set.

The sompAddObjectToWriteSet method is intended to be used by
encoder/decoder objects which are run during a save/restore.

27 SOMPERROR_POINTER_NOT_REGISTERED
This is an internal error.

28 SOMPERROR_MEDIA_FORMAT_ERROR
Attempt was made to read a file with a particular I/O Group Mgr, but the file was
incompatible with the requested I/O Group Mgr. Make sure the I/O Group Mgr
specified in the persistent ID string is compatible with the I/O Group Mgr that
wrote the file.

This error may also occur if you attempt to restore an object from a file
produced by an aborted store. If the store attempt failed, the file may have been
left in an invalid format.

29 SOMPERROR_BAD_IOGROUP_MANAGER
Attempted to restore an object with a nonexistent I/O Group Mgr. Check the
name of the I/O Group Mgr in the Persistent ID string.

The I/O Group Mgr class name is the first part of a peristent ID. The class
object of the I/O Group Mgr must exist prior to invoking store/restore requests
to it. Ensure that you have either called the <className>NewClass procedure
of your I/O Group Mgr class or have properly installed your class into a
dynamically loadable library (see SOMPERROR_IOGROUP_NEWOBJ).

30 SOMPERROR_NOT_RESTORING_OBJECTS
sompAddIdToReadSet has been called but since the PersistentStorageMgr is
not currently restoring objects, there is no read set.

The sompAddIdToReadSet method is intended to be used by encoder/
decoder objects which are run during a save/restore.

A – 12 SOMobjects Developer Toolkit Users Guide

31 SOMPERROR_ED_AGGREGATE_TYPE_CHG
An object has been redefined in a way that one of its aggregate data types is no
longer compatible with its stored data. Typically this means that either
 – A new member has been added to a structure.
 – A sequence’s type has been changed (i.e. what had been a sequence of
 reals is now a sequence of strings).
 – An array’s type has been changed (i.e. what had been an array of reals is
 now an array of strings.

32 SOMPERROR_ED_ATTR_NOT_DEFINED
An object has been redefined such that one of its attributes is no longer valid.
During the restore of an object, data for an nonexistent attribute was found.
The restore has been aborted.

33 SOMPERROR_ED_TC_RESTORE_FAILED
An attempt to read a type code failed. This could indicate corrupted data file or
an internal error.

34 SOMPERROR_ED_TYPECHG
The definition for an attribute has changed its type. During the restore of an
object, the data type of an attribute has been found to be different than stored
data type. The restore has been aborted.

35 SOMPERROR_ED_TYPE_SIZE_CHG
The definition for a sequence has changed such that the amount of data stored
in the sequence exceeds the new maximum.

36 SOMPERROR_ED_UNSUPPORTED_TYPE
Attempted to store a non supported type code. The type of the data was not a
recognized CORBA data type.

37 SOMPERROR_ED_CLASS_NOT_DEFINED
An attempt was made to read an object that is not registered in the interface
repository. Rerun the SOM compiler to update the interface repository.

38 SOMPERROR_DUPLICATE_OBJECT_ID
Attempted to initialize an object with the same ID as another object already
initialized.

A – 13A. Customer Support and Error Codes

Replication Framework Error Codes
Given below are the codes returned by Replication Framework methods; the reference manual
page on each method states which code a method may return.

Value Description Explanation

500 SOMR_TIMEOUT — Possible actions are (1) to retry or (2) to
terminate.

501 SOMR_OK

501 SOMR_GRANTED

502 SOMR_UNAUTHORIZED — The likely cause is that the .scf file is inacces-
sible. Or it could be a reader trying to update
the replicated object. Recovery action is to
ensure proper access.

503 SOMR_TRYLATER — Possible action is to wait for a while and retry
the failed operation.

504 SOMR_DENIED — The likely cause is that the .scf file is inacces-
sible. Or it could be a reader trying to update
the replicated object. Recovery action is to
ensure proper access.

508 SOMR_MASTER_UNREACHABLE
— Likely cause is that either the network is

down or too slow. Possible actions are (1)
Change the time constants through environ-
ment variables mentioned earlier. (2) Wait
for a while and retry. (3) Ensure that the .scf
file is accessible.

Messages
It is possible to receive the following messages from the Replication Framework while an
application is running. All but the last indicates a misuse of the framework interface or a timing
problem.

Replication operation not logged. Probable invalid parameter.
Check the reference manual and rewrite program with appropriate parameters.

somrApplyUpdates in class SOMRReplicbl called. Method must be overridden.
You are using value logging but have not overridden somrApplyUpdates.

Warning: Trying to UnPin a replicated object that is not Pinned.
Each call to somrUnPin must be preceded by a call to somrPin; check your program.

Waiting for Network Transport to be ready...
This message usually appears when the communication buffers are full. When the target
application consumes the pending messages, the problem goes away. Occasionally, this
can also happen due to a programming error (for example, if a process containing a repli-
ca that is the target of update messages blocks indefinitely or enters an infinite loop).

Shutting down listener until some replicas terminate.
This message indicates that the number of replicas reached the permitted maximum.

A – 14 SOMobjects Developer Toolkit Users Guide

Listening to connections again.

SOMRERROR Replication Framework Error: N.N.N. Refer to IBM Customer Service.
This message is issued by an internal consistency check in the framework and should
never appear. Because of the fault-tolerance of the framework, your application may con-
tinue to run correctly. However, the message should be reported so that IBM can provide
improvements to the framework.

Environment variable SOMSOCKETS is not defined.
See the topic “Dependence on Sockets DLL” in Chapter 9, “The Replication Framework.”

Unable to locate the class <class name> in SOMIR or failed to load the associated dll.
The specified class name is either not found in the implementation repository (indicated
by the environment variable SOMIR) or the corresponding dynamic link library could not be
found.

A – 15A. Customer Support and Error Codes

Metaclass Framework Error Codes
It is possible to receive the following messages from the Metaclass Framework while an
application is running.

60001 An attempt was made to construct a class with SOMMSingleInstance as a
metaclass constraint. (This may occur indirectly because of the construction of
a derived metaclass). The initialization of the class failed because
somInitMIClass defined by SOMMSingleInstance is in conflict with another
metaclass that has overridden somNew. That is, some other metaclass has
already claimed the right to return the value for somNew.

60002 An attempt was made to construct a class with SOMMSingleInstance as a
metaclass constraint. (This may occur indirectly because of the construction of
a derived metaclass). The initialization of the class failed because
somInitMIClass defined by SOMMSingleInstance is in conflict with another
metaclass that has overridden somFree. That is, some other metaclass has
already claimed this right to override somFree.

60004 An invocation of somrRepInit was made with a logging type other than ‘o’ or ‘v’.

60005 The sommBeforeMethod or the sommAfterMethod was invoked on a
SOMRReplicableObject whose logging type is other than ‘o’ or ‘v’. This error
cannot occur normally. The likely cause is that some method invoked on anoth-
er object has overwritten this object’s memory.

60006 A Before/After Metaclass must override both sommBeforeMethod and
sommAfterMethod. This message indicates an attempt to create a Before/
After Metaclass where only one of the above methods is overridden.

A – 16 SOMobjects Developer Toolkit Users Guide

Appendix B. Converting OIDL Files to IDL

This appendix describes how to convert OIDL class descriptions (in .csc files) to IDL class
descriptions (in .idl files).

The conversion process involves two steps:

� Converting .csc files to .idl files. This step is largely automatic, and most classes can be
converted without intervention.

� Adding extra type information. The difficulty of this step depends largely on how much
passthrus are used to define types and constants.

To convert or not to convert
There are several reasons why OIDL users should convert to IDL. Unlike OIDL, IDL offers SOM
users multiple inheritance, exception handling, type checking, and automatic descriptor sup-
port. In addition, binaries generated from OIDL class descriptions are significantly larger and
run more slowly than binaries generated from IDL class descriptions. If users choose not to
convert their OIDL class descriptions to IDL, however, they can continue to use the SOM
Compiler to update their classes, with a few minor changes in protocol. These are:

1. The SOM Compiler no longer generates a .ph (private) and .h (public) file, only a .h file that
includes bindings for both private and public methods. To generate a “public” version of
the .h file, first generate a .sc file (by invoking the SOM Compiler on the .csc file with the
“–ssc” option), then generate a .h file from the .sc file (by invoking the SOM Compiler on
the .sc file with the “–sh” option).

2. Because .ph files are no longer used, passthru statements directed toward .ph files
should be redirected toward .h files.

3. Passthru statements directed toward .c files should be removed or redirected toward .ih
files.

4. Set the environment variables SMADDSTAR=1 and SMNOTC=1:
For OS/2:

SET SMADDSTAR=1
SET SMNOTC=1

For AIX:
export SMADDSTAR=1
export SMNOTC=1

5. Any methods that return structures should have the modifier “struct” attached to them.
For example,

UserStruct getUserStruct(), struct;

Step 1. Converting .csc files to .idl files
The SOM Toolkit supplies a program, ctoi, to assist users in converting .csc files to .idl files.
Before running ctoi, ensure that the directories containing files to convert have all the neces-
sary .sc and .psc files already created. (The SOM Compiler can be run with the –ssc and –spsc
options to create .sc and .psc files from a .csc file.)

The conversion process requires a list of all the classes used in the files to be converted, so that
forward references to classes can be handled correctly. Store this list of class names in some
file (for example, clsfile). The name of this file must be specified to the SOM Compiler by the
SMCLASSES environment variable:

B – 2 SOMobjects Developer Toolkit Users Guide

For OS/2:
SET SMCLASSES=clsfile

For AIX:
export SMCLASSES=clsfile

The following command executes the ctoi conversion program:

ctoi [file1 file2 ...]

The ctoi program generates a .idl file for each specified .csc file.

Once you have run ctoi, you should be able to install and run your application program as usual.
The following situations, however, may require attention:

� Be sure to change any of your installation batch files or Makefiles that explicitly mention
.csc, .sc, or .psc files so that they instead refer to .idl files.

� Set the environment variables SMADDSTAR=1 and SMNOTC=1:
For OS/2:

SET SMADDSTAR=1
SET SMNOTC=1

For AIX:
export SMADDSTAR=1
export SMNOTC=1

� Any methods that return structures should have the modifier “struct” attached to them. For
example,

UserStruct getUserStruct(), struct;

� If any of your classes use IDL reserved words as function or variable names, then these
names must be changed. Typical cases include “string,” “context”, and “interface.”

� IDL does not permit the following notation for a struct type:

data:
 struct stat fileStats;

Instead, you must add a typedef in the IDL interface statement that introduces the data
element:

interface: filemi {
 typedef struct stat stat;
...
#ifdef __SOMIDL__
 implementation {
 stat fileStats;

 ...
 };

#endif
};

To have the typedef emitted into the .h header file, put the typedef within the interface
statement, as shown above. If you don’t want the typedef to be emitted in the .h header
file, then put it outside the interface statement or in a separate file (to be #included).
Alternatively, if you #include a central header file, then the typedef can be put in that
header file.

If you cannot simply add a typedef, due to name conflicts in other standard header files,
then add a new type (such as stat_t, for the example above) and change your .idl files to
reflect the new type name.

B – 3B. Converting OIDL Files to IDL

� The use of unbounded arrays is not allowed in IDL. For example,

char *argv[];

must be rewritten as:

char **argv;

or as:

#define MAX_SIZE 32
char *argv[MAX_SIZE];

� The “unsigned char” type is not supported by IDL. To effectively use unsigned chars,
define the type uchar_t as follows:

typedef octet uchar_t;

The SOM Compiler will map this onto an “unsigned char” type in the .h header file.

� IDL does not permit structures to be passed by value. Instead, your methods must pass a
pointer to a structure. (Methods can, however, return a structure.)

� Forward references are required in IDL. For all classes not in the ancestry of a class that
are used in the interface statement for the class, the following statement must precede the
class’s interface statement:

interface <className>;

� Numeric and string macros that you want to appear in your output files must be mapped
onto string constants. For example,

#define FILE_NAME_MAX 256
#define FILE_NAME ”hello.c”

must be replaced by:

const long FILE_NAME_MAX = 256;
const string FILE_NAME = ”hello.c”;

� Public or private instance variables are converted to IDL attributes. However, there are
some limitations, as follows: For instance variables that are explicit arrays (such as,
char x[10]; or short y[20];) the ctoi conversion will result in invalid IDL attributes,
because IDL attributes cannot include array declarators. Attributes can be of a type that is
an array, such as

typedef char myarraytype[10];
attribute myarraytype myarray;

but not an explicit array, as in

attribute char myarray[10]; /* not valid */

If a .csc file contains a public or private instance variable that is an array, such as

char myarray[10];

the ctoi conversion facility will produce the following in the .idl file it generates:

attribute char[10] myarray;

This is invalid IDL; it must be fixed manually before the SOM Compiler will accept the .idl
file. (It is invalid not only because the array declarator is in the wrong place, but also be-

B – 4 SOMobjects Developer Toolkit Users Guide

cause attributes cannot include array declarators at all.) To fix it, introduce a typedef that
defines an array type, and make that the type of the attribute, as shown:

typedef char myarraytype[10];
attribute myarraytype myarray;

This limitation does not affect internal instance variables, just public and private ones. (In-
ternal instance variables are not converted to attributes.)

� Most information contained in passthru lines directed to the implementation header (.ih)
file should be moved to the implementation (.c) file. In addition, passthru statements
directed toward .c files must be removed. (They are no longer allowed.)

� If after running ctoi, you discover that you inadvertently omitted a class name from the file
that the SMCLASSES environment variable refers to, it is best to update the class name file,
remove the new .idl files, and recreate them using ctoi.

� Unlike OIDL, IDL does not include a “private” modifier for data and methods. Instead,
private data and methods are surrounded by “#ifdef __PRIVATE__” and “#endif” directives.
For example, to declare a method “foo” as a private method within an IDL specification, the
following declaration would appear within the interface statement:

#ifdef __PRIVATE__
void foo();
#endif

To include private data/methods in a compilatiion of a .idl file, the SOM Compiler must be
invoked with the “–D__PRIVATE__” option. If any of the data or methods in your .csc files are
marked as “private,” then when using the SOM Compiler to generate binding files from the
.idl files that ctoi creates from these .csc files, use the “–D__PRIVATE__” option to have the
private data/methods included.

Step 2. Adding type information
IDL, unlike OIDL, is strongly typed. This means that the SOM IDL compiler expects types and
constants to be declared before they are referenced. If they are not, the SOM Compiler
produces warning messages. Converting from OIDL to IDL does not require adding additional
typing information (i.e., typedefs and constant definitions), because these warning messages
can be safely ignored. If this additional typing information is added when converting from OIDL
to IDL, however, SOM provides additional functionality not available otherwise. For example, an
Interface Repository can be created from a .idl file and the IDL specification can by type–
checked only if the file declares types and constants before they are referenced.

In IDL, types (including typedefs, structs, unions, and enums) are defined in a similar way to C.
These types can be emitted into header files if they are defined within the interface statement
for the class. Type definitions placed outside the interface statement are not transferred to
header files. See the SOM IDL section of Chapter 4, “SOM IDL and the SOM Compiler,” for a
complete discussion of defining types and constants in IDL.

Passthrus are not generally needed in IDL to define constants or types, although they may still
be used to pass #include directives to header files.

Appendix C. SOM IDL Language Grammar

specification : [comment] definition+

definition : type_dcl ; [comment]
 | const_dcl ; [comment]
 | interface ; [comment]
 | module ; [comment]
 | pragma_stm

module : module identifier [comment]
 { [comment] definition+ }

interface : interface identifier
 | interface_dcl

interface_dcl : interface identifier [inheritance] [comment]
 { [comment] export* } [comment]

inheritance : : scoped_name {, scoped_name}*

export : type_dcl ; [comment]
 | const_dcl ; [comment]
 | attr_dcl ; [comment]
 | op_dcl ; [comment]
 | implementation_body ; [comment]
 | pragma_stm

scoped_name : identifier
 | :: identifer
 | scoped_name :: identifer

const_dcl : const const_type identifier = const_expr

const_type : integer_type
 | char_type
 | boolean_type
 | floating_pt_type
 | string_type
 | scoped_name

const_expr : or_expr

or_expr : xor_expr
 | or_expr | xor_expr

xor_expr : and_expr
 | xor_expr ^ and_expr

and_expr : shift_expr
 | and_expr & shift_expr

shift_expr : add_expr
 | shift_expr >> add_expr
 | shift_expr << add_expr

C – 2 SOMobjects Developer Toolkit Users Guide

add_expr : mult_expr
 | add_expr + mult_expr
 | add_expr – mult_expr

mult_expr : unary_expr
 | mult_expr * unary_expr
 | mult_expr / unary_expr
 | mult_expr % unary_expr

unary_expr : unary_operator primary_expr
 | primary_expr

unary_operator : –
 | +
 | ~

primary_expr : scoped_name
 | literal
 | (const_expr)

literal : integer_literal
 | string_literal
 | character_literal
 | floating_pt_literal
 | boolean_literal

type_dcl : typedef type_declarator
 | constr_type_spec

type_declarator : type_spec declarator {, declarator}*

type_spec : simple_type_spec
 | constr_type_spec

simple_type_spec : base_type_spec
 | template_type_spec
 | scoped_name

base_type_spec : floating_pt_type
 | integer_type
 | char_type
 | boolean_type
 | octet_type
 | any_type
 | voidptr_type

template_type_spec : sequence_type
 | string_type

constr_type_spec : struct_type
 | union_type
 | enum_type

declarator : [stars] std_declarator

std_declarator : simple_declarator
 | complex_declarator

simple_declarator : identifier

complex_declarator : array_declarator

C – 3C. SOM IDL Language Grammar

array_declarator : simple_declarator fixed_array_size+

fixed_array_size : [const_expr]

floating_pt_type : float
 | double

integer_type : signed_int
 | unsigned_int

signed_int : long
 | short

unsigned_int : unsigned signed_int

char_type : char

boolean_type : boolean

octet_type : octet

any_type : any

voidptr_type : void stars

struct_type : (struct|exception) identifier
 | (struct|exception) [comment]
 { [comment] member* }

member : type_declarator ; [comment]

union_type : union identifier
 | union identifier switch
 (switch_type_spec) [comment]
 { [comment] case+ }

switch_type_spec : integer_type
 | char_type
 | boolean_type
 | enum_type
 | scoped_name

case : case_label+ element_spec ; [comment]

case_label : case const_expr : [comment]
 | default : [comment]

element_spec : type_spec declarator

enum_type : enum identifier { identifier
 {, identifier}* [comment] }

sequence_type : sequence < simple_type_spec , const_expr >
 | sequence < simple_type_spec >

string_type : string < const_expr >
 | string

attr_dcl : [readonly] attribute simple_type_spec
 declarator {, declarator}*

C – 4 SOMobjects Developer Toolkit Users Guide

op_dcl : [oneway] op_type_spec [stars] identifier
 parameter_dcls [raises_expr] [context_expr]

op_type_spec : simple_type_spec
 | void

parameter_dcls : (param_dcl {, param_dcl}* [comment])
 | ()

param_dcl : param_attribute simple_type_spec declarator

param_attribute : in
 | out
 | inout

raises_expr : raises (scope_name+)

context_expr : context (context_string {, context_string}*)

implementation_body : implementation [comment]
 { [comment] implementation+ }

implementation : modifier_stm
 | pragma_stm
 | passthru
 | member

pragma_stm : #pragma modifier modifier_stm
 | #pragma somtemittypes on
 | #pragma somtemittypes off

modifier_stm : smidentifier : [modifier {, modifier}*] ; [comment]
 | modifier ; [comment]

modifier : smidentifier
 | smidentifier = modifier_value

modifier_value : smidentifier
 | string_literal
 | integer_literal
 | keyword

passthru : passthru identifier = string_literal+ ; [comment]

smidentifier : identifer

 | _identifier

stars | *+

Appendix D. Subclassing the Persistence Framework

Contents

Persistence Framework Class Interaction D – 1.

Choosing Which Classes to Subclass D – 2.

Implementing New Persistence Framework Classes D – 4.
Implementing a new Encoder/Decoder D – 4.

Encoder/Decoder methods D – 5.
Implementing a new or enhanced Media Interface D – 6.

Enhancing an existing Media Interface D – 7.
Creating a new Media Interface D – 8.
Media Interface methods D – 9.

Implementing a new I/O Group Manager D – 12.
I/O Group Manager methods D – 13.

Persistent Storage Manager interaction D – 16.
Storing objects with sompStoreObject D – 16.
Restoring objects with sompRestoreObject D – 17.

Template for an I/O Group Manager D – 18.
The SOMPTemplate implementation D – 19.

An Example I/O Group Manager and Media Interface Implementation D – 25.
The Media Interface D – 25.

The SOMPIniMediaInterface implementation D – 28.
The I/O Group Manager D – 34.

The SOMPIni Group Manager implementation D – 36.

ii SOMobjects Developer Toolkit Users Guide

Appendix D. Subclassing the Persistence Framework
The SOM Persistence Framework will, by default, save and restore SOM objects to a file with a
simple format. The format is adequate for many applications; however, some applications may
have unique storage requirements for which the default implementation is inadequate. This
appendix describes subclassing and modifying the behavior of the SOM Persistence
Framework.

Persistence Framework Class Interaction
It is important to understand the various classes that make up the SOM Persistence Framework
and how they interact before you attempt to subclass them. Refer to the figure below when
reading the following description of the SOM Persistence Framework classes. It is assumed
that you have already read Chapter 8, “The Persistence Framework,” earlier in this document
and are somewhat acquainted with the Framework.

A single instance of a Persistent Storage
Manager (SOMPPersistentStorageMgr)

One per process

An instance of an I/O Group Manager
(default class = SOMPAscii)

Instantiated at save/restore
time by the PSM based on the
ID string of the object.

An instance of an
Encoder/Decoder class

Instantiated by IOGM to
read/write an object. Class based
on object initialization.

Media Interface class
(default = SOMPAsciiMediaInterface)

(default = SOMPAttrEncoderDecoder)

An instance of a Instantiated by IOGM to
perform physical I/O. Class
instantiated determined by
IOGM implementor.

The primary interface to the SOM Persistence Framework is the Persistent Storage Manager
(SOMPPersistentStorageMgr class). You invoke methods on this class to save and restore
objects. The Persistent Storage Manager responds to requests to save and restore objects by
instantiating an object called an I/O Group Manager (a class derived from
SOMPIOGroupMgrAbstract) to complete the work of actually reading or writing the object.
The SOM Persistence Framework supplies a default I/O Group Manager class named
SOMPAscii.

The format of an individual object is maintained by a class called an Encoder/Decoder which has
been derived from SOMPEncoderDecoderAbstract. Whenever an instance of an I/O Group
Manager is about to read or write an object, it instantiates an Encoder/Decoder. An
Encoder/Decoder has a method to read an object and a method to write an object. Every
persistent object is associated with at least one encoder/decoder class. The name of the
Encoder/Decoder class for a persistent object is stored within the object. By default, the
Encoder/Decoder for a persistent object is the class SOMPAttrEncoderDecoder. By
consulting the SOM Interface Repository, this default class is capable of finding the attributes of
a persistent object that have been marked as “persistent,” and storing and restoring them.

Both the I/O Group Manager and the Encoder/Decoder classes share a common third object
called a Media Interface (an object derived from SOMPMediaInterfaceAbstract). The Media

D – 2 SOMobjects Developer Toolkit Users Guide

Interface class provides an interface to the physical media that contains the stored objects. The
SOM Persistence Framework supplies an abstract Media Interface class named
SOMPFileMediaAbstract. This abstract class provides a set of methods to read/write basic
IDL type data to and from a file media.

The SOM Persistence Framework supplies two implementations of the
SOMPFileMediaAbstract class. The first, named SOMPAsciiMediaInterface, reads and
writes to a file with numeric data written in ASCII. The second, named SOMPBinaryFileMedia,
is derived from SOMPAsciiMediaInterface. It writes numeric data in its binary form to a file.

When the default Encoder/Decoder SOMPAttrEncoderDecoder stores/restores an object, it
makes use of the write/read methods defined on the SOMPFileMediaAbstract class.

Choosing Which Classes to Subclass
You can modify the behavior of the SOM Persistence Framework in a number of ways. You may
change the stored format of one of your classes and you may store your objects in a file with a
different format than the file produced by the default SOM Persistence Framework. Use the
following table as a guide to determine which classes you should be subclassing based on the
behavior you would like to change. Consult the sections that follow for more detail on how to do
the subclassing.

Behavior Subclassing

The format of the default file is
ok but you would prefer that
numbers be written in binary
rather than ASCII.

Use the SOMPBinary I/O Group Manager. No subclas-
sing is necessary. Initialize your objects with IDs that
specify SOMPBinary. For example:

 SOMPBinary:students:0

The format of the default file is
ok but you want the elemen–
tary pieces of the file to be
written in a way that is unique
to your application.

Subclass the SOMPFileMediaAbstract class and
implement a new Media Interface that stores types such
as longs, strings, etc., the way you want. Subclass the
SOMPAscii I/O Group Manager class and override only
the sompInstantiateMediaInterface method to instan-
tiate your new Media Interface. Initialize your objects with
IDs that use the name of your new I/O Group Manager.

Your object contains instance
data that the supplied default
Encoder/Decoder won’t han-
dle. Or, you don’t want to
make your persistent data at-
tributes since attributes are
public.

You should implement a new Encoder/Decoder object for
your persistent object.

D – 3D. Subclassing the Persistence Framework

You want to change the
format of the stored object,
perhaps because your object
data is more conveniently
stored in a specialized format.

You should implement a new Encoder/Decoder object for
your persistent object.

You want your objects stored
in a different data store than
the file supplied by default.

This involves subclassing three different SOM
Persistence Framework classes. Follow these steps:

1. Decide what sort of data store or storage facility
you want to use. Perhaps it is a database or perhaps you
want your objects stored in a file that is compatible with
some other existing application.
2. Build a new Media Interface class that is derived
(either singly or multiply inherited) from
SOMPMediaInterfaceAbstract or from
SOMPFileMediaAbstract. Your choice of which base
class to derive your new Media Interface from will depend
on the data store you choose.
SOMPMediaInterfaceAbstract is the lowest level class
and supports only open and close methods. This base
class would be an appropriate choice if your data store
reads and writes blocks of aggregated data (for example,
a database). If you can read and write in a stream
oriented fashion, then the SOMPFileMediaAbstract
class is a more appropriate base class. Your new Media
Interface will be the low level interface to the data store
you have chosen.
3. Build a new I/O Group Manager class, derived
from SOMPIOGroupMgrAbstract, which will route the
requests of the Persistent Storage Manager to your new
Media Interface.
4. Build new Encoder/Decoders for your objects that
are aware of the methods on your new Media Interface.
If you have derived your new Media Interface from
SOMPFileMediaAbstract, it may be possible to use the
supplied default Encoder/Decoder
SOMPAttrEncoderDecoder because it only makes use
of the read/write methods defined on
SOMPFileMediaAbstract.

D – 4 SOMobjects Developer Toolkit Users Guide

Implementing New Persistence Framework Classes
The following sections describe the overridable methods for the subclassable classes of the
SOM Persistence Framework and how the methods should be implemented to work within the
SOM Persistence Framework.

Implementing a new Encoder/Decoder
An Encoder/Decoder is an object that is paired with a persistent object and handles the
reading/writing of that persistent object’s instance data. An Encoder/Decoder uses a specific
class of Media Interface. Before you implement a new Encoder/Decoder, determine which class
of Media Interface your Encoder/Decoder will use. The supplied SOMPAscii I/O Group
Manager passes Encoder/Decoders an instance of the SOMPAsciiMediaInterface class.
Similarly, the SOMPBinary I/O Group Manager passes Encoder/Decoders an instance of the
SOMPBinaryFileMedia. Become familiar with the methods of your Media Interface class that
can be used to save and restore the state of your persistent object.

By implementing a specialized Encoder/Decoder for a persistent object class, you can make
assumptions about the methods available on that class or the instance data of that class which
the default SOMPAttrEncoderDecoder may not. You may also want to store the object in a
format other than that of the one provided by SOMPAttrEncoderDecoder. There may be many
potential Encoder/Decoder’s for a persistent object, however, every persistent object is
associated with only one Encoder/Decoder at save or restore time.

It is also possible to write general Encoder/Decoders that can be used to read/write many types
of objects. The supplied SOMPAttrEncoderDecoder is one such general Encoder/Decoder
that uses the information available in the SOM Interface Repository.

The class name of the Encoder/Decoder that will be used for a persistent object can be set with
the sompSetEncoderDecoderName method on the persistent object. This allows you to set
Encoder/Decoders on an object-by-object basis. If, however, every object of a
class should use the same Encoder/Decoder, it is more appropriate to use the
sompSetClassLevelEncoderDecoderName method on the class object of your persistent
object. This only needs to be done once, however doing it multiple time will do no harm. The
sompSetClassLevelEncoderDecoderName method can be called at any prior to save/re-
store time but we suggest you override the somInit method of your persistent object class and
do the following (assuming the class name of your new Encoder/Decoder is
“mySpecialEncoderDecoder”):

ev = SOM_CreateLocalEnvironment();
 _sompSetClassLevelEncoderDecoderName(_somGetClass(somSelf), ev,
 ”mySpecialEncoderDecoder”);
SOM_DestroyLocalEnvironment(ev);

Prior to attempting to use a user written Encoder/Decoder, the client program should ensure
that the class of the Encoder/Decoder exists by executing its NewClass procedure. For
example:

mySpecialEncoderDecoderNewClass(0,0);

This should also be done in the somInit method of your persistent object. It only needs to be
done once, however doing it multiple times will do no harm. If your new Encoder/Decoder class
is built into a dynamically loadable class library (see “Creating a SOM Class Library” in Chapter
5, “Implementing Classes in SOM”) then the explicit call to the Encoder/Decoder’s NewClass
procedure in somInit is not necessary.

When an object is stored/restored, the I/O Group Manager uses the Encoder/Decoder returned
by the sompGetEncoderDecoder method on the persistent object. The

D – 5D. Subclassing the Persistence Framework

sompGetEncoderDecoder method attempts to find and instantiate an instance of the
encoder/decoder class name specified with either sompSetEncoderDecoderName or
sompSetClassLevelEncoderDecoderName. By default, sompGetEncoderDecoder re-
turns an instance of class SOMPAttrEncoderDecoder.

Chapter 8 contains a complete example of a user–written Encoder/Decoder. The toolkit sam-
ples contains the complete implementation of the example.

Encoder/Decoder methods
The following methods of SOMPEncoderDecoderAbstract must be overridden to build your
own Encoder/Decoder.

sompEDWrite — This method is invoked by an I/O Group Manager when the
I/O Group Manager determines it is time to store the instance
data of a persistent object. The I/O Group Manager passes
this method the object to store and a prepared MediaInterface
(i.e. instantiated and opened).

The implementor of the Media Interface passed to your
Encoder/Decoder will have provided an interface to store the
data of your object. Consult the interface definition of the
Media Interface.

If you’re using either of the supplied Media Interfaces derived
from SOMPFileMediaAbstract, the Media Interface passed
to sompEDWrite will provide a set of methods that can be
used in a sequential fashion to write basic standard IDL types
to a physical media. The sompEDWrite method should make
use of these methods whenever possible to improve the
portability of the Encoder/Decoder. For example, if the object
to be stored has as its persistent data a character string, the
implementation of sompEDWrite should at some point make
the following method call:

 _sompWriteString(mediaInterface, ev, stringData);

By making use of the Media Interface methods to write basic
standard IDL types, a single Encoder/Decoder
implementation can be used for potentially many Media Inter-
face’s.

To provide a given Media Interface implementation an
opportunity to collect all the individual write requests made
during sompEDWrite into one physical I/O operation, it is
suggested that your implementation of the sompEDWrite
method only make use of the Media Interface’s “write”
methods and no others.

Note: The write operations made to a Media Interface by the
sompEDWrite method should be a mirror image of the read
operations made by the sompEDRead method.

sompEDRead — This method is invoked by an I/O Group Manager when the
I/O Group Manager determines it is time to restore the
instance data of a persistent object. The I/O Group Manager
passes this method the object to restore and a prepared

D – 6 SOMobjects Developer Toolkit Users Guide

MediaInterface (i.e. instantiated and opened). The
implementor of the Media Interface passed to your
Encoder/Decoder will have provided an interface to restore
the data of your object. Consult the interface definition of the
Media Interface.

If you’re using either of the supplied Media Interfaces derived
from SOMPFileMediaAbstract, the Media Interface passed
to sompEDRead will provide a set of methods that can be
used in a sequential fashion to read basic standard IDL types
from a physical media. The sompEDRead method should
make use of these methods whenever possible to improve the
portability of the Encoder/Decoder. For example, if the object
to be restored has as its persistent data a character string, the
implementation of sompEDRead should at some point make
the following method call:

 _sompReadString(mediaInterface, ev, &stringData);

By making use of the Media Interface methods to read basic
standard IDL types, a single Encoder/Decoder implemen-
tation can be used for potentially many Media Interface’s.

To provide a given Media Interface implementation an
opportunity to collect all the individual read requests made
during sompEDRead into one physical I/O operation, it is
suggested that your implementation of the sompEDRead
method only make use of the Media Interface’s “read”
methods and no others.

Note: The read operations made to a Media Interface by the
sompEDRead method should be a mirror image of the read
operations made by the sompEDWrite method.

Implementing a new or enhanced Media Interface
A Media Interface is the low–level interface to some physical media. An instance of a Media
Interface is the means by which the I/O Group Manager and Encoder/Decoder classes
save/restore an object’s state. There are two abstract Media Interface classes supplied in the
SOM Persistence Framework: SOMPMediaInterfaceAbstract is the base class and
SOMPFileMediaAbstract is derived from it, as follows:

• SOMPMediaInterfaceAbstract defines only the sompOpen and sompClose methods.
It is expected that at the very least, a media will require you to open and close it.

• The SOMPFileMediaAbstract defines a set of methods, in addition to sompOpen and
sompClose, to read/write to a file and to move the file pointer. There are also a number of
methods to read/write basic standard IDL defined data types.

Before implementing a new Media Interface, decide whether:

1. You can simply enhance an existing Media Interface, or

2. You must build a new Media Interface

A Media Interface is used by both Encoder/Decoders and I/O Group Managers so your design
decisions regarding the Media Interface will affect these other classes. Enhancing an existing
Media Interface usually has minimal impact on existing Encoder/Decoders and I/O Group

D – 7D. Subclassing the Persistence Framework

Managers. Implementing a new Media Interface with new methods for reading/writing object
data usually requires a completely new I/O Group Manager and new Encoder/Decoders that
know about the new methods.

Enhancing an existing Media Interface

You may want to enhance one of the supplied File Media Interface classes, for example, to
provide new methods that read/write some application specific data type. You can use these
new methods in new Encoder/Decoders for your objects that contain the specific data type. To
enhance a supplied file Media Interface do the following:

1. Create a new class that is derived from either SOMPAsciiMediaInterface or
SOMPBinaryFileMedia. For example, a class named EnhancedMediaInterface,
derived from SOMPAsciiMediaInterface, here adds two new methods to read and
write the new myAppType data type:

#include <somp.idl>
#include <fmi.idl>

interface EnhancedMediaInterface : SOMPAsciiMediaInterface

// This is a sample SOMPAsciiMediaInterface which has the ability to
// read and write my application data type.
 struct myAppType {
 myAppType *next;
 myAppType *prev;
 };
void myReadAppType(inout myAppType list);
// Reads data of my application’s type.

void myWriteAppType(in myAppType list);
// Writes data of my application’s type.

#ifdef __SOMIDL__
implementation
{
 callstyle=idl;
 dllname=”emi.dll”;
 releaseorder: myReadAppType, myWriteAppType;
};
#endif /* __SOMIDL__ */

};

The implementation of this class is included in the Toolkit samples.

2. Create a new I/O Group Manager class which is derived from the I/O Group Manager
class that used the Media Interface you are enhancing. In this case, that is the
SOMPAscii class. I/O Group Manager objects instantiate the Media Interface used
to read/write an object so, therefore, in order to use your new Media Interface you
must create a new I/O Group Manager.

3. In the interface definition of your I/O Group Manager, override the somInit and
sompInstantiateMediaInterface methods. For example, here we have defined a
new I/O Group Manager named EnhancedAscii, derived from the supplied
SOMPAscii.

D – 8 SOMobjects Developer Toolkit Users Guide

#include <fsagm.idl>
#include <somp.idl>

interface EnhancedAscii : SOMPAscii
// This IO Group Manager class uses the sample
// EnhancedMediaInterface class.
{

#ifdef __SOMIDL__

implementation
{
 callstyle=idl;
 dllname=”emi.dll”;

// Method Modifiers
 sompInstantiateMediaInterface: override;
 somInit: override;

};
#endif /* __SOMIDL__ */

};

The implementation of this class is included in the Toolkit samples.

4. Write new Encoder/Decoders to make use of the new methods that you have defined
on your enhanced Media Interface. In the sompEDWrite method you would make
use of your new myWriteAppType method. In the sompEDRead method you would
make use of myReadAppType.

5. Build your new classes into a dynamically loadable library. If your new classes are not
in a dynamically loaded library, the Persistent Storage Manager will not be able to find
and instantiate your new I/O Group Manager class. This subject is covered in chapter
4.

Note: An alternative to building a dynamically loadable library would be to explicitly
call the EnhancedAsciiNewClass and EnhancedMediaInterface procedure prior to
any attempt to save/restore.

6. To use the new classes when your objects are saved/restored, initialize your persis-
tent objects with IDs that specify the class name of the new I/O Group Manager. An ID
string for the examples shown above might be:

EnhancedAscii:employee:0

Creating a new Media Interface
If the file interface provided by the supplied SOMPAsciiMediaInterface class is inadequate or
inappropriate for your application, you can create a new Media Interface. To accomplish this you
must:

1. Create a new class that is derived from SOMPMediaInterfaceAbstract. You may
have already built a class that provides access to the media of your choice. To use
that class within the SOM Persistence Framework, use multiple inheritance to derive
your new class from your existing class and SOMPMediaInterfaceAbstract. For
example, suppose you have a class that implements a cursor for a database. This
class could be used as a Media Interface. You could define a new class that works
with the SOM Persistence Framework as follows. The new class has the methods
defined for both classes.

D – 9D. Subclassing the Persistence Framework

interface SqlMedia : SOMPMediaInterfaceAbstract, myDatabaseCursor
{
 /* ... */
 somInit: override;
 somUninit: override;
}

If you prefer to encapsulate your existing class, you could define your new class as
follows:

interface SqlMedia : SOMPMediaInterfaceAbstract
{
 ...
 // Instance data
 myDatabaseCursor dbc;
 ...
}

2. Create a new I/O Group Manager class to use your new Media Interface. It is unlikely
you will be able to use any of the supplied implementations of an I/O Group Manager
as a base, so start with the template I/O Group Manager described in “Template for an
I/O Group Manager” later in this appendix.

3. Write new Encoder/Decoders to make use of your new Media Interface.

4. To use the new classes when your objects are saved/restored, initialize your persis-
tent objects with IDs that specify the class name of the new I/O Group Manager.
Based on the example above you might use:

SqlMedia:employee:0

5. Build all your new classes into a dynamically loadable library. If your new classes are
in a dynamically loaded library, it will be possible for SOM to find and instantiate them.
Alternatively, you can explicitly call the <className>NewClass procedure of each of
your classes during the initialization of your program. For example:

SqlMediaNewClass(0,0);
 ...

Media Interface methods
This section lists the Media Interface methods for the SOMPFileMediaAbstract class. Most of
these methods should be overridden in a new File Media Interface, however those that should
not be are noted. To reuse existing code, we recommend that you subclass from either
SOMPAsciiMediaInterface or SOMPBinaryFileMedia.

sompOpen — This method is for opening the media to which your new class
will be reading and writing. This method is typically invoked
soon after the object is instantiated. Note that this method,
which is inherited from the base class
SOMPMediaInterfaceAbstract, has no parameters. Class
implementations of the base class should introduce initializa-
tion methods (such as sompInitReadWrite and
sompInitReadOnly) to provide any information required to
accomplish the open.

Typically, you would not have to override this method.

sompClose — This method is for closing the media. This method is typically
invoked when the Persistent Storage Manager instructs its I/O
Group Manager to free its Media Interface. You should only
override this method if you have overridden sompOpen.

D – 10 SOMobjects Developer Toolkit Users Guide

sompInitReadWrite — Initializes the Media Interface for reading and writing the given
file name. Override this method only if sompOpen has been
overridden.

sompInitReadOnly — Initializes the Media Interface for reading only the given file
name. Override this method only if sompOpen has been
overridden.

sompInitSpecific — This method allows for other forms of initialization not handled
by either sompInitReadWrite or sompInitReadOnly. Over-
ride this method only if sompOpen has been overridden.

sompSeekPosition — Set the file pointer to an offset relative to the beginning of the
file. Override this method only if sompOpen has been over-
ridden.

sompSeekPositionRel — Set the file pointer to an offset relative to the current file
pointer. Override this method only if sompOpen has been
overridden.

sompGetOffset — Return the current file pointer offset. Override this method
only if sompOpen has been overridden.

sompReadBytes — Read a block of bytes. Override this method only if
sompOpen has been overridden.

sompWriteBytes — Write a block of bytes. Override this method only if
sompOpen has been overridden.

sompWriteOctet — Write the standard IDL defined octet to a file. This method
makes use of sompWriteBytes and therefore you will
probably not have to override this method.

sompWriteShort — Write the standard IDL defined short to a file. This method
makes use of sompWriteBytes and therefore you will
probably not have to override this method.

sompWriteUnsignedShort — Write the standard IDL defined unsigned short to a file. This
method makes use of sompWriteBytes and therefore you
will probably not have to override this method.

sompWriteLong — Write the standard IDL defined long to a file. This method
makes use of sompWriteBytes and therefore you will
probably not have to override this method.

sompWriteUnsignedLong — Write the standard IDL defined unsigned long to a file. This
method makes use of sompWriteBytes and therefore you
will probably not have to override this method.

sompWriteDouble — Write the standard IDL defined double to a file. This method
makes use of sompWriteBytes and therefore you will
probably not have to override this method.

sompWriteFloat — Write the standard IDL defined float to a file. This method
makes use of sompWriteBytes and therefore you will
probably not have to override this method.

sompWriteCharacter — Write a character to a file. This method does not make use of
sompWriteBytes. You should override this method and
implement it to write a character to your media.

sompWriteSomobject — This method is provided for Encoder/Decoders to write out
contained objects. For example, if object A refers to object B,

D – 11D. Subclassing the Persistence Framework

then when object A is stored its Encoder/Decoder would call
sompWriteSomobject to store the contained object B. This
method makes use of sompWriteCharacter and
sompWriteString. Provided that these methods are
implemented in your new Media Interface, you should not
override this method.

sompWriteString — Write a null terminated string to a file. This method makes use
of sompWriteBytes and therefore you will probably not have
to override this method.

sompWriteLine — Writes the newline terminated string to a file. This method
does not make use of sompWriteBytes. You should override
and implement this method. This method is equivalent to the
fputs() c library function. The terminating null character (\0) is
not written. This method does NOT append a newline
character (\n) to the given string before writing. If the user of
this method intends to restore the string written via
sompWriteLine with sompReadLine, the user must put the
newline character in the string before calling this method.

sompReadOctet — Read the standard IDL defined octet from a file. This method
makes use of sompReadBytes and therefore you will
probably not have to override this method.

sompReadShort — Read the standard IDL defined short from a file. This method
makes use of sompReadBytes and therefore you will
probably not have to override this method.

sompReadUnsignedShort — Read the standard IDL defined unsigned short from a file. This
method makes use of sompReadBytes and therefore you will
probably not have to override this method.

sompReadLong — Read the standard IDL defined long from a file. This method
makes use of sompReadBytes and therefore you will
probably not have to override this method.

sompReadUnsignedLong — Read the standard IDL defined unsigned long from a file. This
method makes use of sompReadBytes and therefore you will
probably not have to override this method.

sompReadDouble — Read the standard IDL defined double from a file. This method
makes use of sompReadBytes and therefore you will
probably not have to override this method.

sompReadFloat — Read the standard IDL defined float from a file. This method
makes use of sompReadBytes and therefore you will
probably not have to override this method.

sompReadCharacter — Read a character from a file. This method does not make use
of sompReadBytes. You should override this method and
implement it to write a character to your media.

sompReadSomobject — This method is provided for Encoder/Decoders to read in
contained objects that were written using
sompWriteSomobject. For example, if object A refers to
object B, then when object A is restored its Encoder/Decoder
would call sompReadSomobject to restore the contained
object B. This method makes use of sompReadCharacter
and sompReadString. Provided that these methods are
implemented in your new Media Interface, you should not
override this method.

D – 12 SOMobjects Developer Toolkit Users Guide

sompReadString — Read and return a null terminated string. This method
allocates block of storage large enough to contain the string.
You must, at some point, free the string returned by this
method with SOMFree(). This method makes use of
sompReadLong and sompReadBytes. Provided that these
methods are implemented in your new Media Interface, you
should not override this method.

sompReadStringToBuffer — Read and return a null terminated string in the preallocated
buffer provided by the caller. This method makes use of
sompReadLong and sompReadBytes. Provided that these
methods are implemented in your new Media Interface, you
should not override this method.

sompReadLine — Read a string up to and including the first newline character
(\n) into the preallocated buffer provided by the caller. Use this
method for reading strings stored with sompWriteLine. This
method does not make use of sompReadBytes. You should
override and implement this method.
Note: If the string read is larger than size of the buffer given it
is truncated to fit in the given buffer. A null character (\0) is
appended. The newline character, if read, is included in the
string.

sompWriteTypeCode — Do not override this method. Instead, override methods
sompWriteLong and sompWriteBytes, the methods used
by sompWriteTypeCode.

sompReadTypeCode — Do not override this method. Instead, override methods
sompReadLong and sompReadBytes, the methods used
by sompReadTypeCode.

Implementing a new I/O Group Manager
This section describes the I/O Group Manager methods that should be overridden to implement
a new I/O Group Manager. It also describes the behavior of the supplied I/O Group Manager
SOMPAscii. You may or may not wish to emulate that behavior in your new I/O Group Manager.
Methods that must be implemented in response to requests from the Persistent Storage
Manager are noted. You may also want to refer to “Persistent Storage Manager Interaction” in
the next section to become acquainted with the order in which the Persistent Storage Manager
invokes methods on an I/O Group Manager.

How you implement an I/O Group Manager class may have implications for the Encoder/Decod-
er and Media Interface classes you use. You may need to re-implement these other classes.

Refer to the template for an I/O Group Manager that is shipped with sample in the SOMobjects/2
Toolkit when reading the following section. See “Template for an I/O Group Manager” later in this
appendix.

When implementing a new I/O Group Manager:

1. You must build your new I/O Group Manager class into a dynamically loadable library
or, explicitly call the NewClass procedure of your new I/O Group Manager class
during the initialization of your application.

2. If your class is built into a dynamically loadable library, you must specify the name of
the loadable library file in the interface definition (in your .idl file) for your new I/O
Group Manager. For example:

D – 13D. Subclassing the Persistence Framework

 #ifdef __SOMIDL__
 implementation
 {
 callstyle=idl;
 dllname=”temp.dll”; /* load from here */
 ...
 };
 #endif /* __SOMIDL__ */

3. For somFindClass to find your new I/O Group Manager class, you must include the –u
flag when you run the SOM compiler on your new I/O Group Manager .idl file. This
updates the SOM Interface Repository so that SOM can find and load your I/O Group
Manager class.

I/O Group Manager methods
sompNewMediaInterface — This method is invoked by the Persistent Storage Manager to

prepare it for storing or restoring a group of objects. It must be
implemented in a new I/O Group Manager. This method
should invoke sompInstantiateMediaInterface whenever it
needs a new instance of a Media Interface.

The SOMPAscii I/O Group Manager invokes the
sompInstantiateMediaInterface on itself to instantiate a
Media Interface object. It uses the Media Interface object to
store information about the objects in the group. Once the
Media Interface has been instantiated, SOMPAscii invokes
the sompInitReadWrite and sompOpen methods on its Me-
dia Interface.

sompInstantiateMediaInterface—This method is provided in the interface to return an
instance of a Media Interface class that the I/O Group
Manager may use. It should be used when the method
sompNewMediaInterface is invoked on an I/O Group Man-
ager. The Persistent Storage Manager does not make use of
this method directly.

This method is provided primarily so that others may override
it and easily replace the media interface your I/O Group Man-
ager uses.

The SOMPAscii I/O Group Manager instantiates a Media
Interface of class SOMPAsciiMediaInterface.

sompGetMediaInterface — This method is provided in the interface to return the Media
Interface that was instantiated as a result of
sompNewMediaInterface. The Persistent Storage Manager
does not make use of this method directly. This method pro-
vides a way for subclasses of your I/O Group Manager to get
at the Media Interface you have instantiated.

sompFreeMediaInterface — This method is invoked by the Persistent Storage Manager to
tell the I/O Group Manager that it no longer needs ac-
cess to the Media Interface it prepared when
sompNewMediaInterface was invoked. The method must
be implemented in a new I/O Group Manager.

SOMPAscii invokes the sompClose method on its Media
Interface and then frees the Media Interface.

D – 14 SOMobjects Developer Toolkit Users Guide

sompWriteGroup — This method is invoked by the Persistent Storage Manager in
response to sompStoreObject to write at least the given
object, or at most, the given object and all the others grouped
with it. The method must be implemented in a new I/O Group
Manager. Refer to “Template for an I/O Group Manager” later
in this appendix for a sample of how this method should be
implemented.

Depending on the data store of objects your I/O Group
Manager is managing, you may want to write just the object
given or all the objects grouped with the object passed to this
method. To get all the objects grouped with the given object,
invoke the sompGetIOGroup method on the object.
sompGetIOGroup returns a SOMPIOGroup object that you
can iterate over to store each of the objects. If your imple-
mentation intends to store just the object given,
sompWriteGroup should return FALSE. If it attempts to
store all of the objects grouped with the given object, then
sompWriteGroup should return TRUE.

SOMPAscii iterates through the collection returned by
sompGetIOGroup, stores each object via the object’s En-
coder/Decoder, and returns TRUE.

sompGroupExists — This method is invoked by the Persistent Storage Manager to
determine if a group exists. The method returns either TRUE
or FALSE and must be implemented in a new I/O Group Man-
ager.

SOMPAscii simply determines if the given file exists.

sompObjectInGroup — This method is invoked by the Persistent Storage Manager to
determine if an object exists within the given group. The
method returns either TRUE or FALSE, depending on whether
the object in the group of the given ID exists, and must be
implemented in a new I/O Group Manager.

SOMPAscii searches to see if an object with the given ID
exists.

sompMediaFormatOk — This method is provided in the interface to be a checkpoint
where the I/O Group Manager can determine if it is dealing
with an understandable file. Implementations of this method
would verify a magic number was correct or a version number
was correct, for example. The method is not invoked by the
Persistent Storage Manager.

sompDeleteObjectFromGroup—This method is invoked by the Persistent Storage Manager
to delete an object from a group. The method must be
implemented in a new I/O Group Manager.

SOMPAscii searches to see if an object with the given ID
exists and if so, it is deleted.

sompReadGroup — This method is invoked by the Persistent Storage Manager to
return the persistent object specified by the ID passed to the
method. The method must be implemented in a new I/O
Group Manager.

D – 15D. Subclassing the Persistence Framework

The sompReadGroup method must at the very least,
instantiate and initialize (via sompInitGivenId) the object
represented by the ID it has been passed. It is up to the I/O
Group Manager implementor to determine if the data of the
instantiated object or objects should be read at this point. If the
data is not read, the method should set the state of the ob-
ject(s) to unstable with

 _sompSetState(thisPo, ev, SOMP_STATE_UNSTABLE);

The data of an object need not be read at this point. The
sompReadObjectData method exists for reading an object’s
data and will be called by the Persistent Storage Manager
when required . If object data is read by the sompReadGroup
method then the object must have its state set to
SOMP_STATE_STABLE and the sompReadObjectData
method should be able to sense that the object’s data has
been read and not attempt to read the data a second time.
Your implementation may require that you instantiate all the
objects grouped with the object specified by the given ID. At
most, the sompReadGroup method should instantiate all the
objects in the group, read all their data and mark the object’s
as SOMP_STATE_STABLE.

Be aware that if you implement sompReadGroup to read in
an object’s data, the Persistent Storage Manager method
sompRestoreObjectWithoutChildren will not behave as
described in chapter 8. Instead, child objects will be complete-
ly restored to stable objects.

The supplied SOMPAscii I/O Group Manager implements
this method by instantiating and initializing all the objects
stored in the group. It reads no object data and leaves all
objects as SOMP_STATE_UNSTABLE. The template I/O Group
Manager in “Template for an I/O Group Manager” later in this
appendix shows one possible implementation of the
sompReadGroup method. In the implementation, the very
least that must be done by this method is done. Note that the
class name of the object represented by the given ID must be
restored from the data store where the object is stored. With-
out the class name, it is impossible to instantiate an object of
the stored class.

sompReadObjectData — This method is invoked by the Persistent Storage Manager to
set the given object’s persistent data to the state it was when
the object was stored. The method must be implemented in a
new I/O Group Manager. The Persistent Storage Manager
only calls this method if the state of the object returned by
sompReadGroup is SOMP_STATE_UNSTABLE. How this
method is implemented depends on how sompReadGroup
has been implemented . Note the example implementation in
“Template for an I/O Group Manager”.

D – 16 SOMobjects Developer Toolkit Users Guide

Persistent Storage Manager interaction
The following sections describe the methods that are called and the order in which they are
called when objects are stored and restored by the Persistent Storage Manager. It is important
for anyone who implements a new I/O Group Manager class to understand how the Persistent
Storage Manager will be making use of the their I/O Group Manager. The list of methods below
is not complete, however, it is sufficient to implement a new I/O Group Manager.

Storing objects with sompStoreObject
The following methods are invoked to complete the storage of an object when the
sompStoreObject method is invoked on the Persistent Storage Manager.

1. sompGetPersistentId on Persistent Object

From the ID of the object, the Persistent Storage Manager determines the class
name of the I/O Group Manager class that will be used to complete the storage of the
object. Therefore, if you implement a new I/O Group Manager, you must modify your
source code so that the IDs of your objects contain the class name of your new I/O
Group Manager. If you are using system–assigned IDs you must implement a new
IdAssigner class.

2. sompGetIOGroupMgrClassName on the object’s ID

At this point the Persistent Storage Manager instantiates a new I/O Group Manager
object based on the class name in the object’s ID.

3. sompGetIOGroupName on the object’s ID.

The name of the object’s group is returned from the object’s ID. The returned name is
passed to the I/O Group Manager on the sompNewMediaInterface method. The
group-name portion of an object’s persistent ID that is returned by
sompGetIOGroupName is unique to the implementation of a given I/O Group
Manager. For the supplied SOMPAscii I/O Group Manager, the group name
corresponds to the file in which the object(s) will be stored. However, if you
implemented a group manager that stored objects in a database, the group name
portion of the object ID might contain the name of a database and the table within the
database in which the object is stored. For example, your persistent ID string might
look like:

myDBGM:mydatabase,employee:0

4. sompNewMediaInterface on I/O Group Manager

The Persistent Storage Manager tells the I/O Group Manager to prepare the media
interface the I/O Group Manager will use to store the object(s). For the supplied
SOMPAscii class, this amounts to telling it the name of the file it should open.

5. sompWriteGroup on I/O Group Manager

The Persistent Storage Manager passes the object requested to be stored to the I/O
Group Manager. The I/O Group Manager responds by storing the specified object
and possibly all objects grouped with the specified object. The choice is up to the I/O
Group Manager implementor.

6. sompFreeMediaInterface on I/O Group Manager

The Persistent Storage Manager tells the I/O Group Manager that a media interface
is no longer required.

D – 17D. Subclassing the Persistence Framework

7. The Persistent Storage Manager now frees the I/O Group Manager object.

The object has been written and the instance of the I/O Group Manager is freed.

I/O Group Manager implementors should be aware that as child objects of the initially stored
object are stored, new instances of their I/O Group Manager class will be created.

Restoring objects with sompRestoreObject

The following methods are invoked to complete the restoration of an object when
sompRestoreObject is invoked on the Persistent Storage Manager.

1. sompGetIOGroupMgrClassName on the given persistent object ID

The Persistent Storage Manager instantiates a new I/O Group Manager object based
on the class name in the object’s ID.

2. sompGetIOGroupName on the given persistent object ID

The group name returned is used to see if the group exists.

3. sompGroupExists on I/O Group Manager

Before attempting to restore an object from a group, a check is made to see if a group
even exists. If the group does not exist, the Persistent Storage Manager returns at
this point after freeing the I/O Group Manager.

4. sompNewMediaInterface on I/O Group Manager

The Persistent Storage Manager tells the I/O Group Manager to prepare the media
interface the I/O Group Manager will use to restore the object(s). The group name
returned by sompGetIOGroupName is passed to sompNewMediaInterface.

5. sompObjectInGroup on I/O Group Manager

Before attempting to restore an object from a group, the Persistent Storage Manager
checks to see if the object exists in the group. If the object is not in the group, the
Persistent Storage Manager returns at this point after freeing the I/O Group Manager.

6. sompReadGroup on I/O Group Manager

The sompReadGroup method returns, at a minimum, the persistent object corre-
sponding to the persistent object ID originally passed to the sompRestoreObject
method. The object may or may not have been fully restored yet. That is, its instance
data may not yet have been read from storage and set. The Persistent Storage
Manager detects if the object has been fully restored by checking its state as follows:

 _sompCheckState(restoredObject, ev, SOMP_STATE_UNSTABLE)

If the check returns TRUE, further processing is done later by the Persistent Storage
Manager.

7. sompFreeMediaInterface on I/O Group Manager

The Persistent Storage Manager tells the I/O Group Manager that a media interface
is no longer required.

8. The Persistent Storage Manager now frees the I/O Group Manager object.

D – 18 SOMobjects Developer Toolkit Users Guide

9. sompReadObjectData on I/O Group Manager

If further processing is required to fully restore the requested object, the Persistent
Storage Manager once again goes through the steps of instantiating a new I/O Group
Manager and invoking the sompNewMediaInterface method on it. The Persistent
Storage Manager then invokes the sompReadObjectData method on the I/O Group
Manager passing it the persistent object whose data is to be read.

10.sompFreeMediaInterface on I/O Group Manager

The Persistent Storage Manager tells the I/O Group Manager that a media interface
is no longer required.

11.The Persistent Storage Manager now frees the I/O Group Manager object.

12.sompActivated on the restored persistent object

Once an object is fully restored, via either sompReadGroup or
sompReadObjectData, the sompActivated method is invoked on it to allow the
object to perform any initialization related to restoration prior to being returned to the
caller of sompRestoreObject. By default, the sompActivated method simply sets
the state of the object as being fully restored.

Template for an I/O Group Manager
The following class definition and implementation can be used as a starting point for building
your own I/O Group Manager. You may also want to refer to “An Example I/O Group Manager
and Media Interface Implementation” in the following section for an example I/O Group
Manager and Media Interface that work together to store objects into an OS/2 .INI file.

/*
 * @(#)template.idl 1.9 5/4/93 11:01:32 [5/4/93] (c)IBM Corp. 1993
 */
#ifndef template_idl
#define template_idl

#include <iogma.idl>
#include <somp.idl>
#include <somperrd.idl>
#include <sompstad.idl>

interface SOMPTemplate : SOMPIOGroupMgrAbstract

// This is a template IO Group Manager class.
//
// This class is a starting point for someone who intends to build a
// new IO Group Manager to store/restore objects to the container of
// their choice.

{#ifdef __SOMIDL__

implementation
{
 callstyle=idl;

 dllname=”template.dll”;

// Class Modifiers
 filestem = template;

// Internal Instance Variables
 SOMPMediaInterfaceAbstract mia;

D – 19D. Subclassing the Persistence Framework

// Method Modifiers
 sompNewMediaInterface: override;
 sompGetMediaInterface: override;
 sompFreeMediaInterface: override;
 sompInstantiateMediaInterface: override;
 sompWriteGroup: override;
 sompReadGroup: override;
 sompReadObjectData: override;
 sompDeleteObjectFromGroup: override;
 sompGroupExists: override;
 sompObjectInGroup: override;
 sompMediaFormatOk: override;
 somInit: override;
 somUninit: override;

};
#endif /* __SOMIDL__ */

};

#endif /* template_idl */

The SOMPTemplate implementation

Refer to the preceding section entitled “I/O Group Manager methods” when reading through
this code.

#include <somp.h>
#include <stdlib.h>
#include <stdio.h>
#include <iogrp.h>

#define SOMPTemplate_Class_Source
#include <template.ih>

SOM_Scope void SOMLINK sompNewMediaInterface(SOMPTemplate somSelf,
 Environment *ev, string IOInfo)
{
 SOMPTemplateData *somThis = SOMPTemplateGetData(somSelf);
 SOMPTemplateMethodDebug(”SOMPTemplate”,”sompNewMediaInterface”);

 if (_mia == NULL) {
 _mia = _sompInstantiateMediaInterface(somSelf, ev);
 _sompInitReadWrite(_mia, ev, IOInfo);
 if (ev–>_major == NO_EXCEPTION) {
 _sompOpen(_mia, ev);
 } /* endif */
 } /* endif */
}

SOM_Scope SOMPMediaInterfaceAbstract SOMLINK
sompGetMediaInterface(SOMPTemplate somSelf, Environment *ev)
{
 SOMPTemplateData *somThis = SOMPTemplateGetData(somSelf);
 SOMPTemplateMethodDebug(”SOMPTemplate”,”sompGetMediaInterface”);
 return (_mia);
}

D – 20 SOMobjects Developer Toolkit Users Guide

SOM_Scope void SOMLINK sompFreeMediaInterface(SOMPTemplate somSelf,
Environment *ev)
{
 SOMPTemplateData *somThis = SOMPTemplateGetData(somSelf);
 SOMPTemplateMethodDebug(”SOMPTemplate”,
 ”sompFreeMediaInterface”);
 if (_mia) {
 _sompClose(_mia, ev);
 _somFree(_mia);
 _mia = NULL;
 } /* endif */
}

SOM_Scope SOMPMediaInterfaceAbstract SOMLINK
sompInstantiateMediaInterface(SOMPTemplate somSelf, Environment *ev)
{
 SOMPMediaInterfaceAbstract mia = NULL;
 SOMPTemplateData *somThis = SOMPTemplateGetData(somSelf);
 SOMPTemplateMethodDebug(”SOMPTemplate”,
 ”sompInstantiateMediaInterface”);

 /* mia = <mediaInterfaceClassName>New(); */
 mia = SOMPAsciiMediaInterfaceNew(); /* sample only */
 return(mia);
}

SOM_Scope boolean SOMLINK sompWriteGroup(SOMPTemplate somSelf,
 Environment *ev,
 SOMPPersistentObject storeObj)
{
 SOMPIteratorHandle hit;
 SOMObject thisPo;
 SOMPIOGroup thisGroup;
 SOMPEncoderDecoderAbstract ed;

 SOMPTemplateData *somThis = SOMPTemplateGetData(somSelf);
 SOMPTemplateMethodDebug(”SOMPTemplate”,”sompWriteGroup”);

#ifdef TMP_WRITE_ALL
/* Write all objects grouped with the given object */
 thisGroup = _sompGetIOGroup(storeObj, ev);
 hit = _sompNewIterator(thisGroup, ev);

 /* Get each of the objects from the group. If it should be
 stored, then instantiate an Encoder/Decoder object and
 invoke its sompEDWrite method. */
 while (((thisPo = _sompNextObjectInGroup(thisGroup, ev,
 hit))!=NULL) &&
 ev–>_major == NO_EXCEPTION) {

D – 21D. Subclassing the Persistence Framework

 if (_sompIsDirty(thisPo, ev)) {
 _sompPassivate(thisPo, ev); /* Tell object to prepare to be
 stored. */
 /* ...
 At this point, the IO Group Mgr must
 store anything about the object necessary in order to
 find it again in the group container. You may want to
 store any of:
 – how many objects are in the group container
 – where the object is located
 – mapping between ID and the class name of the object
 (used when the object is restored).
 – the class name of the encoder/decoder used by the
 object
 – etc.
 ... */
 ed = _sompGetEncoderDecoder(thisPo, ev);
 /* Now, write the object data */
 if (ed) {
 _sompEDWrite(ed, ev, _sompGetMediaInterface(somSelf,
 ev), thisPo);
 _sompFreeEncoderDecoder(thisPo, ev);
 _sompClearState(thisPo, ev, SOMP_STATE_DIRTY);
 /* ...
 any other unique processing
 ... */
 } else {
 sompRaiseException(ev, SOMPERROR_FRAMEWORK_ERROR,
 SOMPERROR_ENC_DEC_NOT_FOUND);
 } /* endif */
 } /* endif */
 } /* endwhile */
 _sompFreeIterator(thisGroup, ev, hit);
 return(TRUE); /* return TRUE to indicate that we attempted to
 write all objects in the group. */

 #else
 /* Write only the given object. */
 /* Write the object only if it is stable and has been marked as
 ”dirty” */
 if (_sompIsDirty(storeObj, ev)) {
 _sompPassivate(storeObj, ev); /* Tell object to prepare to be
 stored. */
 /* ...
 At this point, the IO Group Mgr must
 store anything about the object necessary in order to
 find it again in the group container
 ... */

D – 22 SOMobjects Developer Toolkit Users Guide

 ed = _sompGetEncoderDecoder(storeObj, ev);
 if (ed) {
 /* Now, write the object data */
 _sompEDWrite(ed, ev, _sompGetMediaInterface(somSelf, ev),
 storeObj);
 _sompFreeEncoderDecoder(storeObj, ev);
 _sompClearState(storeObj, ev, SOMP_STATE_DIRTY);
 /* ...
 any other unique processing
 ... */
 } else {
 sompRaiseException(ev, SOMPERROR_FRAMEWORK_ERROR,
 SOMPERROR_ENC_DEC_NOT_FOUND);
 } /* endif */
 } /* endif */
 return(FALSE); /* return FALSE to indicate that we attempted to
 write only the given object. */
#endif /* TMP_WRITE_ALL */
}

SOM_Scope SOMPPersistentObject SOMLINK sompReadGroup(
 SOMPTemplate somSelf,
 Environment *ev,
 SOMPPersistentId objectID)
{
 SOMPIOGroup newIOGroup = NULL;
 SOMClass classObj;
 SOMObject thisPo = NULL;
 string objectClassName = ”ttest”; /* template test class name */

 SOMPTemplateData *somThis = SOMPTemplateGetData(somSelf);
 SOMPTemplateMethodDebug(”SOMPTemplate”,”sompReadGroup”);

 /* ...
 Restore the objectClassName from the container the
 IO Group Mgr is managing and anything else about the object
 required for your IO Group Mgr. This will depend on what
 object metadata you store along with the object.

 You must provide some ability to map the given objectID
 into a SOM class name. Perhaps the class name is part of the
 persistent ID. For example, you might have persistent ID
 which includes not only the file name but the class name as
 well:
 MyIOGroupMgr:<filename>,<classname>:0

 objectClassName = ...;
 In this sample template, the class name is just set to
 ”ttest” which will probably never be correct for your
 I/O Group Manager.

 ... */

 classObj = _somFindClass(SOMClassMgrObject,
 SOM_IdFromString(objectClassName),
 0, 0);
 if (classObj) { /* If SOM was able to find the class, instantiate
 the object. */
 thisPo = _somNew(classObj);
 _sompInitGivenId(thisPo, ev, objectID);

D – 23D. Subclassing the Persistence Framework

 /* Indicate this object is unstable – i.e. not fully
 restored yet and that the object is not ”dirty” yet. */
 _sompClearState(thisPo, ev, SOMP_STATE_STABLE);
 _sompSetState(thisPo, ev, SOMP_STATE_UNSTABLE);
 _sompClearState(thisPo, ev, SOMP_STATE_DIRTY);
 newIOGroup = _sompGetIOGroup(thisPo, ev);
 } else {
 sompRaiseException(ev, SOMPERROR_FRAMEWORK_ERROR,
 SOMPERROR_IOGROUP_NEWOBJ);
 } /* endif */

 return(thisPo);
}

SOM_Scope void SOMLINK sompReadObjectData(SOMPTemplate somSelf,
 Environment *ev,
 SOMPPersistentObject thisPo)
{
 SOMPEncoderDecoderAbstract ed;
 SOMPPersistentId objectID;

 SOMPTemplateData *somThis = SOMPTemplateGetData(somSelf);
 SOMPTemplateMethodDebug(”SOMPTemplate”,”sompReadObjectData”);

 /* Locate the object in the group container via its ID and
 set up the media interface in preparation for invoking the
 sompEDRead method to read the object data.

 objectID = _sompGetPersistentId(thisPo, ev);

 ...

 */

 /* Note: the encoder/decoder class object must exist prior
 to a call to sompGetEncoderDecoder */
 ed = _sompGetEncoderDecoder(thisPo, ev);
 if (ed) {
 _sompEDRead(ed, ev, _sompGetMediaInterface(somSelf, ev),
 thisPo);
 _sompFreeEncoderDecoder(thisPo, ev);

 _sompClearState(thisPo, ev, SOMP_STATE_UNSTABLE);
 _sompSetState(thisPo, ev, SOMP_STATE_STABLE);
 } else {
 sompRaiseException(ev, SOMPERROR_FRAMEWORK_ERROR,
 SOMPERROR_ENC_DEC_NOT_FOUND);
 } /* endif */
}

SOM_Scope void SOMLINK sompDeleteObjectFromGroup(SOMPTemplate
somSelf, Environment *ev,
 SOMPPersistentId objectID)
{
 /* SOMPTemplateData *somThis = SOMPTemplateGetData(somSelf); */
 SOMPTemplateMethodDebug(”SOMPTemplate”,
 ”sompDeleteObjectFromGroup”);

 /* This method has not been implemented in this template */

SOMPTemplate_parent_SOMPIOGroupMgrAbstract_sompDeleteObjectFromGroup
(somSelf,ev,objectID);
}

D – 24 SOMobjects Developer Toolkit Users Guide

SOM_Scope boolean SOMLINK sompGroupExists(SOMPTemplate somSelf,
Environment *ev,
 string IOInfo)
{
 SOMPTemplateData *somThis = SOMPTemplateGetData(somSelf);
 SOMPTemplateMethodDebug(”SOMPTemplate”,”sompGroupExists”);

 /* Determine whether the group given by IOInfo exists */
 /* This method has been implemented over optimistically
 in this template. */

 return (TRUE);
}

SOM_Scope boolean SOMLINK sompObjectInGroup(SOMPTemplate somSelf,
Environment *ev,
 SOMPPersistentId objectID)
{
 SOMPTemplateData *somThis = SOMPTemplateGetData(somSelf);
 SOMPTemplateMethodDebug(”SOMPTemplate”,”sompObjectInGroup”);

 /* Determine whether the object with the given ID is exists in
 the group determined from the ID.
 This method has been implemented over optimistically in this
 template.
 */
 return (TRUE);
}

SOM_Scope boolean SOMLINK sompMediaFormatOk(SOMPTemplate somSelf,
 Environment *ev,
 string mediaFormatName)
{
 SOMPTemplateData *somThis = SOMPTemplateGetData(somSelf);
 SOMPTemplateMethodDebug(”SOMPTemplate”,”sompMediaFormatOk”);

 /* Is the file being referred to by the caller one which we know
 how to read?
 This method has been implemented over optimistically in this
 template.
 */

 return (TRUE);
}

SOM_Scope void SOMLINK somInit(SOMPTemplate somSelf)
{
 SOMPTemplateData *somThis = SOMPTemplateGetData(somSelf);
 SOMPTemplateMethodDebug(”SOMPTemplate”,”somInit”);

 /* Initialize instance variables */
 _mia = NULL; /* Initially, no media interface */
}

SOM_Scope void SOMLINK somUninit(SOMPTemplate somSelf)
{
 Environment tev;
 SOMPTemplateData *somThis = SOMPTemplateGetData(somSelf);
 SOMPTemplateMethodDebug(”SOMPTemplate”,”somUninit”);

 /* Clean up resources */
 _sompFreeMediaInterface(somSelf, &tev);
}

D – 25D. Subclassing the Persistence Framework

An Example I/O Group Manager and Media Interface
Implementation

The following final examples illustrate an implementation of a Media Interface subclass and an
I/O Group Manager subclass that uses the new Media Interface.

In these examples, we show how to modify the SOM Persistence Framework so that you can
store objects in an OS/2 INI file or “initialization file”. INI files are a convenient place to store
information on the OS/2 system. The system typically uses these files to store configuration and
startup information.

An OS/2 INI file consists of one or more named sections of data. Each section contains a set of
key–value pairs. The section name and key are null terminated strings, while the value
associated with the key is a variable length block of any data. When objects are stored using the
example classes below, each class is stored in one section of the OS/2 INI file. Within the class
section each key–value pair corresponds to the key part of an object’s persistent ID (retrieved
via sompGetGroupOffset) and the value of an object’s instance data. Refer to the OS/2
Technical Library for more information on INI files and the OS/2 Profile Manager.

Note: AIX and Windows users may not be familiar with INI files, however the following
implementation is still a useful illustration of how to build subclasses of the SOM
Persistence Framework.

The Media Interface
Since we’ve decided to store our objects in a new type of file for which we don’t know the format,
we must first provide the SOM Persistence Framework with an interface that does know the
format of the file. To do that we must define a new Media Interface which includes calls to an
API that can read/write INI files. We have a choice of subclassing from either
SOMPMediaInterfaceAbstract or SOMPFileMediaAbstract. The supplied default Encoder/
Decoder SOMPAttrEncoderDecoder makes use of the interface provided by the
SOMPFileMediaAbstract class. To continue to take advantage of the supplied Encoder/De-
coder we’ve chosen to implement a SOMPFileMediaAbstract interface to the INI files.

Ordinarily, you don’t stream data to an INI file. Each write for a key–value pair overwrites the
previous write. The supplied Encoder/Decoder, however, expects to be able to stream data to its
Media Interface. To maintain this ability, we introduce two new methods to our Media Interface.
These are:

void sompBeginBlock(in string appName, in string key);

void sompEndBlock();

sompBeginBlock instructs the Media Interface to begin buffering all incoming write requests.
sompEndBlock flushes all buffered data to the INI file. To support reading as well,
sompBeginBlock first reads any data that matches the appName and key value. So, either
reading or writing may follow sompBeginBlock.

Because all object data is buffered in memory, it is assumed that the objects stored are relatively
small in size.

Here is the interface definition of the new Media Interface, called SOMPIniMediaInterface.
Refer to the sample code in the SOMobjects Toolkit for a completed implementation of the class.

D – 26 SOMobjects Developer Toolkit Users Guide

#ifndef prf_idl
#define prf_idl

#include <fmi.idl>
#include <somp.idl>
#include <somperrd.idl>

interface SOMPIniMediaInterface : SOMPAsciiMediaInterface

// This is the class definition for a media interface which
// reads/writes using the OS/2 profile API. (.INI files)
//
//
// An .INI file is not a stream oriented file. Data is passed to it
// in blocks, with each block labeled by an application name and key
// value.
//
// Since the SOM Persistence Framework makes many ”read” or ”write”
// calls to store one object, this class must collect all these
// requests into one final block request to the OS/2 profile API.
//
// It is assumed that this class is made use of in the following
// way:
//
// /// IO Group Mgr ///
//
// sompInitReadWrite(ini_file_name)
// sompOpen
// sompBeginBlock(app_name, key_string)
//
// /// encoder/decoder ///
//
// sompWrite...
// sompWrite...
// sompWrite...
// ...
//
// /// IO Group Mgr ///
//
// sompEndBlock
// sompClose
//
//
// or:
//
// /// IO Group Mgr ///
//
// sompInitReadWrite(ini_file_name)
// sompOpen
// sompBeginBlock(app_name, key_string)
//
// /// encoder/decoder ///
//
// sompRead...
// sompRead...
// sompRead...
// ...
//

D – 27D. Subclassing the Persistence Framework

// /// IO Group Mgr ///
//
// sompEndBlock
// sompClose
//

{

 void sompBeginBlock(in string appName, in string key);
// Method to begin a block of data. Invoke after sompOpen.

 void sompEndBlock();
// Flushes buffered data to the profile.

 boolean sompBlockExists(in string appName, in string key);
// Check to see if the block named by the given appName and key
// exists. Returns TRUE if it exists. Invoke this after sompOpen
// but before sompBeginBlock.

#ifdef __SOMIDL__

implementation
{
 callstyle=idl;

 releaseorder: sompBeginBlock, sompEndBlock;
 dllname = ”sompini.dll”;

// Class Modifiers
 filestem = prf;

#ifdef __PRIVATE__
// Internal Instance variables
// Note: because the following OS/2 types are not defined as IDL
// types, warnings may be generated. This is ok, although you will
// not be able to store information about this data in the SOM
// Interface Repository.

#pragma notc 1

HAB hab; // Anchor–block handle
string fileName; // User–profile file name
HINI hini; // Handle to INI file
string appName; // App name passed to profile read/write
string key; // Key passed to profile read/write
string block; // Block of data to be read/written to the
profile
unsigned long readPtr; // Position within the block to read
unsigned long writePtr; // Position within the block to write
unsigned long blockSize; // Current size of the block
#endif

D – 28 SOMobjects Developer Toolkit Users Guide

// Method Modifiers
 sompInitReadWrite : override;
 sompInitReadOnly : override;
 sompOpen : override;
 sompClose : override;
 sompSeekPosition : override;
 sompSeekPositionRel : override;
 sompGetOffset : override;
 sompReadBytes : override;
 sompWriteBytes : override;
 sompWriteCharacter : override;
 sompReadCharacter : override;
 somInit : override;
 somUninit : override;
};
#endif /* __SOMIDL__ */
};
#endif /* prf_idl */

The SOMPIniMediaInterface implementation

#include<stdlib.h>
#include<stdio.h>
#include<string.h>

#define PRFBLOCK_SIZE 1024

#ifdef __OS2__
#define INCL_WINWINDOWMGR /* Or use INCL_WIN or INCL_PM. Also in
 COMMON section */
#define INCL_WINSHELLDATA /* Or use INCL_WIN or INCL_PM */
#include <os2.h>
#else
/* Stubs of OS/2 prf calls */
#include <prfstub.h>
#endif

#include <somp.h>
#include <string.h>
#include <memory.h>

#define SOMPIniMediaInterface_Class_Source
#include <prf.ih>

/* set the target string t with the given string g */
static string cpyString(string *t, string g)
{
 if (*t) SOMFree(*t);
 *t = (string)SOMMalloc(strlen(g) + 1);
 strcpy(*t, g);
 return(*t);
}

/*
 * Method to begin a block of data
 */

D – 29D. Subclassing the Persistence Framework

SOM_Scope void SOMLINK sompBeginBlock(
 SOMPIniMediaInterface somSelf,
 Environment *ev,
 string appName,
 string key)
{
 BOOL fSuccess; /* Success indicator */
 ULONG dataLen = 0;
 SOMPIniMediaInterfaceData *somThis =
 SOMPIniMediaInterfaceGetData(somSelf);
 SOMPIniMediaInterfaceMethodDebug(”SOMPIniMediaInterface”,
 ”sompBeginBlock”);

 if (_block) {
 SOMFree(_block);
 } /* endif */
 cpyString(&_appName, appName);
 cpyString(&_key, key);
 fSuccess = PrfQueryProfileSize(_hini, _appName, _key, &dataLen);
 if (dataLen == 0) { /* No data by that name */
 _block = (string)SOMMalloc(PRFBLOCK_SIZE);
 _blockSize = PRFBLOCK_SIZE;
 memset((void*)_block, 0, (size_t)_blockSize);
 _readPtr = _blockSize; /* nothing to read */
 _writePtr = 0;
 } else {
 _block = (string)SOMMalloc(dataLen);
 fSuccess = PrfQueryProfileData(_hini, _appName, _key, _block,
 &dataLen);
 _blockSize = dataLen;
 _readPtr = 0; /* can read from 0 to blockSize */
 _writePtr = 0;
 } /* endif */
}

/*
 * Flushes buffered data to the profile
 */

SOM_Scope void SOMLINK sompEndBlock(SOMPIniMediaInterface somSelf,
 Environment *ev)
{
 BOOL fSuccess; /* Success indicator */
 SOMPIniMediaInterfaceData *somThis =
 SOMPIniMediaInterfaceGetData(somSelf);
 SOMPIniMediaInterfaceMethodDebug(”SOMPIniMediaInterface”,
 ”sompEndBlock”);

 if (_writePtr) {
 fSuccess = PrfWriteProfileData(_hini, _appName, _key, _block,
 (ULONG)_writePtr);
 } /* endif */
}

D – 30 SOMobjects Developer Toolkit Users Guide

SOM_Scope void SOMLINK sompInitReadWrite(
 SOMPIniMediaInterface somSelf,
 Environment *ev,
 string mediaInfo)
{
 SOMPIniMediaInterfaceData *somThis =
 SOMPIniMediaInterfaceGetData(somSelf);
 SOMPIniMediaInterfaceMethodDebug(”SOMPIniMediaInterface”,
 ”sompInitReadWrite”);

 cpyString(&_fileName, mediaInfo);
}

SOM_Scope void SOMLINK sompInitReadOnly(
 SOMPIniMediaInterface somSelf,
 Environment *ev,
 string mediaInfo)
{
 SOMPIniMediaInterfaceData *somThis =
 SOMPIniMediaInterfaceGetData(somSelf);
 SOMPIniMediaInterfaceMethodDebug(”SOMPIniMediaInterface”,
 ”sompInitReadOnly”);
 _sompInitReadWrite(somSelf, ev, mediaInfo);
 /* No readonly
 support
 for this version*/
}

static char userPrf[80]=”os2.ini”;
static char sysPrf[80]=”os2sys.ini”;
static PRFPROFILE p = {
 sizeof(userPrf), userPrf,
 sizeof(sysPrf), sysPrf };

/* Assume that if they give os2.ini then use USERPROFILE */
/* Assume that if they give os2sys.ini then use SYSTEMPROFILE */
SOM_Scope void SOMLINK sompOpen(SOMPIniMediaInterface somSelf,
 Environment *ev)
{
 BOOL fSuccess; /* Success indicator */
 SOMPIniMediaInterfaceData *somThis =
 SOMPIniMediaInterfaceGetData(somSelf);
 SOMPIniMediaInterfaceMethodDebug(”SOMPIniMediaInterface”,
 ”sompOpen”);

D – 31D. Subclassing the Persistence Framework

 if (_fileName) {
 /* fSuccess = PrfQueryProfile(_hab, &p); */
#ifdef __OS2__
 if (stricmp(_fileName, userPrf)==0)
#else
 if (strcmp(_fileName, userPrf)==0)
#endif
 {
 _hini = HINI_USERPROFILE; /* No need to open */
 } else {
#ifdef __OS2__
 if (stricmp(_fileName, sysPrf)==0)
#else
 if (strcmp(_fileName, sysPrf)==0)
#endif
 {
 _hini = HINI_SYSTEMPROFILE;
 } else {
 _hini = PrfOpenProfile(_hab, _fileName);
 }
 }
 } /* endif */
}

SOM_Scope void SOMLINK sompClose(SOMPIniMediaInterface somSelf,
 Environment *ev)
{
 BOOL fSuccess;/* Success indicator */
 Environment tev;
 SOMPIniMediaInterfaceData *somThis =
 SOMPIniMediaInterfaceGetData(somSelf);
 SOMPIniMediaInterfaceMethodDebug(”SOMPIniMediaInterface”,
 ”sompClose”);

 if (_hini) {
 fSuccess = PrfCloseProfile(_hini);
 _hini = NULL;
 _sompBeginBlock(somSelf, &tev, ”$$SOMP$$”, ”key”);
 } /* endif */
}

SOM_Scope void SOMLINK sompSeekPosition(
 SOMPIniMediaInterface somSelf,
 Environment *ev,
 long offset)
{
 SOMPIniMediaInterfaceData *somThis =
 SOMPIniMediaInterfaceGetData(somSelf);
 SOMPIniMediaInterfaceMethodDebug(”SOMPIniMediaInterface”,
 ”sompSeekPosition”);

 _readPtr = offset;
}

D – 32 SOMobjects Developer Toolkit Users Guide

SOM_Scope void SOMLINK sompSeekPositionRel(
 SOMPIniMediaInterface somSelf,
 Environment *ev,
 long offset)
{
 SOMPIniMediaInterfaceData *somThis =
 SOMPIniMediaInterfaceGetData(somSelf);
 SOMPIniMediaInterfaceMethodDebug(”SOMPIniMediaInterface”,
 ”sompSeekPositionRel”);

 _readPtr += offset;
}

SOM_Scope long SOMLINK sompGetOffset(SOMPIniMediaInterface somSelf,
 Environment *ev)
{
 SOMPIniMediaInterfaceData *somThis =
 SOMPIniMediaInterfaceGetData(somSelf);
 SOMPIniMediaInterfaceMethodDebug(”SOMPIniMediaInterface”,
 ”sompGetOffset”);

 return((long)_readPtr);
}

SOM_Scope void SOMLINK sompReadBytes(SOMPIniMediaInterface somSelf,
 Environment *ev,
 string byteStream,
 long length)
{
 long amountToRead = 0;
 SOMPIniMediaInterfaceData *somThis =
 SOMPIniMediaInterfaceGetData(somSelf);
 SOMPIniMediaInterfaceMethodDebug(”SOMPIniMediaInterface”,
 ”sompReadBytes”);

 if (_blockSize) {
 amountToRead = ((_readPtr + length) <= _blockSize) ?
 length :
 _blockSize – _readPtr;

 if (amountToRead) {
 memcpy((void*)byteStream, (void*)(_block+_readPtr),
 (size_t)amountToRead);
 _readPtr += amountToRead;
 } else {
 /* Nothing to read */
 } /* endif */
 } else {
 /* Nothing to read */
 } /* endif */
}

SOM_Scope void SOMLINK sompWriteBytes(
 SOMPIniMediaInterface somSelf,
 Environment *ev,
 string byteStream,
 long length)
{
 SOMPIniMediaInterfaceData *somThis =
 SOMPIniMediaInterfaceGetData(somSelf);
 SOMPIniMediaInterfaceMethodDebug(”SOMPIniMediaInterface”,
 ”sompWriteBytes”);

D – 33D. Subclassing the Persistence Framework

 if (_blockSize) {
 if (_writePtr + length > _blockSize) {
 _blockSize += (PRFBLOCK_SIZE + length);
 _block = SOMRealloc(_block, _blockSize);
 } /* endif */
 memcpy((void*)(_block+_writePtr), (void*)byteStream,
 (size_t)length);
 _writePtr += length;
 } else {
 /* No place to write */
 } /* endif */

}

SOM_Scope void SOMLINK sompWriteCharacter(
 SOMPIniMediaInterface somSelf,
 Environment *ev,
 char c)
{
 SOMPIniMediaInterfaceData *somThis =
 SOMPIniMediaInterfaceGetData(somSelf);
 SOMPIniMediaInterfaceMethodDebug(”SOMPIniMediaInterface”,
 ”sompWriteCharacter”);

 _sompWriteBytes(somSelf, ev, &c, 1);
}

SOM_Scope void SOMLINK sompReadCharacter(
 SOMPIniMediaInterface somSelf,
 Environment *ev,
 string c)
{
 SOMPIniMediaInterfaceData *somThis =
 SOMPIniMediaInterfaceGetData(somSelf);
 SOMPIniMediaInterfaceMethodDebug(”SOMPIniMediaInterface”,
 ”sompReadCharacter”);

 _sompReadBytes(somSelf, ev, c, 1);
}

SOM_Scope void SOMLINK somInit(SOMPIniMediaInterface somSelf)
{
 static int firsttime = 1;
 Environment *ev;
 SOMPIniMediaInterfaceData *somThis =
 SOMPIniMediaInterfaceGetData(somSelf);

SOMPIniMediaInterfaceMethodDebug(”SOMPIniMediaInterface”,”somInit”);

 if (firsttime) {
 _hab = WinInitialize(0L);
 firsttime = 0;
 } /* endif */

 _fileName = NULL;
 _hini = NULL;
 ev = SOM_CreateLocalEnvironment();
 _sompBeginBlock(somSelf, ev, ”$$SOMP$$”, ”key”);
 SOM_DestroyLocalEnvironment(ev);
}

D – 34 SOMobjects Developer Toolkit Users Guide

SOM_Scope void SOMLINK somUninit(SOMPIniMediaInterface somSelf)
{
 SOMPIniMediaInterfaceData *somThis =
 SOMPIniMediaInterfaceGetData(somSelf);
 SOMPIniMediaInterfaceMethodDebug(”SOMPIniMediaInterface”,
 ”somUninit”);

 if (_block) {
 SOMFree(_block);
 } /* endif */
}

/*
 * Method to check for the existence of a block of data.
 */
SOM_Scope boolean SOMLINK sompBlockExists(
 SOMPIniMediaInterface somSelf,
 Environment *ev,
 string appName,
 string key)
{
 BOOL fSuccess; /* Success indicator */
 ULONG dataLen = 0;
 SOMPIniMediaInterfaceData *somThis =
 SOMPIniMediaInterfaceGetData(somSelf);
 SOMPIniMediaInterfaceMethodDebug(”SOMPIniMediaInterface”,
 ”sompBeginBlock”);

 fSuccess = PrfQueryProfileSize(_hini, appName, key, &dataLen);
 if (!fSuccess || dataLen == 0) { /* No data by that name */
 return(FALSE);
 } else {
 return(TRUE);
 } /* endif */
}

The I/O Group Manager
Whenever you build a new Media Interface, you need to build a new I/O Group Manager. To
build our new I/O Group Manager, SOMPIni, we started with the template described in
“Template for an I/O Group Manager” earlier in this appendix. The persistent object ID used
when an object is initialized determines which I/O Group Manager is instantiated when an object
is stored/restored. The name part of the ID (set via sompSetIOGroupName or indirectly via
somutSetIdString) is meaningful only to the I/O Group Manager class. In our implementation,
the name is used to specify the INI file in which to store our objects. An example of an object ID
for our I/O Group Manager where the objects are stored in the os2.ini file would be:

SOMPIni:os2.ini:0

In order for this I/O Group Manager to store objects via the Media Interface we created above,
we’ll need to provide the Media Interface with an appName and key for the sompBeginBlock
method. In our implementation, we make the appName equal to the object’s class name and the
key value equal to the offset part of the object ID. This part of the ID can be returned via the
sompGetGroupOffset method on the object ID.

When an object is to be restored, the I/O Group Manager is only presented with an object ID.
Since our ID does not indicate what class of object is to be instantiated during the restore, we
must provide a mapping between ID and class name. We’ve chosen to implement this by
reserving a special block of INI data for ID and class name information. It would have also been

D – 35D. Subclassing the Persistence Framework

possible to implement this by deciding that all IDs for our I/O Group Manager contain the class
name of the object. For example:

SOMPIni:os2.ini,PersistentStudent:0

In this example, we’ve chosen the earlier alternative.

Writing an object comes down to:

• getting the object’s Encoder/Decoder object.

• doing sompBeginBlock() to start the ID–to–class–name mapping block

• storing the class name and ID

• ending the mapping block with sompEndBlock()

• calling the sompEDWrite() method of the Encoder/Decoder

• freeing the Encoder/Decoder

• ending the class data block with sompEndBlock()

Here is the interface definition of the new I/O Group Manager, SOMPIni. Refer to the sample
code in the installed SOMobjects Developer Toolkit for the complete implementation of the
class.

#ifndef prfgm_idl
#define prfgm_idl

#include <iogma.idl>
#include <somp.idl>
#include <somperrd.idl>
#include <sompstad.idl>

interface SOMPIni : SOMPIOGroupMgrAbstract

// This is an IO Group Manager class for OS/2 .INI files. It uses
// the SOMPIniMediaInterface to store objects in OS/2 .INI files.
//
//
// This class expects object ID’s of the form:
//
// SOMPIni:<INI_file_name>:<offset_key>
//
// where:
//
// <INI_file_name> is the name of the INI file to read/write to.
// <INI_file_name> == os2.ini means use the USER PROFILE.
// <INI_file_name> == os2sys.ini means use the SYSTEM PROFILE.
//

{

#ifdef __SOMIDL__

implementation
{
 callstyle=idl;

 dllname=”sompini.dll”;

// Internal Instance Variables
 SOMPMediaInterfaceAbstract mia;

D – 36 SOMobjects Developer Toolkit Users Guide

// Method Modifiers
 sompNewMediaInterface: override;
 sompGetMediaInterface: override;
 sompFreeMediaInterface: override;
 sompInstantiateMediaInterface: override;
 sompWriteGroup: override;
 sompReadGroup: override;
 sompReadObjectData: override;
 sompDeleteObjectFromGroup: override;
 sompGroupExists: override;
 sompObjectInGroup: override;
 sompMediaFormatOk: override;
 somInit: override;
 somUninit: override;

};
#endif /* __SOMIDL__ */

};

#endif /* prfgm_idl */

The SOMPIni Group Manager implementation
The differences between this I/O Group Manager and the template one it was started with are
highlighted.

#include <somp.h>
#include <stdlib.h>
#include <stdio.h>
#include <iogrp.h>
#include <prf.h>

#define SOMPIni_Class_Source
#include <prfgm.ih>

#define MAPPING_APPNAME ”$SOMP_KEY2CLASS$”

SOM_Scope void SOMLINK sompNewMediaInterface(SOMPIni somSelf,
 Environment *ev,
 string IOInfo)
{
 SOMPIniData *somThis = SOMPIniGetData(somSelf);
 SOMPIniMethodDebug(”SOMPIni”,”sompNewMediaInterface”);

 if (_mia == NULL) {
 _mia = _sompInstantiateMediaInterface(somSelf, ev);
 _sompInitReadWrite(_mia, ev, IOInfo);
 if (ev–>_major == NO_EXCEPTION) {
 _sompOpen(_mia, ev);
 } /* endif */
 } /* endif */
}

SOM_Scope SOMPMediaInterfaceAbstract SOMLINK
 sompGetMediaInterface(SOMPIni somSelf, Environment *ev)
{
 SOMPIniData *somThis = SOMPIniGetData(somSelf);
 SOMPIniMethodDebug(”SOMPIni”,”sompGetMediaInterface”);

 return (_mia);
}

D – 37D. Subclassing the Persistence Framework

SOM_Scope void SOMLINK sompFreeMediaInterface(SOMPIni somSelf,
 Environment *ev)
{
 SOMPIniData *somThis = SOMPIniGetData(somSelf);
 SOMPIniMethodDebug(”SOMPIni”,”sompFreeMediaInterface”);

 if (_mia) {
 _sompClose(_mia, ev);
 _somFree(_mia);
 _mia = NULL;
 } /* endif */
}

SOM_Scope SOMPMediaInterfaceAbstract SOMLINK
 sompInstantiateMediaInterface(SOMPIni somSelf,
 Environment *ev)
{
 SOMPMediaInterfaceAbstract mia = NULL;
 SOMPIniData *somThis = SOMPIniGetData(somSelf);
 SOMPIniMethodDebug(”SOMPIni”,”sompInstantiateMediaInterface”);

 /* mia = <mediaInterfaceClassName>New(); */
 mia = SOMPIniMediaInterfaceNew();
 return(mia);
}

SOM_Scope boolean SOMLINK sompWriteGroup(SOMPIni somSelf,
Environment *ev,
 SOMPPersistentObject storeObj)
{
 SOMPIteratorHandle hit;
 SOMObject thisPo;
 SOMPIOGroup thisGroup;
 SOMPEncoderDecoderAbstract ed;
 long key;
 char keyString[SOMPMAXIDSIZE];

 SOMPIniData *somThis = SOMPIniGetData(somSelf);
 SOMPIniMethodDebug(”SOMPIni”,”sompWriteGroup”);

/* Write all objects grouped with the given object */
#define TMP_WRITE_ALL 1
#ifdef TMP_WRITE_ALL
 thisGroup = _sompGetIOGroup(storeObj, ev);

 hit = _sompNewIterator(thisGroup, ev);

 /* Get each of the objects from the group.
 If it should be stored, then instantiate an Encoder/Decoder
 object and invoke its sompEDWrite method. */
 while (((thisPo = _sompNextObjectInGroup(thisGroup, ev,
 hit))!=NULL) &&
 ev–>_major == NO_EXCEPTION) {

D – 38 SOMobjects Developer Toolkit Users Guide

 if (_sompIsDirty(thisPo, ev)) {
 _sompPassivate(thisPo, ev); /* Tell object to prepare to be
 stored. */
 ed = _sompGetEncoderDecoder(thisPo, ev);
 /* Now, write the object data */
 if (ed) {
 key = _sompGetGroupOffset(_sompGetPersistentId(thisPo,
 ev), ev);
 sprintf(keyString, ”%d”, key);
 /* First, store the class name associated with the */
 /* object ID so that upon object restoration, the */
 /* name of the class associated with this ID can be*/
 /* determined. */
 _sompBeginBlock(_mia, ev, MAPPING_APPNAME, keyString);
 _sompWriteString(_mia, ev, _somGetClassName(thisPo));
 _sompWriteString(_mia, ev,
 _sompGetEncoderDecoderName(thisPo, ev));
 _sompEndBlock(_mia, ev);

 /* Now, store the object data... */
 _sompBeginBlock(_mia, ev, _somGetClassName(thisPo),
 keyString);
 _sompEDWrite(ed, ev, _sompGetMediaInterface(somSelf,
 ev), thisPo);
 _sompFreeEncoderDecoder(thisPo, ev);
 _sompClearState(thisPo, ev, SOMP_STATE_DIRTY);
 _sompEndBlock(_mia, ev);
 } else {
 /* No encoder/decoder object could be instantiated, */
 /* perhaps the <encoder/decoderClassName>NewClass */
 /* has not be executed. */
 sompRaiseException(ev, SOMPERROR_FRAMEWORK_ERROR,
 SOMPERROR_ENC_DEC_NOT_FOUND);
 } /* endif */
 /* ...
 any other unique processing
 ... */
 } /* endif */
 } /* endwhile */
 _sompFreeIterator(thisGroup, ev, hit);
 return(TRUE);
#endif /* TMP_WRITE_ALL */
}

SOM_Scope SOMPPersistentObject SOMLINK sompReadGroup(
 SOMPIni somSelf,
 Environment *ev,
 SOMPPersistentId objectID)
{
 SOMPIOGroup newIOGroup = NULL;
 SOMClass classObj;
 SOMObject thisPo = NULL;
 long key;
 char keyString[SOMPMAXIDSIZE];
 char objectClassName[SOMPMAXIDSIZE];
 char encoderDecoderClassName[SOMPMAXIDSIZE];

 SOMPIniData *somThis = SOMPIniGetData(somSelf);
 SOMPIniMethodDebug(”SOMPIni”,”sompReadGroup”);

D – 39D. Subclassing the Persistence Framework

 /* Restore class names */
 /* Note: you could use encoderDecoderClassName data here to */
 /* set the object’s encoderDecoder class name. We are */
 /* using the default, so are ignoring this information.*/
 key = _sompGetGroupOffset(objectID, ev);
 sprintf(keyString, ”%d”, key);
 _sompBeginBlock(_mia, ev, MAPPING_APPNAME, keyString);
 _sompReadStringToBuffer(_mia, ev, objectClassName,
 SOMPMAXIDSIZE);
 _sompReadStringToBuffer(_mia, ev, encoderDecoderClassName,
 SOMPMAXIDSIZE);
 _sompEndBlock(_mia, ev);

 classObj = _somFindClass(SOMClassMgrObject,
 SOM_IdFromString(objectClassName),
 0, 0);
 if (classObj) { /* If SOM was able to find the class, instantiate
 the object. */
 thisPo = _somNew(classObj);
 _sompInitGivenId(thisPo, ev, objectID);
 /*
 ... */
 /* Indicate this object is unstable – i.e. not fully restored
 yet and that the object is not ”dirty” yet. */
 _sompClearState(thisPo, ev, SOMP_STATE_STABLE);
 _sompSetState(thisPo, ev, SOMP_STATE_UNSTABLE);
 _sompClearState(thisPo, ev, SOMP_STATE_DIRTY);
 newIOGroup = _sompGetIOGroup(thisPo, ev);
 } else {
 sompRaiseException(ev, SOMPERROR_FRAMEWORK_ERROR,
 SOMPERROR_IOGROUP_NEWOBJ);
 } /* endif */

 return(thisPo);
}

SOM_Scope void SOMLINK sompReadObjectData(SOMPIni somSelf,
 Environment *ev,
 SOMPPersistentObject thisPo)
{
 SOMPEncoderDecoderAbstract ed;
 SOMPPersistentId objectID;
 long key;
 char keyString[SOMPMAXIDSIZE];

 SOMPIniData *somThis = SOMPIniGetData(somSelf);
 SOMPIniMethodDebug(”SOMPIni”,”sompReadObjectData”);

 /* Locate the object in the group container via its ID and
 set up the media interface in preparation for invoking the
 sompEDRead method to read the object data.
 objectID = _sompGetPersistentId(thisPo, ev);

D – 40 SOMobjects Developer Toolkit Users Guide

 ... */
 ed = _sompGetEncoderDecoder(thisPo, ev);
 if (ed) {
 key = _sompGetGroupOffset(_sompGetPersistentId(thisPo, ev),
 ev);
 sprintf(keyString, ”%d”, key);
 _sompBeginBlock(_mia, ev, _somGetClassName(thisPo),
 keyString);
 /* Restore class names */
 /* Note: you could use encoderDecoderClassName data here to*/
 /* set the object’s encoderDecoder class name. We are*/
 /* using the default, so are ignoring this */
 /* information. */
 _sompEDRead(ed, ev, _sompGetMediaInterface(somSelf, ev),
 thisPo);
 _sompFreeEncoderDecoder(thisPo, ev);
 _sompEndBlock(_mia, ev);
 _sompClearState(thisPo, ev, SOMP_STATE_UNSTABLE);
 _sompSetState(thisPo, ev, SOMP_STATE_STABLE);
 } else {
 /* No encoder/decoder object could be instantiated. */
 sompRaiseException(ev, SOMPERROR_FRAMEWORK_ERROR,
 SOMPERROR_ENC_DEC_NOT_FOUND);
 } /* endif */

}

SOM_Scope void SOMLINK sompDeleteObjectFromGroup(SOMPIni somSelf,
Environment *ev,
 SOMPPersistentId objectID)
{
 /* SOMPIniData *somThis = SOMPIniGetData(somSelf); */
 SOMPIniMethodDebug(”SOMPIni”,”sompDeleteObjectFromGroup”);

 /* Not implemented */

SOMPIni_parent_SOMPIOGroupMgrAbstract_sompDeleteObjectFromGroup(somS
elf,ev,objectID);
}

SOM_Scope boolean SOMLINK sompGroupExists(SOMPIni somSelf,
Environment *ev,
 string IOInfo)
{
 SOMPIniData *somThis = SOMPIniGetData(somSelf);
 SOMPIniMethodDebug(”SOMPIni”,”sompGroupExists”);

 /* Very optimistic implementation */
 return (TRUE);
}

SOM_Scope boolean SOMLINK sompObjectInGroup(SOMPIni somSelf,
Environment *ev,
 SOMPPersistentId objectID)
{
 long key;
 char keyString[SOMPMAXIDSIZE];
 SOMPIniData *somThis = SOMPIniGetData(somSelf);
 SOMPIniMethodDebug(”SOMPIni”,”sompObjectInGroup”);

D – 41D. Subclassing the Persistence Framework

 key = _sompGetGroupOffset(objectID, ev);
 sprintf(keyString, ”%d”, key);
 return(_sompBlockExists(_mia, ev, MAPPING_APPNAME, keyString));
}

SOM_Scope boolean SOMLINK sompMediaFormatOk(SOMPIni somSelf,
Environment *ev,
 string mediaFormatName)
{
 SOMPIniData *somThis = SOMPIniGetData(somSelf);
 SOMPIniMethodDebug(”SOMPIni”,”sompMediaFormatOk”);

 /* Very optimistic implementation */
 return (TRUE);
}

SOM_Scope void SOMLINK somInit(SOMPIni somSelf)
{
 SOMPIniData *somThis = SOMPIniGetData(somSelf);
 SOMPIniMethodDebug(”SOMPIni”,”somInit”);

 _mia = NULL; /* Initially, no media interface */
}

SOM_Scope void SOMLINK somUninit(SOMPIni somSelf)
{
 Environment tev;
 SOMPIniData *somThis = SOMPIniGetData(somSelf);
 SOMPIniMethodDebug(”SOMPIni”,”somUninit”);

 _sompFreeMediaInterface(somSelf, &tev);
}

D – 42 SOMobjects Developer Toolkit Users Guide

Appendix E. Implementing Sockets Subclasses

Contents
Sockets IDL interface E – 1.
IDL for a Sockets subclass E – 5.
Implementation considerations E – 7.
Example code E – 7.

ii SOMobjects Developer Toolkit Users Guide

Appendix E. Implementing Sockets Subclasses
Distributed SOM (DSOM) and the Replication Framework require basic message services for
inter-process communications. The Event Management Framework must be integrated with
the same communication services in order to handle communications events.

To maximize their portability to a wide variety of local area network transport protocols, the
DSOM, Replication, and Event Management Frameworks have been written to use a common
communications interface, which is implemented by one or more SOM class libraries using
available local protocols.

The common communications interface is based on the “sockets” interface used with TCP/IP,
since its interface and semantics are fairly widespread and well understood. The IDL interface is
named Sockets. There is no implementation associated with the Sockets interface by default;
specific protocol implementations are supplied by subclass implementations.

Note: The Sockets classes supplied with the SOMobjects Developer Toolkit and Enabler
packages are only intended to support the DSOM, Replication, and Event Management
Frameworks. These class implementations are not intended for general application
usage.

Available Sockets subclasses for SOMobjects products are as follows:

• For AIX:
TCPIPSockets class for TCP/IP,
IPXSockets class for NetWare IPX/SPX, and
NBSockets class for NetBIOS.

• For OS/2 and Windows:
TCPIPSockets class (a) for TCP/IP for Windows or (b) for TCP/IP 1.2.1 on OS/2,
TCPIPSockets32 class for TCP/IP 2.0 on OS/2 only (see Note below),
IPXSockets class for NetWare IPX/SPX, and
NBSockets class for NetBIOS.

Note: The TCPIPSockets32 class gives greater performance over the TCPIPSockets class on
OS/2, but requires the 32–bit version of TCP/IP (version 2.0) rather than the 16–bit
version of TCP/IP (version 1.2.1).

Application developers may need to develop their own Sockets subclass if the desired trans-
port protocol or product version is not one of those supported by the SOMobjects run-time
packages. This appendix explains how to approach the implementation of a Sockets subclass,
if necessary. Warning: this may be a non-trivial exercise!

Sockets IDL interface
The base Sockets interface is expressed in IDL in the file somssock.idl, listed below. There is
a one-to-one mapping between TCP/IP socket APIs and the methods defined in the Sockets
interface.

Please note the following:

• The semantics of each Sockets method must be that of the corresponding TCP/IP call.
Currently, only Internet address family (AF_INET) addresses are used by the frameworks.

(The TCP/IP sockets API is not documented as part of the SOMobjects Developer Toolkit.
The implementor is referred to the programming references for IBM TCP/IP for AIX or OS/2,
or to similar references that describe the sockets interface for TCP/IP.)

• Data types, constants, and macros which are part of the Sockets interface are defined in a
C include file, soms.h. This file is supplied with the SOMobjects Toolkit, and is not shown
in this manual.

E – 2 SOMobjects Developer Toolkit Users Guide

• The Sockets interface is expressed in terms of a 32-bit implementation.

• Some of the method parameters and return values are expressed using pointer types, for
example:

hostent *somsGethostent ();

This has been done to map TCP/IP socket interfaces as directly as possible to their IDL
equivalent. (Use of strict CORBA IDL was not a primary goal for the Sockets interface,
since it is only used internally by the frameworks.)

• The Sockets class and its subclasses are single instance classes.

Following is a listing of the file somssock.idl. Each socket call is briefly described with a
comment.

// 96F8647, 96F8648 (C) Copyright IBM Corp. 1992, 1993
// All Rights Reserved
// Licensed Materials – Property of IBM

#ifndef somssock_idl
#define somssock_idl

#include <somobj.idl>
#include <snglicls.idl>

interface Sockets : SOMObject
{

//# The following typedefs are fully defined in <soms.h>.
typedef SOMFOREIGN sockaddr;
#pragma modifier sockaddr : impctx=”C”, struct;
typedef SOMFOREIGN iovec;
#pragma modifier iovec : impctx=”C”, struct;
typedef SOMFOREIGN msghdr;
#pragma modifier msghdr : impctx=”C”, struct;
typedef SOMFOREIGN fd_set;
#pragma modifier fd_set : impctx=”C”, struct;
typedef SOMFOREIGN timeval;
#pragma modifier timeval : impctx=”C”, struct;
typedef SOMFOREIGN hostent;
#pragma modifier hostent : impctx=”C”, struct;
typedef SOMFOREIGN servent;
#pragma modifier servent : impctx=”C”, struct;
typedef SOMFOREIGN in_addr;
#pragma modifier in_addr : impctx=”C”, struct;

long somsAccept (in long s, out sockaddr name, out long namelen);
// Accept a connection request from a client.

long somsBind (in long s, inout sockaddr name, in long namelen);
// Binds a unique local name to the socket with descriptor s.

long somsConnect (in long s, inout sockaddr name,
 in long namelen);
// For streams sockets, attempts to establish a connection
// between two sockets. For datagram sockets, specifies the
// socket’s peer.

hostent *somsGethostbyaddr (in char *addr, in long addrlen,
 in long domain);
// Returns a hostent structure for the host address specified on
// the call.

E – 3E. Implementing Sockets Subclasses

hostent *somsGethostbyname (in string name);
// Returns a hostent structure for the host name specified on
// the call.

hostent *somsGethostent ();
// Returns a pointer to the next entry in the hosts file.

unsigned long somsGethostid ();
// Returns the unique identifier for the current host.

long somsGethostname (in string name, in long namelength);
// Retrieves the standard host name of the local host.

long somsGetpeername (in long s, out sockaddr name,
 out long namelen);
// Gets the name of the peer connected to socket s.

servent *somsGetservbyname (in string name, in string protocol);
// Retrieves an entry from the /etc/services file using the
// service name as a search key.

long somsGetsockname (in long s, out sockaddr name,
 out long namelen);
// Stores the current name for the socket specified by the s
// parameter into the structure pointed to by the name
// parameter.

long somsGetsockopt (in long s, in long level, in long optname,
 in char *optval, out long option);
// Returns the values of socket options at various protocol
// levels.

unsigned long somsHtonl (in unsigned long a);
// Translates an unsigned long integer from host–byte order to
// network–byte order.

unsigned short somsHtons (in unsigned short a);
// Translates an unsigned short integer from host–byte order to
// network–byte order.

long somsIoctl (in long s, in long cmd, in char *data,
 in long length);
// Controls the operating characteristics of sockets.

unsigned long somsInet_addr (in string cp);
// Interprets character strings representing numbers expressed
// in standard ’.’ notation and returns numbers suitable for use
// as internet addresses.

unsigned long somsInet_lnaof (in in_addr addr);
// Breaks apart the internet address and returns the local
// network address portion.

in_addr somsInet_makeaddr (in unsigned long net,
 in unsigned long lna);
// Takes a network number and a local network address and
// constructs an internet address.

unsigned long somsInet_netof (in in_addr addr);
// Returns the network number portion of the given internet
// address.

E – 4 SOMobjects Developer Toolkit Users Guide

unsigned long somsInet_network (in string cp);
// Interprets character strings representing numbers expressed
// in standard ’.’ notation and returns numbers suitable for use
// as network numbers.

string somsInet_ntoa (in in_addr addr);
// Returns a pointer to a string expressed in the dotted–decimal
// notation.

long somsListen (in long s, in long backlog);
// Creates a connection request queue of length backlog to queue
// incoming connection requests, and then waits for incoming
// connection requests.

unsigned long somsNtohl (in unsigned long a);
// Translates an unsigned long integer from network–byte order
// to host–byte order.

unsigned short somsNtohs (in unsigned short a);
// Translates an unsigned short integer from network–byte order
// to host–byte order.

long somsReadv (in long s, inout iovec iov, in long iovcnt);
// Reads data on socket s and stores it in a set of buffers
// described by iov.

long somsRecv (in long s, in char *buf, in long len,
 in long flags);

// Receives data on streams socket s and stores it in buf.

long somsRecvfrom (in long s, in char *buf, in long len,
in long flags, out sockaddr name, out long namelen);

// Receives data on datagram socket s and stores it in buf.

long somsRecvmsg (in long s, inout msghdr msg, in long flags);
// Receives messages on a socket with descriptor s and stores
// them in an array of message headers.

long somsSelect (in long nfds, inout fd_set readfds,
 inout fd_set writefds, inout fd_set exceptfds,
 inout timeval timeout);
// Monitors activity on a set of different sockets until a
// timeout expires, to see if any sockets are ready for reading
// or writing, or if an exceptional condition is pending.

long somsSend (in long s, in char *msg, in long len,
 in long flags);

// Sends msg on streams socket s.

long somsSendmsg (in long s, inout msghdr msg, in long flags);
// Sends messages passed in an array of message headers on a
// socket with descriptor s.

long somsSendto (in long s, inout char msg, in long len,
 in long flags, inout sockaddr to, in long tolen);
// Sends msg on datagram socket s.

long somsSetsockopt (in long s, in long level, in long optname,
 in char *optval, in long optlen);
// Sets options associated with a socket.

E – 5E. Implementing Sockets Subclasses

long somsShutdown (in long s, in long how);
// Shuts down all or part of a full–duplex connection.

long somsSocket (in long domain, in long type,
 in long protocol);

// Creates an endpoint for communication and returns a socket
// descriptor representing the endpoint.

long somsSoclose (in long s);
// Shuts down socket s and frees resources allocated to the
// socket.

long somsWritev (in long s, inout iovec iov, in long iovcnt);
// Writes data on socket s. The data is gathered from the
// buffers described by iov.

attribute long serrno;
// Used to pass error numbers.

#ifdef __SOMIDL__
 implementation
 {

releaseorder:
somsAccept, somsBind, somsConnect, somsGethostbyaddr,
somsGethostbyname, somsGethostent, somsGethostid,
somsGethostname, somsGetpeername, somsGetsockname,
somsGetsockopt, somsHtonl, somsHtons, somsIoctl,
somsInet_addr, somsInet_lnaof, somsInet_makeaddr,
somsInet_netof, somsInet_network, somsInet_ntoa,
somsListen, somsNtohl, somsNtohs, somsReadv,
somsRecv, somsRecvfrom, somsRecvmsg, somsSelect,
somsSend, somsSendmsg, somsSendto, somsSetsockopt,
somsShutdown, somsSocket, somsSoclose, somsWritev,
_set_serrno, _get_serrno, somsGetservbyname;

//# Class modifiers
callstyle=idl;
metaclass = SOMMSingleInstance;
majorversion=1; minorversion=1;
dll=”soms.dll”;

 };
#endif /* __SOMIDL__ */
};
#endif /* somssock_idl */

IDL for a Sockets subclass
Sockets subclasses inherit their entire interface from Sockets. All methods are overridden.

For example, here is a listing of the TCPIPSockets IDL description.

// 96F8647, 96F8648 (C) Copyright IBM Corp. 1992, 1993
// All Rights Reserved
// Licensed Materials – Property of IBM

#ifndef tcpsock_idl
#define tcpsock_idl

#include <somssock.idl>
#include <snglicls.idl>

E – 6 SOMobjects Developer Toolkit Users Guide

interface TCPIPSockets : Sockets
{
#ifdef __SOMIDL__
 implementation
 {

//# Class modifiers
callstyle=idl;
majorversion=1; minorversion=1;
dllname=”somst.dll”;
metaclass=SOMMSingleInstance;

//# Method modifiers
somsAccept: override;
somsBind: override;
somsConnect: override;
somsGethostbyaddr: override;
somsGethostbyname: override;
somsGethostent: override;
somsGethostid: override;
somsGethostname: override;
somsGetpeername: override;
somsGetservbyname: override;
somsGetsockname: override;
somsGetsockopt: override;
somsHtonl: override;
somsHtons: override;
somsIoctl: override;
somsInet_addr: override;
somsInet_lnaof: override;
somsInet_makeaddr: override;
somsInet_netof: override;
somsInet_network: override;
somsInet_ntoa: override;
somsListen: override;
somsNtohl: override;
somsNtohs: override;
somsReadv: override;
somsRecv: override;
somsRecvfrom: override;
somsRecvmsg: override;
somsSelect: override;
somsSend: override;
somsSendmsg: override;
somsSendto: override;
somsSetsockopt: override;
somsShutdown: override;
somsSocket: override;
somsSoclose: override;
somsWritev: override;
_set_serrno: override;
_get_serrno: override;

 };
#endif /* __SOMIDL__ */
};

#endif /* tcpsock_idl */

E – 7E. Implementing Sockets Subclasses

Implementation considerations
• Only the AF_INET address family must be supported. That is, the DSOM, Replication, and

Event Manager frameworks all use Internet addresses and port numbers to refer to
specific sockets.

• On OS/2, the SOMobjects run-time libraries were built using the C Set/2 32-bit compiler. If
the underlying subclass implementation uses a 16-bit subroutine library, conversion of the
method call arguments may be required. (This mapping of arguments is often referred to
as “thunking.”)

• Sockets subclasses to be used in multi-threaded environments should be made thread-
safe. That is, it is possible that concurrent threads may make calls on the (single) Sockets
object, so data structures must be protected within critical regions, as appropriate.

• Valid values for the serrno attribute are defined in the file soms.h. The subclass imple-
mentation should map local error numbers into the appropriate corresponding Sockets
error numbers.

Example code
The following code fragment shows an example of the implementation of the somsBind
method of the TCPIPSockets subclass, for both AIX and OS/2. The sample illustrates that, for
TCP/IP, the implementation is basically a one-to-one mapping of Sockets methods onto TCP/IP
calls. For other transport protocols, the mapping from the socket abstraction to the protocol’s
API may be more difficult.

For AIX, the mapping from Sockets method to TCP/IP call is trivial.

SOM_Scope long SOMLINK somsBind(TCPIPSockets somSelf,
 Environment *ev,
 long s, Sockets_sockaddr* name,
 long namelen)
{
 long rc;

 TCPIPSocketsMethodDebug(”TCPIPSockets”,”somsBind”);

 rc = (long) bind((int)s, name, (int)namelen);

 if (rc == –1)
 _ _set_serrno(somSelf, ev, errno);

 return rc;
}

On OS/2, however, the TCP/IP Release 1.2.1 library is a 16-bit library. Consequently, many of
the method calls require conversion (“thunking”) of 32-bit parameters into 16-bit parameters,
before the actual TCP/IP calls can be invoked. For example, the function prototype for the
somsBind method is defined as:

SOM_Scope long SOMLINK somsBind(TCPIPSockets somSelf,
 Environment *ev,
 long s, Sockets_sockaddr* name,
 long namelen);

whereas the file socket.h on OS/2 declares the bind function with the following prototype:

short _Far16 _Cdecl bind(short /*s*/, void * _Seg16 /*name*/,
 short /*len*/);

E – 8 SOMobjects Developer Toolkit Users Guide

In this case, the pointer to the “name” structure, passed as a 32-bit address, cannot be used
directly in the bind call: a 16-bit address must be passed instead. This can be accomplished by
dereferencing the 32-bit pointer provided by the “name” parameter in the somsBind call,
copying the caller’s Sockets_sockaddr structure into a local structure (“name16”), and then
passing the address of the local structure (“&name16”) as a 16-bit address in the bind call.

SOM_Scope long SOMLINK somsBind(TCPIPSockets somSelf,
 Environment *ev,
 long s, Sockets_sockaddr* name,
 long namelen)
{
 long rc;
 Sockets_sockaddr name16;

 TCPIPSocketsMethodDebug(”TCPIPSockets”,”somsBind”);

 /* copy user’s parameter into a local structure */
 memcpy ((char *)&name16, (char *)((sockaddr32 *)name), namelen);
 rc = (long) bind((short)s, (void *)&name16, (short)namelen);

 if (rc == –1)
 _ _set_serrno(somSelf, ev, tcperrno());

 return rc;
}

For Windows, a developer would follow the OS/2 example for implementing the bind
function with 16–bit addresses (but using the IPXSockets class for NetWare IPX/SPX or the
NBSockets class for NetBIOS, rather than the TCPIPSockets class).

Appendix F. emitcom: An Emitter of COM Interfaces

Contents
‘emitcom’ Syntax F – 1.
Execution of ‘emitcom’ F – 1.
Interface Identifiers F – 2.
User Procedure F – 2.
The Generated Interface F – 4.
Customizing the <comstem>.mak F – 4.
Example F – 4.
Limitations F – 7.

ii SOMobjects Developer Toolkit Users Guide

Appendix F. emitcom: An Emitter of COM Interfaces

The emitcom emitter is a program that creates a binding for a SOM class so that the class can
be used in the context of COM, Microsoft’s component interface model. That is, the binding
exports COM-style interfaces so that a SOM class can be used from OLE 2.0 programs. The
generated COM interface is aggregatable. The emitcom emitter generates all the files neces-
sary to build a DLL for the binding. In addition, emitcom can generate COM bindings for
ancestor classes.

‘emitcom’ Syntax
The emitcom command is issued as follows:

emitcom <filestem> <comstem>

where: <filestem> is the prefix name of a SOM IDL file (<filestem>.idl), and
<comstem> is the prefix for the corresponding COM binding files.

Execution of ‘emitcom’
For the IDL file <filestem>.idl, emitcom creates a set of files that compose an interface (or
usage binding) that gives an OLE 2.0 program access to the SOM class described in
<filestem>.idl. The following files are created: <comstem>.mak, <comstem>.xh,
<comstem>.cpp, <comstem>.def, and <comstem>.reg. Once emitcom has run, issue the
commands:

nmake –f <comstem>.mak to create a DLL and LIB; and
regedit /s <comstem>.reg to register the DLL with the REG.DAT database.

The COM interface generated by emitcom is the SOM class’s interface. That is, the interface
contains the union of the methods of the SOM class and all of its ancestors.

The COM interface is generated in C++; <comstem>.cpp is the implementation file and
<comstem>.xh is a header file for users of the interface. Because SOM is language neutral, it
does not matter what language is used to implement the SOM class.

The <comstem>.def file is used by the linker to make the DLL. In generating a makefile
(<comstem>.mak), emitcom makes the following decision:

• If the <filestem>.idl file contains a dllname modifier, the associated <dllname>.lib file is
used in the link statement. If there is no dllname modifier in the IDL file, then the link
statement is generated with <filestem>.obj. (See also “Modifier statements” in Chapter 4,
“Implementing Classes in SOM,” of the SOMobjects Developer Toolkit Users Guide.)

• If <filestem>.obj is not desired, one can always edit the <comstem>.mak.

The <comstem>.reg file contains the information for registering the COM interface to the SOM
class in the registration database. The DLL file name that is used in <comstem>.reg is
<comstem>.dll; if this DLL is to be named otherwise, you must edit the <comstem>.reg file.

The COM interface for the SOM class named <className> is defined in <comstem>.xh. The
interface is implemented as a C++ class named <className>COMIntf. To use the SOM class in
a program, one must include the header <comstem>.xh and create instances of the C++ class
<className>COMIntf, which creates instances of the SOM class.

F – 2 SOMobjects Developer Toolkit Users Guide

Interface Identifiers
The <filestem>.idl file must give the class identifier and the interface identifier needed for
registration. This is done with two new modifiers:

CLSID_<className> and
IID_<className>

where <className> is the name of the SOM class for which a COM interface is being gener-
ated. The various forms of the modifiers are as follows:

CLSID_<className> = <guid1>;
IID_<className> = <guid2>;
IID_<parentClassName1> = <guid3>;
IID_<parentClassName2>;
IID_<SOMObjectsToolkitClassName>;

The first two forms are mandatory, because the class and interface identifiers for the SOM class
must be specified. The third form is used to specify an interface identifier for a parent class.
However, if an interface identifier is specified in the IDL of the parent, the fourth form should be
used. The fifth form is used for parent classes that are part of the SOMObjects Toolkit. Note that
the third, fourth, and fifth forms are used only when an interface to the parent is to be aggregated
into the COM binding.

Each ancestor of a SOM class provides an interface to instances of that class. Therefore, each
of these may be aggregated into the COM binding. This is indispensable in the case where the
instance is to be passed to code that was created for the ancestor interface (that is, code that
uses the COM binding generated from the ancestor’s IDL). In such cases, the caller must
coerce the instance interface by calling QueryInterface before passing the instance into the
code created for the ancestor.

User Procedure
The following diagram depicts the total process, where <filestem> is S and <comstem> is C.

F – 3F. emitcom: An Emitter of COM Interfaces

emitcomS.idl
S C

C.mak

C.xh

C.cpp

C.def

C.reg

S.xh
or
S.h

S.lib
or

S.obj

nmake
–f C.mak

C.dll

C.lib

regedit
/s C.reg reg.dat

In summary, you will perform the following steps:

1. Add CLSID and IID to <filestem>.idl with the modifers:
CLSID_<className>
IID_<className>

There is an example below.

2. Run the “emitcom <filestem> <comstem>” command to produce the files:
<comstem>.mak <comstem>.xh <comstem>.cpp
<comstem>.def <comstem>.reg

Note: <comstem>.mak is generated with the value of the dllname SOM IDL modifier
or <filestem>.obj in the LINK command.

3. Run “nmake –f <comstem>.mak” to produce the files:
<comstem>.lib <comstem>.dll

4. Run “regedit /s <comstem>.reg” to update reg.dat (\windows\reg.dat). Remember
to update the DLL location in <comstem>.reg if necessary.

5. Install the header (<comstem>.xh) and library (<comstem>.dll and <comstem>.lib)
in the required directory.

F – 4 SOMobjects Developer Toolkit Users Guide

The Generated Interface
Suppose the SOM class in <filestem>.idl is named X. The COM interface generated by
emitcom in the <comstem>.xh file then appears as follows.

#include ”<filestem>.xh”

DEFINE_GUID (CLSID_X, <class identifier>);
DEFINE_GUID (IID_X, <interface identifier>);

class XCOMIntf : IUnknown
{
 public:
 XCOMIntf(LPUNKNOWN); // constructor

 STDMETHOD(QueryInterface)(REFIID riid, void FAR* FAR* ppv);
 STDMETHOD_(ULONG, AddRef)(void);
 STDMETHOD_(ULONG, Release)(void);

 // SOM methods
 < all methods supported by X >

};

class XCOMFactory : public IClassFactory
{
 public:
 XCOMFactory();

 STDMETHOD(QueryInterface)(REFIID riid, void FAR* FAR* ppv);
 STDMETHOD_(ULONG, AddRef)(void);
 STDMETHOD_(ULONG, Release)(void);

 STDMETHOD(CreateInstance)(IUnknown FAR* punkOuter,
 REFIID riid,
 void FAR* FAR* ppv);
 STDMETHOD(LockServer)(BOOL fLock);
};

There is a C++ class named XCOMIntf that contains the three IUnknown methods and all of the
methods that the SOM class X supports (that is, any method defined in the X SOM class or any
of its ancestor classes).

There is one constructor for XCOMIntf which takes an LPUNKNOWN parameter that is the
pUnkOuter of the controlling interface in the case that XCOMIntf is part of an aggregate. If the
interface is not part of an aggregate, the constructor should be called with a NULL value.

Customizing the <comstem>.mak
The <comstem>.mak file is used to create a DLL that implements COM interface. The file is
designed to be invoked from a makefile. There are two macro parameters in <comstem>.mak
that can be set: OBJS and LIBS. The first is used to indicate any other object files that are to be
linked into the DLL. The second is used to specify any other libraries on which the DLL depends.

In addition, when the environment variable COMDEBUG is set to 1, the <comstem>.dll is
compiled with the debugger options.

Example
As an example, the standard SOM “Hello” sample has been modified to generate a COM
binding for the “Hello” class. The full text of this modified example is also among the SOM

F – 5F. emitcom: An Emitter of COM Interfaces

samples. The following is a modified IDL file for the “Hello” SOM sample program that can be
used to generate a COM interface. Note that the “Hello” sample SOM class is implemented in C
(not C++), yet the COM binding is implemented in C++.

#include <somobj.idl>
interface Hello : SOMObject
/* this is a simple class that demonstrates how to define
 * the interface to a new class of objects in SOM IDL.
 */
{
 string sayHello();
 // This method returns the string ”Hello, World!”.
#ifdef __SOMIDL__
implementation
 {
 releaseorder: sayHello;
 CLSID_Hello = ”12345678–abcd–1234–1234–123456789012”;
 IID_Hello = ”01234567–0123–cdef–0123–012345678901”;
 };
#endif
};

Next is a fragment of a main program that uses the COM interface generated by emitcom. Note
that, although this looks like using a SOM class with the C++ bindings, it actually is an example of
using a COM interface. That is, HelloCOMClass is an implementation of a COM interface that
supports both the IUnknown methods and all the methods of the “Hello” SOM class.

HelloCOMIntf *pintf;
HRESULT hr;
LPCLASSFACTORY pHelloFactory;

switch (message){
case WM_CREATE:

hr = CoGetClassObject(CLSID_Hello,
 CLSCTX_INPROC_SERVER,
 NULL,
 IID_IClassFactory,
 (void FAR* FAR*)& pHelloFactory);

if (SUCCEEDED(hr)) {
pHelloFactory–>CreateInstance(NULL,

 IID_Hello,
 (void FAR* FAR*)&pintf);

pHelloFactory–>Release();
}

else {
PostQuitMessage(2);
}

return 0;
case WM_PAINT:

hdc = BeginPaint (hwnd, &ps) ;
GetClientRect (hwnd, &rect) ;
strcpy(sBuf, pintf–>sayHello(somGetGlobalEnvironment()));
DrawText (hdc, sBuf, –1, &rect,

 DT_SINGLELINE | DT_CENTER | DT_VCENTER);
EndPaint (hwnd, &ps) ;
return 0 ;

case WM_DESTROY:
PostQuitMessage (0) ;
return 0 ;

}

F – 6 SOMobjects Developer Toolkit Users Guide

Following is an example of the main procedure for the preceding message loop.

#include <comhello.xh>

long FAR PASCAL _export WndProc (HWND, UINT, UINT, LONG) ;

int PASCAL WinMain (HANDLE hInstance, HANDLE hPrevInstance,
 LPSTR lpszCmdParam, int nCmdShow)

{
static char szAppName[] = ”Hello” ;
HWND hwnd ;
MSG msg ;

 WNDCLASS wndclass ;

 HRESULT hr;
 hr = CoInitialize(NULL);
 if (!SUCCEEDED(hr)) {

exit(1) }

if (!hPrevInstance){
 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = GetStockObject (LTGRAY_BRUSH) ;
 wndclass.lpszMenuName = NULL ;
 wndclass.lpszClassName = szAppName ;

 RegisterClass (&wndclass) ; }
hwnd = CreateWindow (szAppName, // window class name

 ”Hello Program”, // window caption
 WS_OVERLAPPEDWINDOW, // window style
 CW_USEDEFAULT, // initial x position
 CW_USEDEFAULT, // initial y position
 CW_USEDEFAULT, // initial x size
 CW_USEDEFAULT, // initial y size
 NULL, // parent window handle
 NULL, // window menu handle
 hInstance, // program instance handle
 NULL) ; // creation parameters

ShowWindow (hwnd, nCmdShow) ;
UpdateWindow (hwnd) ;

 while (GetMessage (&msg, NULL, 0, 0)) {
TranslateMessage (&msg) ;
DispatchMessage (&msg) ;}

CoUninitialize();

return msg.wParam ;
}

F – 7F. emitcom: An Emitter of COM Interfaces

Limitations
The following are known limitations at the current time:

• <filestem>.idl cannot contain more than one interface nor can it contain IDL modules.

• emitcom creates the following temporary files: <filestem>.cmm, <filestem>.cmh,
<filestem>.cmc, <filestem>.cmd, and <filestem>.reg. The emitcom emitter should not be
run in a directory where you have files with these names (when emitcom runs, it overwrites
these files). Note that <filestem> is the first parameter to emitcom.

• <comstem>.mak is for Microsoft’s nmake; <comstem>.mak expects the C++ compiler to
be named cl. This makefile uses the temporary file <comstem>.lrf.

F – 8 SOMobjects Developer Toolkit Users Guide

Glos – 1Glossary

Glossary

Note: In the following definitions, words shown in italics are terms for which separate glossary
entries are also defined.

abstract class
A class that is not designed to be instantiated, but serves as a base class for
the definition of subclasses. Regardless of whether an abstract class inherits
instance data and methods from parent classes, it will always introduce meth-
ods that must be overridden in a subclass, in order to produce a class whose
objects are semantically valid.

affinity group An array of class objects that were all registered with the SOMClassMgr
object during the dynamic loading of a class. Any class is a member of at most
one affinity group.

ancestor class
A class from which another class inherits instance methods, attributes, and
instance variables, either directly or indirectly. A direct descendant of an an-
cestor class is called a child class, derived class, or subclass. A direct ancestor
of a class is called a parent class, base class, or superclass.

aggregate type
A user-defined data type that combines basic types (such as, char, short, float,
and so on) into a more complex type (such as structs, arrays, strings, se-
quences, unions, or enums).

apply stub A procedure corresponding to a particular method that accepts as arguments:
the object on which the method is to be invoked, a pointer to a location in
memory where the method’s result should be stored, a pointer to the method’s
procedure, and the method’s arguments in the form of a va_list. The apply stub
extracts the arguments from the va_list, invokes the method with its argu-
ments, and stores its result in the specified location. Apply stubs are registered
with class objects when instance methods are defined, and are invoked using
the somApply function. Typically, implementations that override somDispatch
call somApply to invoke a method on a va_list of arguments.

attribute A specialized syntax for declaring “set” and “get” methods. Method names
corresponding to attributes always begin with “_set_” or “_get_”. An attribute
name is declared in the body of the interface statement for a class. Method
procedures for get/set methods are automatically defined by the SOM Compil-
er unless an attribute is declared as “noget/noset”. Likewise, a corresponding
instance variable is automatically defined unless an attribute is declared as
“nodata”. IDL also supports “readonly” attributes, which specify only a “get”
method. (Contrast an attribute with an instance variable.)

auxiliary class data structure
A structure provided by the SOM API to support efficient static access to
class-specific information used in dealing with SOM objects. The structure’s
name is <className>CClassData. Its first component (parentMtab) is a list of
parent-class method tables (used to support efficient parent method calls). Its
second component (instanceDataToken) is the instance token for the class
(generally used to locate the instance data introduced by method procedures
that implement methods defined by the class).

Glos – 2 SOMobjects Developer Toolkit Users Guide

base class See parent class.

behavior (of an object)
The methods that an object responds to. These methods are those either
introduced or inherited by the class of the object. See also state.

bindings Language-specific macros and procedures that make implementing and using
SOM classes more convenient. These bindings offer a convenient interface to
SOM that is tailored to a particular programming language. The SOM Compiler
generates binding files for C and C++. These binding files include an implemen-
tation template for the class and two header files, one to be included in the
class’s implementation file and the other in client programs.

BOA (basic object adapter) class
A CORBA interface (represented as an abstract class in DSOM), which defines
generic object-adapter (OA) methods that a server can use to register itself
and its objects with an ORB (object request broker). See also SOMOA (SOM
object adapter) class.

callback A user-provided procedure or method to the Event Management Framework
that gets invoked when a registered event occurs. (See also event).

casted dispatching
A form of method dispatching that uses casted method resolution; that is, it
uses a designated ancestor class of the actual target object’s class to deter-
mine what procedure to call to execute a specified method.

casted method resolution
A method resolution technique that uses a method procedure from the
method table of an ancestor of the class of an object (rather than using a
procedure from the method table of the object’s own class).

child class A class that inherits instance methods, attributes, and instance variables
directly from another class, called the parent class, base class, or superclass,
or indirectly from an ancestor class. A child class may also be called a derived
class or subclass.

class A way of categorizing objects based on their behavior (the methods they
support) and shape (memory layout). A class is a definition of a generic object.
In SOM, a class is also a special kind of object that can manufacture other
objects that all have a common shape and exhibit similar behavior. The specifi-
cation of what comprises the shape and behavior of a set of objects is referred
to as the “definition” of a class. New classes are defined in terms of existing
classes through a technique known as inheritance. See also class object.

class variable Instance data of a class object. All instance data of an object is defined
(through either introduction or inheritance) by the object’s class. Thus, class
variables are defined by metaclasses.

class data structure
A structure provided by the SOM API to support efficient static access to
class-specific information used in dealing with SOM objects. The structure’s
name is <className>ClassData. Its first component (classObject) is a pointer
to the corresponding class object. The remaining components (named after
the instance methods and instance variables) are method tokens or data
tokens, in order as specified by the class’s implementation. Data tokens are
only used to support data (public and private) introduced by classes declared
using OIDL; IDL attributes are supported with method tokens.

Glos – 3Glossary

class manager
An object that acts as a run-time registry for all SOM class objects that exist
within the current process and which assists in the dynamic loading and
unloading of class libraries. A class implementor can define a customized class
manager by subclassing SOMClassMgr class to replace the SOM-supplied
SOMClassMgrObject. This is done to augment the functionality of the default
class-management registry (for example, to coordinate the automatic quiesc-
ing and unloading of classes).

class method (Also known as factory method or constructor.) A class method is a method
that a class object responds to (as opposed to an instance method). A class
method that class <X> responds to is provided by the metaclass of class <X>.
Class methods are executed without requiring any instances of class <X> to
exist, and are frequently used to create instances of the class.

class object The run-time object representing a SOM class. In SOM, a class object can
perform the same behavior common to all objects, inherited from SOMObject.

client code (Or client program or client.) An application program, written in the program-
mer’s preferred language, which invokes methods on objects that are
instances of SOM classes. In DSOM, this could be a program that invokes a
method on a remote object.

constructor See class method.

context expression
An optional expression in a method’s IDL declaration, specifying identifiers
whose value (if any) can be used during SOM’s method resolution process
and/or by the target object as it executes the method procedure. If a context
expression is specified, then a related Context parameter is required when the
method is invoked. (This Context parameter is an implicit parameter in the IDL
specification of the method, but it is an explicit parameter of the method’s
procedure.) No SOM-supplied methods require context parameters.

CORBA The Common Object Request Broker Architecture established by the Object
Management Group. IBM’s Interface Definition Language used to describe
the interface for SOM classes is fully compliant with CORBA standards.

data token A value that identifies a specific instance variable within an object whose class
inherits the instance variable (as a result of being derived, directly or indirectly,
from the class that introduces the instance variable). An object and a data
token are passed to the SOM run-time procedure, somDataResolve, which
returns is a pointer to the specific instance variable corresponding to the data
token. (See also instance token.)

derived class See subclass and subclassing.

derived metaclass
(Or SOM-derived metaclass.) A metaclass that SOM creates automatically
(often even when the class implementor specifies an explicit metaclass) as
needed to ensure that, for any code that executes without method-resolution
error on an instance of a given class, the code will similarly execute without
method-resolution error on instances of any subclass of the given class.
SOM’s ability to derive such metaclasses is a fundamental necessity in order to
ensure binary compatibility for client programs despite any subsequent
changes in class implementations.

descriptor (Or method descriptor.) An ID representing the identifier of a method definition
or an attribute definition in the Interface Repository. The IR definition contains
information about the method’s return type and the type of its arguments.

Glos – 4 SOMobjects Developer Toolkit Users Guide

directive A message (a pre-defined character constant) received by a replica from the
Replication Framework. Indicates a potential failure situation.

dirty object A persistent object that has been modified since it was last written to persistent
storage.

dispatch-function resolution
Dispatch-function resolution is the slowest, but most flexible, of the three
method-resolution techniques SOM offers. Dispatch functions permit method
resolution to be based on arbitrary rules associated with an object’s class.
Thus, a class implementor has complete freedom in determining how methods
invoked on its instances are resolved. See also dispatch method and dynamic
dispatching.

dispatch method
A method (such as somDispatch or somClassDispatch) that is invoked (and
passed an argument list and the ID of another method) in order to determine
the appropriate method procedure to execute. The use of dispatch methods
facilitates dispatch-function resolution in SOM applications and enables meth-
od invocation on remote objects in DSOM applications. See also dynamic
dispatching.

dynamic dispatching
Method dispatching using dispatch-function resolution; the use of dynamic
method resolution at run time. See also dispatch-function resolution and
dynamic method.

Dynamic Invocation Interface (DII)
The CORBA-specified interface, implemented in DSOM, that is used to dynam-
ically build requests on remote objects. Note that DSOM applications can also
use the somDispatch method for dynamic method calls when the object is
remote. See also dispatch method.

dynamic method
A method that is not declared in the IDL interface statement for a class of
objects, but is added to the interface at run time, after which instances of the
class (or of its subclasses) will respond to the registered dynamic method.
Because dynamic methods are not declared, usage bindings for SOM classes
cannot support their use; thus, offset method resolution is not available.
Instead, name-lookup or dispatch-function method resolution must be used to
invoke dynamic methods. (There are currently no known uses of dynamic
methods by any SOM applications.) See also method and static method.

encapsulation
An object-oriented programming feature whereby the implementation details
of a class are hidden from client programs, which are only required to know the
interface of a class (the signatures of its methods and the names of its
attributes) in order to use the class’s methods and attributes.

encoder/decoder
In the Persistence Framework, a class that knows how to read/write the
persistent object format of a persistent object. Every persistent object is asso-
ciated with an Encoder/Decoder, and an encoder/decoder object is created
for each attribute and instance variable. An Encoder/Decoder is supplied by
the Persistence Framework by default, or an application can define its own.

entry class In the Emitter Framework, a class that represents some syntactic unit of an
interface definition in the IDL source file.

Glos – 5Glossary

Environment parameter
A CORBA-required parameter in all method procedures, it represents a
memory location where exception information can be returned by the object of
a method invocation. [Certain methods are exempt (when the class contains a
modifier of callstyle=oidl), to maintain upward compatibility for client programs
written using an earlier release.]

emitter Generically, a program that takes the output from one system and converts the
information into a different form. Using the Emitter Framework, selected output
from the SOM Compiler (describing each syntactic unit in an IDL source file) is
transformed and formatted according to a user-defined template. Example
emitter output, besides the implementation template and language bindings,
might include reference documentation, class browser descriptions, or “pretty”
printouts.

event The occurrence of a condition, or the beginning or ending of an activity that is of
interest to an application. Examples are elapse of a time interval, sending or
receiving of a message, and opening or closing a file. (See also event manager
and callback.)

event manager (EMan)
The chief component of the Event Management Framework that registers
interest in various events from calling modules and informs them through
callbacks when those events occur.

factory method See class method.

ID See somId.

IDL source file
A user-written .idl file, expressed using the syntax of the Interface Definition
Language (IDL), which describes the interface for a particular class (or
classes, for a module). The IDL source file is processed by the SOM Compiler
to generate the binding files specific to the programming languages of the
class implementor and the client application. (This file may also be called the
“IDL file,” the “source file,” or the “interface definition file.”)

implementation
(Or object implementation.) The specification of what instance variables
implement an object’s state and what procedures implement its methods (or
behaviors). In DSOM, a remote object’s implementation is also characterized
by its server implementation (a program).

Implementation Repository
A database used by DSOM to store the implementation definitions of DSOM
servers.

implementation statement
An optional declaration within the body of the interface definition of a class in a
SOM IDL source file, specifying information about how the class will be imple-
mented (such as, version numbers for the class, overriding of inherited meth-
ods, or type of method resolution to be supported by particular methods). This
statement is a SOM-unique statement; thus, it must be preceded by the term
“#ifdef __SOMIDL__” and followed by “#endif”. See also interface declaration.

implementation template
A template file containing stub procedures for methods that a class introduces
or overrides. The implementation template is one of the binding files generated
by the SOM Compiler when it processes the IDL source file containing class
interface declarations. The class implementor then customizes the implemen-
tation, by adding language-specific code to the method procedures.

Glos – 6 SOMobjects Developer Toolkit Users Guide

implicit method parameter
A method parameter that is not included in the IDL interface specification of a
method, but which is a parameter of the method’s procedure and which is
required when the method is invoked from a client program. Implicit parame-
ters include the required Environment parameter indicating where exception
information can be returned, as well as a Context parameter, if needed.

incremental update
A revision to an implementation template file that results from reprocessing of
the IDL source file by the SOM Compiler. The updated implementation file will
contain new stub procedures, added comments, and revised method proto-
types reflecting changes made to the method definitions in the IDL specifica-
tion. Importantly, these updates do not disturb existing code that the class
implementor has defined for the prior method procedures.

inheritance The technique of defining one class (called a subclass, derived class, or child
class) as incremental differences from another class (called the parent class,
base class, superclass, or ancestor class). From its parents, the subclass
inherits variables and methods for its instances. The subclass can also pro-
vide additional instance variables and methods. Furthermore, the subclass
can provide new procedures for implementing inherited methods. The sub-
class is then said to override the parent class’s methods. An overriding method
procedure can elect to call the parent class’s method procedure. (Such a call is
known as a parent method call.)

inheritance hierarchy
The sequential relationship from a root class to a subclass, through which the
subclass inherits instance methods, attributes, and instance variables from all
of its ancestors, either directly or indirectly. The root class of all SOM classes is
SOMObject.

instance (Or object instance or just object.) A specific object, as distinguished from a
class of objects. See also object.

instance method
A method valid for an object instance (as opposed to a class method, which is
valid for a class object). An instance method that an object responds to is
defined by its class or inherited from an ancestor class.

instance token
A data token that identifies the first instance variable among those introduced
by a given class. The somGetInstanceToken method invoked on a class object
returns that class’s instance token.

instance variables
(Or, instance data.) Variables declared for use within the method procedures
of a class. An instance variable is declared within the body of the implementa-
tion statement in a SOM IDL source file. An instance variable is “private” to the
class and should not be accessed by a client program. (Contrast an instance
variable with an attribute.)

interface The information that a client must know to use a class — namely, the names of
its attributes and the signatures of its methods. The interface is described in a
formal language (the Interface Definition Language, IDL) that is independent
of the programming language used to implement the class’s methods.

Glos – 7Glossary

interface declaration
(Or interface statement.) The statement in the IDL source file that specifies
the name of a new class and the names of its parent class(es). The “body” of
the interface declaration defines the signature of each new method and any
attribute(s) associated with the class. In SOM IDL, the body may also include
an implementation statement (where instance variables are declared or a
modifier is specified, for example to override a method).

Interface Definition Language (IDL)
The formal language (independent of any programming language) by which
the interface for a class of objects is defined in a .idl file, which the
SOM Compiler then interprets to create an implementation template file and
binding files. SOM’s Interface Definition Language is fully compliant with stan-
dards established by the Object Management Group’s Common Object Re-
quest Broker Architecture (CORBA).

Interface Repository (IR)
The database that SOM optionally creates to provide persistent storage of
objects representing the major elements of interface definitions. Creation and
maintenance of the IR is based on information supplied in the IDL source file.
The SOM IR Framework supports all interfaces described in the CORBA
standard.

Interface Repository Framework
A set of classes that provide methods whereby executing programs can
access the persistent objects of the Interface Repository to discover every-
thing known about the programming interfaces of SOM classes.

macro An alias for executing a sequence of hidden instructions; in SOM, typically the
means of executing a command known within a binding file created by the
SOM Compiler.

metaclass A class whose instances are classes. In SOM, any class descended from
SOMClass is a metaclass. The methods a class inherits from its metaclass
are sometimes called class methods (in Smalltalk) or factory methods (in
Objective-C) or constructors. See also class method.

metaclass incompatibility
A situation where a subclass does not include all of the class variables or
respond to all of the class methods of its ancestor classes. This situation can
easily arise in OOP systems that allow programmers to explicitly specify
metaclasses, but is not allowed to occur in SOM. Instead, SOM automatically
prevents this by creating and using derived metaclasses whenever necessary.

method A combination of a procedure and a name, such that many different proce-
dures can be associated with the same name. In object-oriented programming,
invoking a method on an object causes the object to execute a specific method
procedure. The process of determining which method procedure to execute
when a method is invoked on an object is called method resolution. (The
CORBA standard uses the term “operation” for method invocation). SOM sup-
ports two different kinds of methods: static methods and dynamic methods.
See also static method and dynamic method.

method descriptor See descriptor.

method ID A number representing a zero-terminated string by which SOM uniquely repre-
sents a method name. See also somId.

Glos – 8 SOMobjects Developer Toolkit Users Guide

method procedure
A function or procedure, written in an arbitrary programming language, that
implements a method of a class. A method procedure is defined by the class
implementor within the implementation template file generated by the SOM
Compiler.

method prototype
A method declaration that includes the types of the arguments. Based on
method definitions in an IDL source file, the SOM Compiler generates method
prototypes in the implementation template. A class implementor uses the
method prototype as a basis for writing the corresponding method procedure
code. The method prototype also shows all arguments and their types that are
required to invoke the method from a client program.

method resolution
The process of selecting a particular method procedure, given a method name
and an object instance. The process results in selecting the particular function/
procedure that implements the abstract method in a way appropriate for the
designated object. SOM supports a variety of method-resolution mechanisms,
including offset method resolution, name-lookup resolution, and dispatch-
function resolution.

method table A table of pointers to the method procedures that implement the methods that
an object supports. See also method token.

method token A value that identifies a specific method introduced by a class. A method token
is used during method resolution to locate the method procedure that imple-
ments the identified method. The two basic method-resolution procedures are
somResolve (which takes as arguments an object and a method token, and
returns a pointer to a procedure that implements the identified method on the
given object) and somClassResolve (which takes as arguments a class and a
method token, and returns a pointer to a procedure that implements the identi-
fied method on an instance of the given class).

modifier Any of a set of statements that control how a class, an attribute, or a method
will be implemented. Modifiers can be defined in the implementation statement
of a SOM IDL source file. The implementation statement is a SOM-unique
extension of the CORBA specification. [User-defined modifiers can also be
specified for use by user-written emitters or to store information in the Interface
Repository, which can then be accessed via methods provided by the Interface
Repository Framework.]

module The organizational structure required within an IDL source file that contains
interface declarations for two (or more) classes that are not a class–metaclass
pair. Such interfaces must be grouped within a module declaration.

multiple inheritance
The situation in which a class is derived from (and inherits interface and
implementation from) multiple parent classes.

name-lookup method resolution
Similar to the method resolution techniques employed by Objective-C and
Smalltalk. It is significantly slower than offset resolution. Name-lookup resolu-
tion, unlike offset resolution, can be used when the name of the method to be
invoked is not known until run time, or the method is added to the class
interface at run time, or the name of the class introducing the method is not
known until run time.

naming scope See scope.

Glos – 9Glossary

object (Or object instance or just instance.) An entity that has state (its data values)
and behavior (its methods). An object is one of the elements of data and
function that programs create, manipulate, pass as arguments, and so forth.
An object is a way to encapsulate state and behavior. Encapsulation permits
many aspects of the implementation of an object to change without affecting
client programs that depend on the object’s behavior. In SOM, objects are
created by other objects called classes.

object adapter (OA)
A CORBA term denoting the primary interface a server implementation uses
to access ORB functions; in particular, it defines the mechanisms that a server
uses to interact with DSOM, and vice versa. This includes server activation/
deactivation, dispatching of methods, and authentication of the principal
making a call. The basic object adapter described by CORBA is defined by the
BOA (basic object adapter) abstract class; DSOM’s primary object adapter
implementation is provided by the SOMOA (SOM Object Adapter) class.

object definition See class.

object implementation See implementation.

object instance See instance and object.

object reference
A CORBA term denoting the information needed to reliably identify a particular
object. This concept is implemented in DSOM with a proxy object in a client
process, or a SOMDObject in a server process. See also proxy object and
SOMDObject.

object request broker (ORB) See ORB.

offset method resolution
The default mechanism for performing method resolution in SOM, because it
is the fastest (nearly as fast as an ordinary procedure call). It is roughly
equivalent to the C++ “virtual function” concept. Using offset method resolution
requires that the name of the method to be invoked must be known at compile
time, the name of the class that introduces the method must be known at
compile time (although not necessarily by the programmer), and the method to
be invoked must be a static method.

OIDL The original language used for declaring SOM classes. The acronym stands
for Object Interface Definition Language. OIDL is still supported by SOM
release 2, but it does not include the ability to specify multiple inheritance
classes.

one-copy serializable
The consistency property of the Replication Framework which states that the
concurrent execution of methods on a replicated object is equivalent to the
serial execution of those same methods on a nonreplicated object.

OOP An acronym for “object-oriented programming.”

operation See method.

operation logging
In the Replication Framework, a technique for maintaining consistency among
replicas of a replicated object, whereby the execution of a method that up-
dates the object is repeated at the site of each replica.

Glos – 10 SOMobjects Developer Toolkit Users Guide

ORB (object request broker)
A CORBA term designating the means by which objects transparently make
requests (that is, invoke methods) and receive responses from objects, wheth-
er they are local or remote. With SOMobjects Developer Toolkit and Runtimes,
this functionality is implemented in the DSOM Framework. Thus, the DSOM
(Distributed SOM) system is an ORB. See also BOA (basic object adapter)
class and SOMOA (SOM object adapter) class.

override (Or overriding method.) The technique by which a class replaces (redefines)
the implementation of a method that it inherits from one of its parent classes.
An overriding method can elect to call the parent class’s method procedure as
part of its own implementation. (Such a call is known as a parent method call.)

parent class A class from which another class inherits instance methods, attributes, and
instance variables. A parent class is sometimes called a base class or super-
class.

parent method call
A technique where an overriding method calls the method procedure of its
parent class as part of its own implementation.

persistent object
An object whose state can be preserved beyond the termination of the pro-
cess that created it. Typically, such objects are stored in files.

polymorphism
An object-oriented programming feature that may take on different meanings
in different systems. Under various definitions of polymorphism, (a) a method
or procedure call can be executed using arguments of a variety of types, or
(b) the same variable can assume values of different types at different times, or
(c) a method name can denote more than one method procedure. The SOM
system reflects the third definition (for example, when a SOM class overrides a
parent class definition of a method to change its behavior). The term literally
means “having many forms.”

principal The user on whose behalf a particular (remote) method call is being per-
formed.

procedure A small section of code that executes a limited, well-understood task when
called from another program. In SOM, a method procedure is often referred to
as a procedure. See also method procedure.

process A series of instructions (a program or part of a program) that a computer
executes in a multitasking environment.

proxy object In DSOM, a SOM object in the client’s address space that represents a remote
object. The proxy object has the same interface as the remote object, but each
method invoked on the proxy is overridden by a dispatch method that for-
wards the invocation request to the remote object. Under DSOM, a proxy ob-
ject is created dynamically and automatically in the client whenever a remote
method returns a pointer to an object that happens to be remote.

readers and writers
In the Replication Framework, different processes can access the same repli-
cated object in different modes. A “reader” is a process that does not intend to
update the object, but wants to continually watch the object as other processes
update it. A “writer” is a process that wants to update the object, as well as con-
tinually watch the updates performed by others.

receiver See target object.

Glos – 11Glossary

redispatch stub
A procedure, corresponding to a particular method, which has the same signa-
ture as the method’s procedure but which invokes somDispatch to dispatch
the method. The somOverrideMtab method can be used to replace the proce-
dure pointers in a class’s method table with the corresponding redispatch
stubs. This is done when overriding somDispatch to customize method resolu-
tion so that all static method invocations will be routed through somDispatch
for selection of an appropriate method procedure. (Dynamic methods have no
entries in the method table, so they cannot be supported with redispatch
functionality.)

reference data
Application-specific data that a server uses to identify or describe an object in
DSOM. The data, represented by a sequence of up to 1024 bytes, is registered
with DSOM when a server creates an object reference. A server can later ask
DSOM to return the reference data associated with an object reference. See
also object reference.

replica When an object is replicated among a set of processes (using the Replication
Framework), each process is said to have a replica of the object. From the view
point of any application model, the replicas together represent a single object.

replicated object
An object for which replicas (copies) exist. See replica.

run-time environment
The data structures, objects, and global variables that are created, maintained,
and used by the functions, procedures, and methods in the SOM run-time
library.

scope (Or naming scope.) That portion of a program within which an identifier name
has “visibility” and denotes a unique variable. In SOM, an IDL source file forms
a scope. An identifier can only be defined once within a scope; identifiers can
be redefined within a nested scope. In a .idl file, modules, interface statements,
structures, unions, methods, and exceptions form nested scopes.

serializable See one-copy serializable.

server (Or server implementation.) In DSOM, a process, running in a distributed
environment, that executes the implementation of an object. DSOM provides a
default server implementation that can dynamically load SOM class libraries,
create SOM objects, and make those objects accessible to clients. Developers
can also write application-specific servers for use with DSOM.

server object In DSOM, every server has an object that defines methods for managing
objects in that server. These methods include object creation, object destruc-
tion, and maintaining mappings between object references and the objects
they reference. A server object must be an instance of the class SOMDServer
(or one of its subclasses). See also object reference and SOMDObject.

shadowing In the Emitter Framework, a technique that is required when any of the entry
classes are subclassed. Shadowing causes instances of the new subclass(es)
(rather than instances of the original entry classes) to be used as input for
building the object graph, without requiring a recompile of emitter framework
code. Shadowing is accomplished by using the macro SOM_SubstituteClass.

signature The collection of types associated with a method (the type of its return value, if
any, as well as the number, order, and type of each of its arguments).

Glos – 12 SOMobjects Developer Toolkit Users Guide

sister class object
A duplicate of a class object that is created in order to save a copy of the class’s
original method table before replacing the method table to customize method
resolution. The sister class object is created so that some original method
procedures can be called by the replacement method procedures.

Sockets class A class that provides a common communications interface to Distributed
SOM, the Replication Framework, and the Event Management Framework.
The Sockets class provides the base interfaces (patterned after TCP/IP sock-
ets); the subclasses TCPIPSockets, NBSockets, and IPXSockets provide actu-
al implementations for TCP/IP, Netbios, and Netware IPX/SPX, respectively.

SOM Compiler
A tool provided by the SOM Toolkit that takes as input the interface definition
file for a class (the .idl file) and produces a set of binding files that make it more
convenient to implement and use SOM classes.

SOMClass One of the three primitive class objects of the SOM run-time environment.
SOMClass is the root (meta)class from which all subsequent metaclasses are
derived. SOMClass defines the essential behavior common to all SOM
class objects.

SOMClassMgr
One of the three primitive class objects of the SOM run-time environment.
During SOM initialization, a single instance (object) of SOMClassMgr is
created, called SOMClassMgrObject. This object maintains a directory of all
SOM classes that exist within the current process, and it assists with dynamic
loading and unloading of class libraries.

SOM-derived metaclass See derived metaclass.

SOMDObject The class that implements the notion of a CORBA “object reference” in DSOM.
An instance of SOMDObject contains information about an object’s server
implementation and interface, as well as a user-supplied identifier.

somId A pointer to a number that uniquely represents a zero-terminated string. Such
pointers are declared as type somId. In SOM, somId’s are used to represent
method names, class names, and so forth.

SOMObject One of the three primitive class objects of the SOM run-time environment.
SOMObject is the root class for all SOM (sub)classes. SOMObject defines the
essential behavior common to all SOM objects.

SOMOA (SOM object adapter) class
In DSOM, a class that dispatches methods on a server’s objects, using the
SOM Compiler and run-time support. The SOMOA class implements methods
defined in the abstract BOA class (its base class). See also BOA class.

somSelf Within method procedures in the implementation file for a class, a parameter
pointing to the target object that is an instance of the class being implement-
ed. It is local to the method procedure.

somThis Within method procedures, a local variable that points to a data structure
containing the instance variables introduced by the class. If no instance
variables are specified in the SOM IDL source file, then the somThis assign-
ment statement is commented out by the SOM Compiler.

state (of an object)
The data (attributes, instance variables and their values) associated with an
object. See also behavior.

static method Any method that can be accessed through offset method resolution. Any
method declared in the IDL specification of a class is a static method. See also
method and dynamic method.

Glos – 13Glossary

stub procedures
Method procedures in the implementation template generated by the SOM
Compiler. They are procedures whose bodies are largely vacuous, to be filled
in by the implementor.

subclass A class that inherits instance methods, attributes, and instance variables
directly from another class, called the parent class, base class, superclass, or
indirectly from an ancestor class. A subclass may also be called a child class or
derived class.

subclassing The process whereby a new class, as it is created (or derived), inherits
instance methods, attributes, and instance variables from one or more pre-
viously defined ancestor classes. The immediate parent class(es) of a new
class must be specified in the class’s interface declaration. See also inheri-
tance.

superclass See parent class.

symbol In the Emitter Framework, any of a (standard or user-defined) set of names
(such as, className) that are used as placeholders when building a text
template to pattern the desired emitter output. When a template is emitted, the
symbols are replaced with their corresponding values from the emitter’s sym-
bol table. Other symbols (such as, classSN) have values that are used by
section-emitting methods to identify major sections of the template (which are
correspondingly labeled as “classS” or by a user-defined name).

target object (Or receiver.) The object responding to a method call. The target object is
always the first formal parameter of a method procedure. For SOM’s C-lan-
guage bindings, the target object is the first argument provided to the method
invocation macro, _methodName.

usage bindings
The language-specific binding files for a class that are generated by the SOM
Compiler for inclusion in client programs using the class.

value logging In the Replication Framework, a technique for maintaining consistency among
replicas of a replicated object, whereby the new value of the object is distrib-
uted after the execution of a method that updates the object.

view–data paradigm
A Replication Framework construct similar to the Model-View-Controller para-
digm in SmallTalk. The “view” object contains only presentation-specific in-
formation, while the “data” object contains the state of the application. The
“view” and “data” are connected by means of an “observation” protocol that lets
the “view” be notified whenever the “data” changes.

writers See readers and writers.

Glos – 14 SOMobjects Developer Toolkit Users Guide

Index – 1SOMobjects Developer Toolkit Users Guide

�����

�
abstract modifier, 4–19
activate_impl_failed method, 6–34
Activation policies, DSOM servers, 6–69
add_arg method, 6–78
add_class_to_impldef method, 6–58
add_impldef method, 6–57
add_item method, 6–77
‘addstar’ compiler option, 4–39
After methods, 10–3
Aggregate type, 7–11
alignment method, 7–13
Ancestor class, 3–26
Ancestor initialization with somDefault method, 5–26
‘any’ IDL type, 4–5
Application-assigned persistent IDs, 8–27
ARG_IN flag value, 6–76
ARG_INOUT flag value, 6–76
ARG_OUT flag value, 6–76
Array declarations in IDL, 4–9
ASCII persistent storage, 8–30
Atomic type, 7–11
AttributeDef class, 7–6
Attributes

“set” and “get” methods for, 3–12
accessing from client programs, 3–12
modifier statements for, 4–21
private attributes, 4–29
readonly attributes, 3–12
syntax for declarations, 4–14
tutorial example, 2–13, 2–15

Attributes vs instance variables, 2–15

�
Base class, 5–4
Base proxy classes, 6–83
baseproxyclass modifier, 4–19, 6–84
Basic Object Adapter, 6–70
BECOME_STAND_ALONE directive, 9–10, 9–21
Before methods, 10–3
Binary compatibility of SOM classes, 1–3
Binary persistent storage, 8–30
Binding files for client programs, 3–1
Binding files for SOM classes, 1–3, 1–5, 2–6, 4–1, 4–33

porting to another platform, 4–36
BOA class, 6–66, 6–70
Boolean IDL type, 4–5
Bounds exception, 7–12

	
C++ classes converted to SOM classes, 5–21

METHOD_MACROS for, 5–21
C/C++ binding files for SOM classes, 1–5, 4–2, 4–33,

4–34
limitations of, 4–36

C/C++ usage bindings, 3–1
Callback procedures/methods, 12–2
caller_owns_parameters modifier, 4–22, 6–28
caller_owns_result modifier, 4–22, 6–28
callstyle = oidl modifier, 3–9, 3–10, 4–19
Casted method resolution, 3–11
change_id method, 6–36
char IDL type, 4–5
Character output

customizing, 5–51
from SOM methods/functions, 3–25

Child class, 5–4
Child object, 8–15

handling in an Encoder/Decoder, 8–44
Class categories

base class, 5–4
child class, 5–4
metaclass, 5–2
parent class, 5–4
parent class vs metaclass, 5–4
root class, 5–2
subclass, 5–4

Class data structure, 3–11, 5–13
Class libraries

See also “Libraries”
creating, 5–40
guidelines for, 5–40
loading, 3–22
packaging, for DSOM, 6–49
provided by SOMobjects Toolkit, 10–1

Class name, getting, 3–26, 3–27
Class names as types, 4–10
Class objects, 3–20, 5–1

See also “SOM classes, implementing,” “SOM classes,
usage in client programs,” “SOM classes, custom-
izing loading/unloading”

creating from a client program, 3–20
customizing initialization, 5–49
getting information about, methods for, 3–25, 3–27
getting the class of an object, 3–20
size of, getting, 3–26
using, 3–20

Class variables, 4–27
classinit modifier, 4–20
_<className> macro, 3–22
<className>_Class_Source symbol, 5–17
<className>ClassData.classObject, 3–22
<className>_MajorVersion constant, 3–21
<className>MethodDebug macro, 3–28
<className>_<methodName> macro, 3–9

Index – 2 SOMobjects Developer Toolkit Users Guide

<className>_MinorVersion constant, 3–21
<className>New macro, 2–9, 3–5, 3–8

invalid as first C method argument, 3–9
<className>NewClass procedure, 5–49

for creating class objects, in C/C++, 3–5, 3–20
<className>New_<initializerName> macro, 5–31
<className>Renew macro, 3–5
‘cleanipc’ command, 6–62, 6–1
Client events, 12–2
Client programming in DSOM, 6–17

client initialization, 6–18
client termination, 6–18
compiling and linking, 6–12, 6–30
creating objects

arbitrary server, 6–19
specific server, 6–20
using metaclasses, 6–23

creating remote objects, 6–19
destroying objects

via a proxy, 6–22
via a server object, 6–23
via DSOM object manager, 6–22

DSOM object manager, 6–17
finding existing objects, 6–25
finding servers, 6–21
memory allocation and ownership, 6–27
memory management, 6–27
method invocation, 6–26

failure, 6–88
object lifecycle service, 6–17, 6–68
object references, 6–24, 6–27
proxy objects, 6–20
server objects, 6–20
‘stub’ DLLs in, 6–81

Client programs, 3–1
See also “SOM classes, usage in client programs”

and “Client programming in DSOM”
compiling and linking, 2–11, 3–23
creating objects in, 3–5, 5–31
executing (Tutorial example), 2–12
header files, 3–1, 4–1
initializer methods in, 5–31
method invocations, 2–9, 4–14
testing and debugging, 3–28

Collection classes, 11–1
abstract classes, 11–3
choosing the best class, 11–7
class inheritance vs element inheritance, 11–2
class list by category, 11–13
inheritance hierarchy, 11–12
IsSame vs IsEqual comparisons, 11–1
iterator classes, 11–9
main collection classes, 11–4

somf_TDeque class, 11–6
somf_TDictionary class, 11–5
somf_THashTable class, 11–4
somf_TPrimitiveLinkedList class, 11–6
somf_TPriorityQueue class, 11–7

Collection classes (cont’d.)
main collection classes (cont’d.)

somf_TSet class, 11–5
somf_TSortedSequence class, 11–6

mixin classes, 11–10
naming conventions, 11–2
object-initializer methods, 11–2
overview, 11–1
supporting classes, 11–11

COM interfaces, ‘emitcom’ emitter for, F–1
Comments in IDL files, 2–7

syntax of, 4–28
Compaction, of persistent objects, 8–37
Compiler command and options. See “SOM Compiler”
Compiling and linking, 2–11, 3–23, 5–23, 5–44

DSOM client programs, 6–12, 6–30
DSOM servers, 6–43

Computer-supported cooperative work, 9–1
CONNECTION_REESTABLISHED directive, 9–10
const modifier, 4–22
Constant declarations in IDL, 4–4, 4–13
ConstantDef class, 7–6
Constructed IDL types

enum, 4–5
struct, 4–5
union, 4–7

Contained class, 7–6
Container class, 7–6
Context class, 6–65
Context expression in method declarations, 3–9, 3–10,

4–16
Context parameter in method calls, 3–9, 3–10

copy method, 7–13
CORBA compliance of SOM system, 1–4, 4–3, 6–64, 7–1
create method, 6–35, 6–38, 6–67
create_constant method, 6–35, 6–38, 6–41
create_list method, 6–77
create_operation_list method, 6–77
create_request method, 6–78
create_request_args method, 6–78
create_SOM_ref method, 6–36
Creating objects in client programs, 3–5
Customer support procedures, A–1
Customization, of the Persistence Framework, 8–17,

8–39, D–1
Customization features of SOM, 5–48

character output, 5–51
class loading and unloading, 5–49

See also “SOM classes, customizing loading/
unloading”

class objects initialized/uninitialized, 5–39
See also “SOM objects, customizing initialization/

uninitialization”
error handling, 5–52
memory management, 5–48

See also “Memory management customization
features”

method resolution, 5–14
objects initialized/uninitialized, 5–25

See also “SOM objects, customizing initialization/
uninitialization”

Index – 3SOMobjects Developer Toolkit Users Guide

deactivate_impl method, 6–35
Debugging, 3–28

client programs, 3–28
macros and global variables for, 3–28
statements in stub procedures, 5–18
with SOMMTraced metaclass, 10–9

def emitter, 4–35, 4–36
Deinitialization of objects, 5–32
delete operator, use after ‘new’ operator, in C++, 3–7,

5–32
delete_impldef method, 6–57
Deque class (somf_TDeque), 11–6
Derived metaclasses, 5–7
descriptor (method descriptor), 6–14, 6–49
Dictionary class (somf_TDictionary), 11–5
DII. See “Dynamic Invocation Interface (DII)”
Direct-call procedures, 5–15
directinitclasses modifier, 4–20, 5–22, 5–25, 5–29
Directives (in replication), 9–10
Dispatch methods, 3–19
Dispatch-function method resolution, 3–19, 5–14, 5–15
Distributed computing, 9–1
Distributed SOM (DSOM), 6–1

advanced topics, 6–72
analyzing problem conditions, 6–87
base proxy classes, customizing, 6–83
checklist for DSOM setup, 6–86
classes, registering, 6–13
‘cleanipc’ command, 6–62, 6–1
client programming, 6–17

See also “Client Programming in DSOM”
compiling clients, 6–12
configuring applications, 6–12, 6–14, 6–50

See also “DSOM applications, configuring”
DSOM daemon (somdd), 6–14, 6–63
‘dsom’ server manager utility, 6–59
Dynamic Invocation Interface, 6–75, 6–79
EMan used with, 6–72

potential deadlocks of, 6–73
environment variables, 6–12, 6–50, 6–85

See also “Environment variables”
error codes, A–6
error reporting, 6–85
error-message form, 6–85
existing objects, finding, 6–11
existing SOM libraries, using, 6–12
features of, 6–1
global variables. See “Global variables”
header files, 6–9, 6–30, 6–43
implementation registration, 6–14, 6–52
Implementation Repository, 6–50, 6–57, 6–63, 6–69

updating client/server copies, 6–58
implementing classes for use with, 6–44

See also “DSOM classes, implementing”
introduction to, 1–5

Distributed SOM (DSOM) (cont’d.)
library files, 6–30, 6–43, 6–49
memory allocation and ownership, 6–27
memory management by client, 6–27

CORBA policy of, 6–29
of method parameters, 6–28
of object-owned parameters, 6–29

moving objects, 6–90
multi-threaded applications, customizing, 5–53, 5–55
object references. See “Object references in DSOM”
peer processes, 6–72
pregimpl utility, 6–52, 6–56

interactive interface, 6–56
proxy classes, constructing, 6–67
proxy classes (default base classes), 6–83
proxy objects, 6–10, 6–20, 6–66
regimpl utility, 6–14, 6–52

command line interface, 6–55
interactive interface, 6–52

run-time components, 6–16
running applications, 6–14, 6–63
server objects, 6–11, 6–20, 6–32, 6–37
server programming, 6–31

See also “Server programming in DSOM”
server proxy, 6–11
servers, 6–10, 6–39, 6–51, 6–59

See also “Servers”
activation policies, 6–69
somdsvr command syntax, 6–63

Sockets class use, 6–84
Sockets class, implementing, E–1
SOM object adapter (SOMOA class), 6–32, 6–34, 6–44,

6–67, 6–70
‘somdchk’ program, 6–60
‘somdclean’ command, 6–62, 6–1
troubleshooting hints, 6–86
tutorial example, 6–4
user-supplied proxies, 6–81
using SOM classes, 6–44
vs Replication Framework, 6–2
when to use, 6–2
workgroup DSOM, 6–1
workstation DSOM, 6–1
wregimpl utility, 6–52, 6–56

interactive interface, 6–56
DLL loading, 3–22
dllname modifier, 3–22, 4–20
double IDL type, 4–4
DSOM. See “Distributed SOM (DSOM)”
DSOM applications, configuring, 6–14, 6–50

‘cleanipc’ command, 6–62, 6–1
‘dsom’ server manager utility, 6–59
environment variables, 6–50
moving servers, 6–59
pregimpl registration utility, 6–52, 6–56

interactive interface, 6–56
regimpl registration utility, 6–52

command line interface, 6–55
interactive interface, 6–52

registering class interfaces, 6–51

Index – 4 SOMobjects Developer Toolkit Users Guide

DSOM applications, configuring (cont’d.)
server implementation definitions, 6–51
‘somdchk’ program, 6–60
‘somdclean’ command, 6–62, 6–1
updating Implementation Repository, 6–57, 6–58
wregimpl registration utility, 6–52, 6–56

interactive interface, 6–56
DSOM classes, implementing, 6–44

constraints, 6–45
generic server role, 6–44
non-SOM classes, 6–46
SOM object adapter (SOMOA) role, 6–44
SOMDServer role, 6–44
subclassing SOMDServer, 6–46
using DLLs, 6–49

DSOM daemon (somdd), 6–14, 6–50, 6–63
DSOM method arguments

‘any’ values, 6–89
(char *) values, 6–89
pointer types, 6–71, 6–88
strings, inout, 6–45
structures, packing/optimizing, 6–46
supported and unsupported types, 6–45

DSOM method invocation, failure, 6–88
‘dsom’ server manager utility, 6–59
–DSOM_TestOn compile option, 3–29
duplicate method, 6–68
Dynamic class loading, 3–22
Dynamic dispatching, 3–19
Dynamic Invocation Interface (DII), 6–64, 6–68, 6–75,

6–79
Dynamic methods, 5–15
Dynamically linked library (DLL)

creating, 5–40
customizing loading, 5–49
guidelines for, 5–40
on OS/2, 5–41

�
EMan event manager, 12–1

See also “Event Management Framework”
Embedded objects, 8–14

handling in an Encoder/Decoder, 8–44
‘emitcom’ program, F–1
Emitter Framework

See also the “Emitter Framework Reference Manual”
introduction to, 1–6

Emitters
def emitter, 4–35, 4–36
for C binding files (c, h, ih), 4–33
for C++ binding files (xc, xh, xih), 4–34
ir emitter, 4–36, 7–2
pdl emitter, 4–35

Encoder/Decoders, 8–40
default, 8–35, 8–41
embedded objects, handling, 8–14, 8–44

Encoder/Decoders (cont’d.)
example, 8–45
initializing class objects, 8–48
methods for, D–5
writing, 8–42, D–4

enum IDL type, 4–5
tutorial example, 2–22

Environment structure, 3–9, 3–31

Environment variables
as SOM Compiler controls, 4–36
DSOM, 6–12, 6–50, 6–85
DSOM ‘somdchk’ program for, 6–60
HOSTNAME environment variable, 6–13, 6–42, 6–50
in persistent IDs, 8–24
Persistence Framework, 8–24, 8–34
Replication Framework, 9–21
SMADDSTAR environment variable, 4–38
SMEMIT environment variable, 4–36
SMINCLUDE environment variable, 4–37
SMKNOWNEXTS environment variable, 4–38
SMTMP environment variable, 4–37
SOMDDEBUG environment variable, 6–51, 6–85
SOMDDIR environment variable, 6–13, 6–50
SOMDMESSAGELOG environment variable, 6–51, 6–85
SOMDNUMTHREADS environment variable, 6–51
SOMDPORT environment variable, 6–50
SOMDTIMEOUT environment variable, 6–51
SOMIR environment variable, 4–38, 6–13, 6–50, 7–2
SOMM_TRACED environment variable, 10–9
SOMSOCKETS environment variable, 6–13, 6–50, 6–84
USER environment variable, 6–13, 6–42, 6–50

equal method, 7–12

Error codes, A–1
DSOM, A–6
Metaclass Framework, A–15
Persistence Framework, A–9
Replication Framework, 9–22, A–13
SOM kernel, A–4

Error handling, 3–29
customizing, 5–52
Environment variable, 3–31
exception values, setting/getting, 3–32
exceptions, 3–30
in the Persistence Framework, 8–51
standard exceptions, 3–31

Error reporting to IBM, A–1

Event classes of Event Management Framework, 12–2

Event Management Framework, 12–1
advanced topics, 12–7
basics of, 12–1
callback procedures/methods, 12–2
client events, generating, 12–4
‘ConnectionNumber’ macro, 12–7
EMan DLL, 12–9
EMan parameters, 12–3
event classes, 12–2

Index – 5SOMobjects Developer Toolkit Users Guide

Event Management Framework (cont’d.)
event types

client events, 12–2
sink events, 12–2
timer events, 12–1
work procedure events, 12–2

‘eventmsk.h’ include file, 12–3
extending EMan, 12–7
interactive applications, 12–6
limitations, 12–9
message queues, 12–2
MOTIF applications, 12–7
multi-threaded applications, customizing, 5–53
processing events, 12–5
RegData object, 12–3
registering for events, 12–3
Sockets class, implementing, E–1
SOMEEMan class, 12–1
SOMEEMRegisterData class, 12–3
SOMSOCKETS environment variable, 12–9
thread safety, 12–7
tips on using EMan, 12–8
unregistering for events, 12–4

exception IDL declarations, 4–10, 4–13
table of standard CORBA exceptions, 4–12

ExceptionDef class, 7–7
exception_free function, 3–33
exception_id function, 3–33
Exceptions, 3–30

setting/getting values, 3–32
exception_value function, 3–33
execute_next_request method, 6–34, 6–70
execute_request_loop method, 6–34, 6–70

�
filestem modifier, 4–20
find_all_impldefs method, 6–58
find_impldef method, 6–33, 6–58
find_impldef_by_alias method, 6–58
find_impldef_by_class method, 6–58
find_impldef_classes method, 6–58
float IDL type, 4–4
Floating point IDL types

double, 4–4
float, 4–4

Frameworks
as SOMobjects Toolkit class libraries, 1–5
Distributed SOM (DSOM), 1–5, 6–1
Emitter Framework, 1–6
Event Management Framework, 12–7
Interface Repository Framework, 1–5, 7–1
Metaclass Framework, 1–6, 10–1
Persistence Framework, 1–6, 8–1, D–1
Replication Framework, 1–6, 9–1

free method, 6–77, 7–13
free_memory method, 6–77

fsagm.idl file, 8–30
fsgm.idl file, 8–30
functionprefix modifier, 4–20, 4–30, 4–39, 5–21
Functions for generating output, 3–25

Garbage collection, of persistent objects, 8–37
Generating output

customization of, 5–51
from SOM methods/functions, 3–25

get<attribute> method, 3–12, 4–16
tutorial example, 2–13

get_count method, 6–77
get_id method, 6–36
get_implementation method, 6–21
get_item method, 6–77
get_principal method, 6–42
get_response method, 6–79
get_SOM_object method, 6–37
Global variables

SOM_AssertLevel, 3–28
SOMCalloc, 5–48
SOMCreateMutexSem, 5–53
SOMD_DebugFlag, 6–85
SOMDeleteModule, 5–50
SOMDestroyMutexSem, 5–53
SOMD_ImplDefObject, 6–32, 6–33
SOMD_ImplRepObject, 6–33, 6–57
SOMD_ObjectMgr, 6–9, 6–15, 6–18
SOMD_ORBObject, 6–65
SOMD_ServerObject, 6–34
SOMD_SOMOAObject, 6–34
SOMEndThread, 5–55
SOMError, 3–29, 5–52
SOMFree, 5–48
SOMGetThreadHandle, 5–55
SOMGetThreadId, 5–53
SOMKillThread, 5–55
SOMLoadModule, 5–49
SOMMalloc, 5–48
SOMOutCharRoutine, 3–25, 3–28, 5–51
SOMRealloc, 5–48
SOMReleaseMutexSem, 5–53
SOMRequestMutexSem, 5–53
SOMStartThread, 5–55
SOM_TraceLevel, 3–28, 5–19
SOM_WarnLevel, 3–28

Grammar of SOM IDL syntax, C–1
Graph inheritance, 9–18
Groupware, 9–1

�
Hash table class (somf_THashTable), 11–4
Header files for DSOM, 6–30, 6–43
Header files for SOM classes, 4–1, 4–4, 5–17
HOSTNAME environment variable, 6–13, 6–42, 6–50

Index – 6 SOMobjects Developer Toolkit Users Guide

�

I/O group format, 8–39

I/O Group Managers, 8–15, 8–17, 8–21, 8–30, D–1
methods, D–13
OS/2 INI example, D–34
template implementation, D–9, D–18
writing, D–7, D–12

I/O group name, 8–15

I/O group offset, 8–15

I/O groups, 8–15, 8–16, 8–26, 8–30
adding an object, 8–34
file storage of, 8–17, 8–21, 8–26, D–14
offset, 8–21
path, 8–21

ID Assigner, 8–16, 8–24, 8–26

ID manipulation, somId’s, 3–36

Identifier names, naming scope restrictions, 4–30

IDL. See “Interface Definition Language”, “SOM IDL
syntax”

#ifdef __SOMIDL__ statement, 2–18

impctx modifier, 4–22

impl_is_ready method, 6–34

Implementation of objects, 6–69

Implementation Repository, 6–50, 6–51, 6–57, 6–63,
6–69

pregimpl utility, 6–52, 6–56
regimpl utility, 6–14, 6–52
updating client/server copies, 6–58
wregimpl utility, 6–52, 6–56

Implementation statement, 2–15, 2–17
syntax of, 4–17

Implementation templates, 1–5, 4–1
accessing internal instance variables, 5–20
bindings, 1–5, 4–1, 4–33
<className>MethodDebug procedure in, 5–18
customizing implementations, 5–48

See also “Customization features of SOM”
customizing the stub procedures, 2–9, 2–21, 5–19
#define <className>_Class_Source statement, 5–17
#include header file, 4–1, 4–4, 5–17
incremental updates of, 2–23, 4–33, 5–16, 5–21
method procedures, 2–8, 5–17
parent-method calls in, 5–20
somSelf usage, 5–18
somThis usage, 5–18
syntax of SOM Compiler output, 5–17
syntax of stub procedures for initializer methods, 2–20,

5–29
syntax of stub procedures for methods, 2–7, 5–17

ImplementationDef class, 6–21, 6–31, 6–51, 6–57, 6–69
attributes of, 6–51

Implementing SOM classes. See “SOM classes,
implementing”

Implicit method parameter, 3–9

ImplRepository class, 6–57, 6–69
‘in’ and ‘out’ parameters, 4–15
#include directive in implementation templates, 4–1, 5–17

IDL syntax of, 4–4
Incremental updates of implementation template file,

4–33, 5–16, 5–21
indirect modifier, 4–22
Inheritance, 5–4, 5–10
Inherited methods, overriding, 2–17
init modifier, 4–23, 5–25

tutorial example, 2–20
Initialization

of DSOM client programs, 6–18
of Persistence Framework, 8–18
of Replication Framework, 9–4
of SOM run-time environment, 5–1

Initializer methods, 5–25
declaring new initializers, 5–27
implementing initializers in .idl file, 5–29
non-default initializer calls, 5–30
somDefaultInit method, 5–25
tutorial example, 2–20
use in client programs, 5–31

Instance variable declarators, syntax of, 4–27
Instance variables, accessing in method procedures,

5–20
Instance variables vs attributes, 2–15
Integral IDL types, 4–4

long, 4–4
short, 4–4
unsigned short or long, 4–4

Interface Definition Language, 1–3
See also “SOM IDL syntax”
SOM classes defined in, 4–1, 4–3
syntax of IDL specifications, 4–3

Interface names as types, 4–10
Interface Repository, 1–5, 6–13, 6–14, 6–49, 7–1

accessing objects in, 7–8
classes, 7–6
emitter, 7–2
files, 7–3
memory management in, 7–10
objects, 7–6
‘private’ information in, 7–5

Interface Repository Framework, 7–1
environment variables, 7–2, 7–3
introduction to, 1–5

Interface statement
declarations in, 2–22
defining, 2–7
multiple interfaces defined, 4–29
syntax of, 4–12

Interface vs implementation, 4–1
InterfaceDef class, 7–6
Interprocess communication resources, freeing after

DSOM on AIX, 6–1, 6–62

Index – 7SOMobjects Developer Toolkit Users Guide

invoke method, 6–78
Invoking methods, 3–8

from C client programs, 3–8
from C++ client programs, 3–10
from other client programs, 3–11
initializer methods, 5–31

IPXSockets class, E–1
ir emitter, 4–36, 7–2
is_constant method, 6–36
is_nil method, 6–68
is_SOM_ref method, 6–37
IsSame vs IsEqual comparisons, 11–1
Iterator classes, 11–9

�
kind method, 7–12

�
Language bindings, 1–5, 4–1, 4–33
Language-neutral methods and functions, 3–25
Libraries

building export files, 5–41
creating import library, 3–24, 5–44
dynamically linked libraries, 5–40
dynamically linked libraries on OS/2, 5–41
guidelines for class libraries, 5–40
packaging classes in libraries, 5–40
shared libraries on AIX, 5–41
specifying initialization function, 5–43

Linked list class (somf_TPrimitiveLinkedList), 11–6
Linking, 2–11, 3–23, 5–23

DSOM client programs, 6–30
DSOM servers, 6–43

Loading classes and DLLs, 5–49
Logging

of updates to replicated objects, 9–4, 9–18
operation logging, 9–4, 9–12, 9–18
value logging, 9–4, 9–8, 9–18

long IDL type, 4–4
lookup_id method, 7–9
LOST_CONNECTION directive, 9–10
LOST_RECOVERABILITY directive, 9–10

�
Macros

<className>_lookup_<methodName>, 3–14
<className>_<methodName>, 3–9, 3–13
<className>New, 3–9
<className>New_<initializerName>, 5–31
lookup_<methodName>, 3–14
_<methodName>, 3–8
SOM_Assert, 3–29
SOM_CreateLocalEnvironment, 3–32
SOM_Error, 3–29, 3–30

Macros (cont’d.)
SOM_Expect, 3–29
SOM_GetClass, 3–20
SOM_InitEnvironment, 3–32, 3–34
SOM_Resolve, 3–18
SOM_ResolveNoCheck, 3–18
SOM_Test, 3–30
SOM_TestC, 3–28
SOM_WarnMsg, 3–28
va_arg, 3–12

–maddstar compiler option, 4–39
Main collection classes, 11–4
Major and minor version numbers, 3–21
majorversion modifier, 4–20
MALLOCTYPE environment variable, 9–22
Master replicated objects, 9–21
Media Interface, 8–42, D–1

creating, D–8
enhancing, D–7
methods, D–9
OS/2 INI example, D–25

Memory allocation/ownership in DSOM, 6–27
Memory management, 3–35

in DSOM, 6–27
CORBA policy for, 6–29
for method parameters, 6–28
for object–owned parameters, 6–29

Memory management customization features, 5–48
SOMCalloc global variable, 5–48
SOMFree global variable, 5–48
SOMMalloc global variable, 5–48
SOMRealloc global variable, 5–48

memory_management modifier, 4–21, 6–28
Message queues, 12–2
Metaclass Framework, 10–1

before/after behavior, 10–3
error codes, 10–14, A–15
introduction to, 1–6
SOMMBeforeAfter metaclass, 10–3
SOMMSingleInstance metaclass, 10–8
SOMMTraced metaclass, 10–9
SOMRReplicable metaclass, 10–11
SOMRReplicableObject class, 10–11

metaclass modifier, 4–21
Metaclasses, 5–2, 5–7, 10–1

metaclass incompatibility, 5–8
SOM-derived, 5–7
use in DSOM, 6–23

Method call validity checking, 3–29
Method declarations in IDL, 2–7

context expression, 4–16
in, out, inout parameters, 4–15
initializer methods, 5–27
oneway keyword, 4–15
parameter list, 4–15
raises expression, 4–16
syntax of, 4–14

Index – 8 SOMobjects Developer Toolkit Users Guide

Method invocations, 3–8
Context parameters, 3–9, 3–10
dynamic dispatching, 3–19
Environment variable, 3–9, 3–31
error handling, 3–29
exception values, setting/getting, 3–32
exceptions, 3–30
for client programs in C, 3–8
for client programs in C++, 3–10
for client programs in other languages, 3–11
for initializer methods, 5–31
format of, 2–9, 3–8, 4–14
from Smalltalk, 3–11, 3–17
implicit method parameters, 3–9
method name/signature unknown at compile time,

3–19
obtaining method procedure pointers, 3–18
receiving object of, 3–9
short form vs long form, 3–9
standard exceptions, 3–31
va_list methods, 3–12
validity checking, 3–29

method modifier, 4–23, 5–15
Method procedure pointers, 3–18

obtaining with name-lookup method resolution, 3–19
obtaining with offset method resolution, 3–18

Method procedures, 2–8, 5–17
Method resolution

by kinds of SOM methods, 5–15
customizing, 5–14
dispatch-function resolution, 3–19, 5–14
introduction to, 1–3, 5–13
method procedure pointers, 3–18
name-lookup resolution, 3–14, 3–19, 4–30, 5–13, 5–15
offset resolution, 3–11, 3–14, 3–18, 5–13

Method table, 5–13
Method tokens, 3–11, 3–12, 3–17, 5–13
Method tracing, 3–28, 10–9
METHOD_MACROS for C++ bindings, 5–21
_<methodName> macro, 3–8
Methods

See also “Method invocations,” “Method resolution”
class methods vs instance methods, 5–2
customization features of SOM. See “Customization

features of SOM”
customizing stub procedures in implementation

templates, 5–19
direct-call procedures, 5–15
dynamic methods, 5–15
for generating output, 3–25
four kinds of SOM methods, 5–15
get<attribute>, in Tutorial, 2–13
getting the number of, 3–26
inherited, 2–17
initializer methods, 5–25

tutorial example, 2–20
invoking in client programs, 3–8
modifiers, 2–17, 4–17, 4–22

Methods (cont’d.)
nonstatic methods, 5–15
overriding, 2–17, 5–27, 5–39

tutorial example, 2–17, 2–20
procedures of, 2–8
__set_<attribute>, in Tutorial, 2–14, 2–21
somFree, in tutorial, 2–9
static methods, 5–15
stub procedures in implementation template, 2–7, 5–17
syntax of IDL method declarations, 4–14

Methods and functions, language-neutral, 3–25
migrate modifier, 4–23
minorversion modifier, 4–21
Mixin classes, 11–10
Modifier statements, 2–17, 4–17, 7–1

attribute modifiers
indirect, 4–22
nodata, 4–23
noget, 4–23
noset, 4–24, 8–41
persistent, 4–25, 8–9

class modifiers, 4–17
abstract, 4–19
baseproxyclass, 4–19, 6–84
callstyle, 4–19
classinit, 4–20
directinitclasses, 4–20
dllname, 4–20
filestem, 4–20
functionprefix, 4–20
majorversion, 4–20
memory_management, 4–21, 6–28
metaclass, 4–21
minorversion, 4–21
releaseorder, 4–25
somallocate, 4–21
somdeallocate, 4–21

data modifiers, staticdata, 4–26
method modifiers

caller_owns_parameters, 4–22, 6–28
caller_owns_result, 4–22, 6–28
const, 4–22
init, 4–23
method, 4–23
migrate, 4–23
namelookup, 4–25
nocall, 4–23
noenv, 4–23
nonstatic, 4–23
nooverride, 4–24
noself, 4–24
object_owns_parameters, 4–24, 6–28, 6–29
object_owns_result, 4–25, 6–28, 6–29
offset, 4–25
override, 4–25
procedure, 4–23
reintroduce, 4–25
select, 4–26

#pragma modifier, 4–18
qualified, 4–18, 4–21
syntax of, 4–17
type modifiers, impctx, 4–22
unqualified, 4–17, 4–19

Index – 9SOMobjects Developer Toolkit Users Guide

Module statement, syntax of, 4–29
ModuleDef class, 7–6
M_SOMPPersistentObject metaclass, 8–42
Multi-threaded applications

multi-threading services, 5–55
thread safety, 5–53

Multiparty application, 9–1
Multiple inheritance, 5–10

tutorial example, 2–22
Multiple interfaces in a SOM IDL file, syntax of, 4–29
Multi-threaded DSOM programs, 6–72
Multi-threading services, customizing, 5–55
Mutual exclusion (mutex) services, customizing, 5–53

�
NamedValue structure, 6–75
Name-lookup method resolution, 3–14, 3–19, 4–30, 5–15
namelookup modifier, 4–25
Naming scopes, 4–30
NBSockets class, E–1
New macro (<className>New), 2–9
‘new’ operator in C++ client programs, 3–6, 3–8, 5–30,

5–31
NO_EXCEPTION exception, 3–32
nocall modifier, 4–23
nodata modifier, 4–23
noenv modifier, 4–23
noget modifier, 4–16, 4–23
Nonstatic methods, 5–15
nonstatic modifier, 4–23, 5–15
nooverride modifier, 4–24
noself modifier, 4–24
noset modifier, 4–24
Number of methods, getting, 3–26
NVList class, 6–65, 6–76, 6–77

�
Object Adapter, 6–44, 6–70
Object children, 8–15

handling in an Encoder/Decoder, 8–44
Object lifecycle service, 6–68
Object oriented programming, 1–1

class libraries for, 1–1
Object pseudo–class, 6–67
Object references in DSOM, 6–19, 6–66

creating in the SOMOA, 6–35
passing in method calls, 6–27
saving, 6–24

Object Request Broker (ORB), 6–64
Object size, getting, 3–26
Object variables

declaring in client programs, 3–4
object type, 3–4

object_owns_parameters modifier, 4–24, 6–28, 6–29

object_owns_result modifier, 4–25, 6–28, 6–29
ObjectMgr abstract class, 6–17
Objects. See “SOM Objects, customizing initialization/

uninitialization”
object_to_string method, 6–25, 6–68
octet IDL type, 4–5
Offset method resolution, 3–11, 3–14, 3–18, 5–13, 5–15

vs name-lookup method resolution, 3–14
offset modifier, 4–25
OIDL files to IDL, converting, B–1
OLE programs, SOM classes used in, F–1
‘oneway’ keyword of method declarations, 4–15
Oneway messages in DSOM, 6–73
Operation declarations, 4–14
Operation logging, 9–4, 9–12, 9–18, 9–20
OperationDef class, 7–6
ORB (Object Request Broker), 6–64
ORB class, 6–65, 6–67
‘out’ parameter, 4–15
Overloaded method, 5–12
override modifier, 4–25, 5–15

tutorial example, 2–17, 2–20
Overriding of methods

inherited methods (tutorial example), 2–17
somDefaultInit, 5–27
tutorial example, 2–17, 2–20

�
Packaging SOM classes, customizing, 5–49
param_count method, 7–12
parameter method, 7–12
ParameterDef class, 7–6
Parent class vs metaclass, 5–4
Parent class, getting, 3–26
Parent object, 8–15
passthru statement, syntax of, 4–26
Path, persistent object, 8–21
pdl emitter, 4–35
pdl program, command syntax and options, 4–43
Peer processes in DSOM, 6–72
Persistence Framework, 8–1

See also “Encoder/Decoders,” “I/O groups,” “I/O Group
Managers,” “Media Interface”

classes, 8–7, 8–16, 8–17, 8–18, 8–21, 8–30, 8–42
customization, 8–17, 8–39, D–1
encoder/decoder methods, D–5
error codes, A–9
error handling, 8–51
initialization, 8–18
introduction to, 1–6, 8–1
I/O group manager methods, D–13
media interface methods, D–9
multi-thread considerations, 8–51
multi-threaded applications, customizing, 5–53
multiple inheritance, 8–12
object activation/passivation, 8–35
Persistent Storage Manager methods, D–16
subclassing the Persistence Framework, D–1

Index – 10 SOMobjects Developer Toolkit Users Guide

Persistent IDs, 8–15, 8–18, 8–21
application-assigned, 8–27
freeing, 8–18, 8–19
initialization, 8–23, D–8, D–9
maximum string size, 8–15
string value, 8–15
system-assigned, 8–23, 8–27

persistent modifier, 4–25, 8–9, 8–41
Persistent object files

ASCII storage, 8–30
Binary storage, 8–30
formats of, 8–39
garbage collection in, 8–37
modifying, D–7
storing I/O groups, 8–17, 8–21, 8–26, D–14

Persistent object format, 8–9, 8–39
Persistent objects, 8–1, 8–7, 9–21

activation/passivation, 8–35
checking existence of, 8–36
children of, 8–15, 8–16, 8–44
compaction, 8–37
default format of, 8–9
deleting, 8–36
dirty, 8–10, 8–17, 8–30, 8–37
dynamic loading, 8–22
format of, 8–39
IDs, 8–15
initialization, 8–10, 8–12, 8–14, 8–23
managing, 8–36
modifying, 8–33
reading, without children, 8–27
replicated objects, 9–21
restoring, 8–17, 8–18

preparation for, 8–22
saving, 8–17, 8–18
setting Encoder/Decoder, 8–49
stable, 8–29, 8–31, 8–36, D–15
states of, 8–36
undefined, 8–36
unstable, 8–29, 8–37, D–15
writing, without children, 8–27

Persistent pointers, 8–27
Persistent servers, 6–69
Persistent Storage Manager, 8–18, 8–47, D–1

methods called by, D–16
Pointer SOM IDL declarations, 4–9
Porting classes to another platform, 4–36
#pragma modifier statement, 4–18
pregimpl utility, 6–52, 6–56

interactive interface, 6–56
Primitive Linked List class (somf_TPrimitiveLinkedList),

11–6
Principal class, 6–42, 6–66
print method, 7–13
Printing output

customization of, 5–51
from SOM methods/functions, 3–25

Priority Queue class (somf_TPriorityQueue), 11–7
Private methods and attributes, syntax of, 4–29
procedure modifier, 4–23, 5–15
Proxy classes

customizing default base classes, 6–83
user-supplied, 6–81

Proxy objects (in DSOM), 6–10, 6–20, 6–66, 6–67
Pseudo–objects, 7–12

�
Qualified modifiers, 4–18, 4–21
Qualified names for a naming scope, 4–30
Queue class (somf_TPriorityQueue), 11–7

�
‘raises’ expression in method declarations, 4–16
Read/write without children, 8–27
Receiving object, 3–9
ReferenceData type, 6–36
RegData objects, 12–3

See also “Event Management Framework”
regimpl utility, 6–14, 6–52

command line interface, 6–55
interactive interface, 6–52

Registration of classes, customizing, 5–49
reintroduce modifier, 4–25, 5–15
release method, 6–22, 6–68
releaseorder modifier, 4–25
Remote objects

creating, 6–19
moving, 6–90

remove_class_from_all method, 6–58
remove_class_from_impldef method, 6–58
Replica, 9–1
“Replicated” class, 9–4, 9–5, 9–8
Replicated objects

composite, 9–18
masters, 9–21
names, 9–4
shadows, 9–21
stand alone, 9–10
states of, 9–11

Replication Framework, 9–1
aborting a method, 9–20
composition, 9–18
directives, 9–10
environment variables, 9–20, 9–21
error codes, A–13
failure detection, 9–21
fault tolerance of, 9–2, 9–20
graph inheritance, 9–18
header file, 9–12
initialization of, 9–4
introduction to, 1–6
MALLOCTYPE, 9–22
messages, 9–23

Index – 11SOMobjects Developer Toolkit Users Guide

Replication Framework (cont’d.)
multi-threaded applications, customizing, 5–53
nesting, 9–18
network partitions, 9–20
operation logging, 9–4, 9–5, 9–12, 9–18, 9–20
performance characteristics, 9–20
principles of, 9–2
recovery, 9–21
return codes, 9–22
.scf files, 9–4, 9–21, 9–22
serialized updates, 9–2
Sockets class, implementing, E–1
SOMR_DOSNFS, 9–22
SOMR_HEARTBEAT, 9–21
SOMR_INTERBEATLIMIT, 9–21
SOMRReplicable metaclass, 10–11
SOMRReplicableObject class, 10–11
SOMR_RPCTIMEOUT, 9–20, 9–21
SOMR_SCFDIRECTORY, 9–22
SOMR_SCFDURATION, 9–22
timeout, 9–20
value logging, 9–4, 9–8, 9–18

Reporting errors to IBM, A–1

Repository class, 7–8

Repository ID, 7–8

Request class, 6–65, 6–78

Resolution (of methods). See “Method resolution”

RESP_NO_WAIT flag, 6–79

Restoring a persistent object, 8–18
methods called, D–17
preparing, 8–22

Return codes, A–1
DSOM, A–6
Metaclass Framework, A–15
Persistence Framework, A–9
Replication Framework, 9–22, A–13
SOM kernel, A–4

Run-time environment, 5–1
initialization of, 3–21, 5–1
primitive class objects created, 5–1
run-time library, 1–5

�

Saving a persistent object, 8–17, 8–18

sc command to run SOM Compiler, 2–7, 4–38
compiler options, 4–38

.scf files, 9–4, 9–21, 9–22

Scoping in IDL, 4–30

select modifier, 4–26

send method, 6–78

sequence IDL type, 4–8

Server activation (in DSOM), 6–32

Server implementation definition (in DSOM), 6–31

Server objects (in DSOM), 6–11, 6–20, 6–32, 6–37

Server programming in DSOM, 6–31
authentication, 6–42
compiling and linking servers, 6–43
generic server program (somdsvr), 6–31, 6–39
identifying source of a request, 6–42
object references, 6–35
server implementation definition, 6–31
server objects, 6–32, 6–37
servers

activation, 6–32
dispatching methods, 6–39
initialization, 6–33
mapping objects to references, 6–38
mapping references to objects, 6–38
processing requests, 6–34
termination, 6–35

SOM object adapter (SOMOA class), 6–32
initializing, 6–34

SOM object references, 6–36
subclassing SOMDServer, 6–39
use with Persistence Framework, 6–39

Server proxy (in DSOM), 6–11
Server–per–method servers, 6–69
Servers, 6–2, 6–10, 6–20, 6–31, 6–69

activation and deactivation, 6–32, 6–35, 6–44, 6–52,
6–63, 6–70

activation policies, 6–69
compiling and linking, 6–43
‘dsom’ server manager utility, 6–59
finding a specific server, 6–20
generic (somdsvr), 6–31, 6–44, 6–63, 6–69, 6–70
implementation definitions, 6–31, 6–51
initializing the SOMOA, 6–34
moving servers, 6–59
persistent, 6–39, 6–69
server objects, 6–32
server–per–method, 6–69
shared, 6–69
SOMDServer server-object class, 6–37, 6–44, 6–46
somdsvr command syntax, 6–63
unshared, 6–69

Service and technical support, A–1
Set class (somf_TSet), 11–5
set<attribute> method, 3–12

tutorial example, 2–14, 2–21
setAlignment method, 7–13
set_item method, 6–77
Shadow replicated objects, 9–21
Shared libraries on AIX, creating, 5–41
Shared servers, 6–69
short IDL type, 4–4
Sink events, 12–2
size method, 7–13
Size of objects, getting, 3–26
SMADDSTAR environment variable, 4–38
Smalltalk, 3–11, 3–17
SMEMIT environment variable, 4–36
SMINCLUDE environment variable, 4–37

Index – 12 SOMobjects Developer Toolkit Users Guide

SMKNOWNEXTS environment variable, 4–38
SMTMP environment variable, 4–37
Sockets class, E–1

implementation considerations, E–7
implementation example, E–7
implementing subclasses, E–1
interface definition, E–1

soms.h file, E–1
somssock.idl file, E–1

IPXSockets subclass, E–1
NBSockets subclass, E–1
subclass interface definition, E–5
TCPIPSockets subclass, E–1
TCPIPSockets32 subclass, E–1
use with DSOM, 6–84

SOM bindings, 1–3, 1–5, 2–6
for C/C++ client programs, 3–1
for SOM classes, 4–1, 4–33

SOM classes, 4–1, 5–2
See also “SOM classes, implementing”, “SOM classes,

usage in client programs”
attributes vs instance variables, 2–15
implementation, 6–69
implementing, 5–16
inheritance, 5–4, 5–10
interface vs implementation, 4–1, 5–10
metaclasses, 5–2
multiple inheritance, 2–22, 5–10
parent class vs metaclass, 5–4
primitive SOM class objects, 5–1
using with DSOM, 6–44

SOM classes, customizing loading/unloading, 5–49
class initialization, 5–49
<classname>NewClass procedure, 5–49
DLL loading, 5–49
DLL unloading, 5–50
SOMClassInitFuncName function, 5–49
SOMDeleteModule global variable, 5–50
SOMInitModule function, 5–49
SOMLoadModule global variable, 5–49

SOM classes, implementing, 5–16
See also “SOM Compiler”, “SOM IDL syntax”
attributes vs instance variables, 2–15
<className>New macro, 2–9
comments in, 2–7
customizing the implementation template, 2–9
header files, 4–1, 4–4, 5–17
implementation templates, 2–7, 4–1
interface definition file (.idl file), 4–1
Interface Definition Language (IDL), 4–1
interface statement, 2–7
interface vs implementation, 4–1
method declarations, 2–7
method invocations, 2–9, 4–14
method procedures, 2–8
modifiers, 2–17, 4–17
overriding an inherited method, 2–17

SOM classes, implementing (cont’d.)
porting classes to another platform, 4–36
steps required, 2–6
stub method procedures, 2–7
tutorial, 2–6

SOM classes, usage in client programs, 3–1, 3–20
See also “Method invocations,” “Method resolution”
C/C++ usage bindings, 3–1
checking the validity of method calls, 3–29
<className>New macro, 2–9
creating class objects, in C/C++, 3–20
creating class objects, in other languages, 3–7
creating instances, in C, 3–5
creating instances, in C++, 3–6
creating instances, in other languages, 3–7
debugging macros, 3–28
deleting instances, in C++, 3–7
Environment structure, 3–9, 3–31
Environment variable, 3–31
error handling, 3–29
example program, 2–9, 3–3
exception values, setting/getting, 3–32
exceptions, 3–30
freeing instances, in C, 3–5
generating output, methods/functions for, 3–25
get<attribute> method, 2–13
getting information about a class, methods for, 3–25
getting information about an object, methods/functions

for, 3–27
getting the class of an object, 3–20
language-neutral methods/functions available, 3–25
manipulations using somId’s, 3–36
memory allocation with SOMMalloc function, 3–6, 3–8
memory management, 3–35
method invocations, 2–9, 3–8

short form vs long form, 3–9
va_list methods, 3–12

object variables, declaring, 3–4
__set_<attribute> method, 2–14, 2–21, 3–12
SOM header files for C/C++, 3–1
standard exceptions, 3–31
va_list methods, 3–12

SOM Compiler, 4–33
See also “Implementation templates”
actions of, 5–16
and Interface Repository, 7–2
binding files generated, 4–33
C binding files, 4–33
C++ binding files, 4–34
environment variables affecting, 4–36
implementation template created, 5–16
incremental updates of implementation template,

2–23, 4–33, 5–16, 5–21
introduction to, 1–4
sc command and options, 4–38
sc command to run SOM Compiler, 2–7
somc command and options, 4–38
somc command to run SOM Compiler, 2–7

SOM customization features. See “Customization
features of SOM”

Index – 13SOMobjects Developer Toolkit Users Guide

SOM ID manipulation, 3–36
SOM IDL language grammar, C–1
SOM IDL syntax, 4–3

See also “SOM classes, implementing”
attribute declarations, 2–13, 4–14
comments, 4–28
constant declarations, 4–4, 4–13
exception declarations, 4–10, 4–13
forward declarations to class names, 4–13, 4–29
forward declarations to interfaces, 4–29
grammar of IDL, C–1
#ifdef __SOMIDL__ statement, 2–18
implementation statement, 2–15, 2–17, 4–17
#include directive, 4–4
initializer methods, 5–27
instance variables, 4–27
interface declarations, 2–7, 4–12
keywords, 4–4
method declarations, 2–7, 4–14
modifier statements, 4–17, 7–1
module statement definition, 4–29
multiple interfaces in .idl file, 4–29
name resolution, 4–30
naming scopes, 4–30
OIDL files converted to IDL, B–1
override modifier, 4–25
passthru statement, 4–26
private methods and attributes, 4–29
scopes, 4–30
staticdata variables, 4–27
type declarations, 4–4, 4–13

SOM objects, customizing initialization/
uninitialization, 5–25

changing parents of a class, 5–22
<className>New macro, in C, 5–31
<className>New_<initializerName> macro, in C,

5–31
customizing class objects, 5–39
example, 5–33
initializer methods, 5–25
initializing, 5–25
new initializers declared, 5–27
‘new’ operator, in C++, 5–31
non-default initializer calls, 5–30
somDefaultInit method, 5–25, 5–39
somDestruct method, 5–32
somFree method, 5–32
somInit method, 5–25
somInitMIClass method, 5–39
somUninit method, 5–29
uninitializing, 5–32

SOM run-time environment. See “Run–time environment”
SOM system

binary compatibility of SOM classes, 1–3
bindings (language bindings), 1–3, 1–5, 4–1, 4–33
class libraries from, 1–3, 5–40
CORBA compliance, 1–4, 4–3, 6–64
customer support, A–1

SOM system (cont’d.)
environment variables. See “Environment variables”
error codes, A–4
global variables. See “Global variables”
Interface Definition Language (IDL), 1–3
language-neutral characteristics, 1–3, 1–5
method resolution, 5–13
parent class vs metaclass, 5–4
primitive class objects created, 5–1
run-time environment initialization, 5–1
run-time library of, 1–5
SOM Compiler, introduction to, 1–4

See also “SOM Compiler”
SOMClass metaclass, 5–2
SOMClassMgr class, 5–3
SOMClassMgrObject, 5–3
SOMObject root class, 5–2

som.ir Interface Repository file, 7–3
somAddDynamicMethod method, 5–15
somallocate modifier, 4–21
somApply function, 3–19
SOM_Assert macro, 3–29
SOM_AssertLevel global variable, 3–28
somc command to run SOM Compiler, 2–7, 4–38

compiler options, 4–38
SOMCalloc function, 3–35, 5–48
SOMCalloc global variable, 5–48
SOMClass metaclass, 5–2
somClassDispatch method, 3–19
somClassFromId method, 3–23
SOMClassInitFuncName function, 5–49
SOMClassMgr class, 5–3
SOMClassMgrObject, 3–21, 5–3
somClassResolve procedure, 3–11
somcorba.h file, 3–31, 3–33
SOM_CreateLocalEnvironment macro, 3–32
‘somdchk’ program, 6–60
‘somdclean’ command, 6–62, 6–1
SOMDClientProxy class, 6–66, 6–81, 6–83
somdCreateObj method, 6–11, 6–20, 6–37, 6–40
somdd DSOM daemon, 6–14, 6–50, 6–63
SOMDDEBUG environment variable, 6–51, 6–85
SOMD_DebugFlag global variable, 6–85
somdDeleteObj method, 6–11, 6–23, 6–37, 6–40
somdDestroyObject method, 6–10, 6–22
SOMDDIR environment variable, 6–13, 6–50, 6–63
somdDispatchMethod, 6–37
somdeallocate modifier, 4–21
somDefaultInit method, 5–25, 5–39

indirect calls in programs, 5–31
initializing class objects, 5–39
overriding in .idl file, 5–28
tutorial example, 2–20
use by ‘new’ operator, 3–7, 5–31
use by somNew method, 3–5, 3–7, 5–31

SOMDeleteModule global variable, 5–50

Index – 14 SOMobjects Developer Toolkit Users Guide

SOM-derived metaclasses, 5–7
somDestruct method, 5–32

overriding, 5–32
use after SOMMalloc function, 3–6, 3–8
use by somFree method, 3–5, 5–32
use in programs, 5–32

somdFindAnyServerByClass method, 6–21
somdFindServer method, 6–21
somdFindServerByName method, 6–11, 6–20
somdFindServersByClass method, 6–21
somdGetClassObj method, 6–37
somdGetIdFromObject method, 6–25
somdGetObjectFromId method, 6–25
SOMD_ImplDefObject global variable, 6–32, 6–33
SOMD_ImplRepObject global variable, 6–33, 6–57
SOMD_Init function, 6–9, 6–18, 6–33, 6–85
somDispatch method, 3–19
SOMDMESSAGELOG environment variable, 6–51, 6–85
somdNewObject method, 6–9, 6–19
SOMD_NO_WAIT flag, 6–34
SOMDNUMTHREADS environment variable, 6–51
SOMDObject class, 6–65, 6–66, 6–67
SOMDObjectMgr class, 6–15, 6–17
SOMD_ObjectMgr global variable, 6–9, 6–15, 6–18
SOMD_ORBObject global variable, 6–65
SOMDPORT environment variable, 6–50
somdProxyFree method, 6–22
somdRefFromSOMObj method, 6–37, 6–41
SOMD_RegisterCallback function, 6–72
somdReleaseObject method, 6–10, 6–11, 6–23
somdReleaseResources method, 6–29
SOMDServer class, 6–11, 6–37, 6–44, 6–46
SOMD_ServerObject global variable, 6–34
SOMD_SOMOAObject global variable, 6–34
somdSOMObjFromRef method, 6–37, 6–41
somdsvr program (in DSOM), 6–31, 6–39

command syntax, 6–63
somdTargetFree method, 6–22
SOMDTIMEOUT environment variable, 6–51
SOMD_Uninit function, 6–10, 6–35
SOMD_WAIT flag, 6–34
SOMEEMan class, 12–1

See also “Event Management Framework”
SOMEEMRegisterData class, 12–3

See also “Event Management Framework”
SOMEEvent class, 12–2

See also “Event Management Framework”
somEnvironmentNew function, 3–21
somError function, 3–35
SOMError global variable, 3–29, 5–52
SOM_Error macro, 3–29, 3–30
somExceptionFree function, 3–32, 3–33, 3–36

example of, 3–34
somExceptionId function, 3–33, 3–34

somExceptionValue function, 3–33, 3–34
SOM_Expect macro, 3–29
SOM_Fatal error code, 3–30
somFindClass method, 3–7, 3–11, 3–21, 3–22
somFindClsIn File method, 3–21, 3–22
somFindMethod method, 3–14, 3–19
somFindMethodOK method, 3–14, 3–19
SOMFree function, 3–35, 5–48

use after SOMMalloc function, 3–6, 3–8, 5–48
SOMFree global variable, 5–48
somFree method

called by somDestruct method, 5–32
tutorial example, 2–9
use after ‘new’ operator, in C++, 3–7
use after <className>New macro, in C, 3–5
use after somNew method, 3–7, 3–8, 5–32
use after somNewNoInit method, 5–32
use on a proxy in DSOM, 6–22

somf_TDeque class, 11–6
somf_TDictionary class, 11–5
somf_THashTable class, 11–4
somf_TPrimitiveLinkedList class, 11–6
somf_TPriorityQueue class, 11–7
somf_TSet class, 11–5
somf_TSortedSequence class, 11–6
SOM_GetClass macro, 3–20
somGetClass method, 3–20, 3–23
somGetGlobalEnvironment procedure, 3–32
somGetInstanceSize method

use with <className>Renew macro, 3–5
use with somRenew method, 3–7

somGetInterfaceRepository method, 7–9
somGetMethodData method, 3–19
som.h header file for C programs, 3–1, 3–32
somId ID type, 3–36
SOM_Ignore error code, 3–29
somInit method, use before somDefaultInit method, 5–28
somInitCtrl data structure, 5–26
SOM_InitEnvironment macro, 3–32, 3–34
somInitMIClass method, 5–39
SOMInitModule function, 5–49

usage when creating DLLs, 5–43, 5–46
SOM_InterfaceRepository macro, 7–9
SOMIR environment variable, 4–38, 6–13, 6–50, 7–2, 7–3
SOMLoadModule global variable, 5–49
somLocateClassFile method, 3–22
somLookupMethod method, 3–19
sommAfterMethod method, 10–3
SOM_MainProgram macro, 2–10
SOMMalloc function, 3–35, 5–48

somDestruct and SOMFree used after, 3–6, 3–8
SOMMalloc global variable, 5–48
SOMMBeforeAfter metaclass, 10–3
sommBeforeMethod method, 10–3
sommGetSingleInstance method, 10–8

Index – 15SOMobjects Developer Toolkit Users Guide

SOMMSingleInstance metaclass, 10–8
SOMM_TRACED environment variable, 10–9
SOMMTraced metaclass, 10–9
somNew method

called by <className>New macro, 5–31
for creating instances, not in C/C++, 3–7, 5–31
for creating instances, with classname from user

input, 3–8
invalid as first C method argument, 3–9
use in C/C++, 3–7

somNewNoInit method, 3–6, 5–31
called directly using SOM API, 5–31
for C++ initializers with same signature, 5–30, 5–31
use by ‘new’ operator, 3–6, 5–30

SOM_NoTest symbol, 3–18
SOM_NoTrace macro, 5–19
SOMOA (SOM object adapter) class, 6–32, 6–34, 6–44,

6–67, 6–70
SOMObject class, 5–2
SOMobjects Toolkit

See also “SOM system”
frameworks of, introduction to, 1–5
introduction to, 1–3
release 2.1 enhancements, 1–7

SOMOutCharRoutine global variable, 3–25, 3–28, 5–51
somp.h header file, 8–15, 8–19
sompActivated method, 8–35
SOMPAscii class, 8–15, 8–17, 8–21, 8–30, 8–42, D–1

characteristics, 8–30
SOMPAsciiMediaInterface class, 8–42, D–2
SOMPAttrEncoderDecoder class, 8–9, 8–35, 8–40,

8–41, D–1
SOMPBinary class, 8–17, 8–30, 8–42

characteristics, 8–30
SOMPBinaryFileMedia class, 8–42, D–2
sompDeleteObject method, 8–36
sompEDRead method, 8–42, 8–46, 8–47
sompEDWrite method, 8–42, 8–46
SOMPEncoderDecoderAbstract class, 8–42, D–1
SOMPERROR_FRAMEWORK_ERROR, 8–53, A–9
SOMPERROR_SYSTEM_ERROR, 8–53, A–9
sompException exception, 8–19, 8–42, 8–51
SOMPFileMediaAbstract class, 8–42, D–2, D–6
sompGetDirty method, 8–10
sompGetIOGroup method, 8–16
sompGetPersistentIdString method, 8–18, 8–21
sompGetSystemAssignedId method, 8–25
SOMPIdAssigner class, 8–16, 8–18, 8–24
sompInitGivenId method, 8–21, 8–23
sompInitNearObject method, 8–21, 8–23, 8–25
sompInitNextAvail method, 8–23, 8–24
sompInstantiateMediaInterface method, D–7
SOMPIOGroupMgrAbstract class, 8–17, D–1
sompIsDirty method, 8–9
sompMarkForCompaction method, 8–37

SOMPMAXIDSIZE constant, 8–15
SOMPMediaInterfaceAbstract class, 8–42, D–1, D–6
sompObjectExists method, 8–36
sompPassivate method, 8–35
SOMP_PERSIST environment variable, 8–24, 8–25, 8–27
SOMPPersistentId class, 8–23
SOMPPersistentObject class, 8–7
SOMPPersistentStorageMgr class, 8–18, D–1
sompReadBytes method, 8–46
sompReadSomobject method, 8–44
sompRestoreObject method, 8–19
sompRestoreObjectWithoutChildren method, 8–28
SOMP_RETRY environment variable, 8–34
SOMP_RETRYI environment variable, 8–34
somPrintSelf method, 2–17
sompSetClassLevelEncoderDecoderName method,

8–42, 8–49, D–4
sompSetDirty method, 8–10
sompSetEncoderDecoderName method, 8–42, 8–49,

D–4
sompSetGroupOffset method, 8–23, 8–31
sompSetIOGroupMgrClassName method, 8–23
sompSetIOGroupName method, 8–23
sompStoreObject method, 8–18, 8–21
sompStoreObjectWithoutChildren method, 8–29
sompWriteSomobject method, 8–44
SOMR class, 9–4
somrDoDirective method, 9–10
SOMR_DOSNFS environment variable, 9–22
SOMRealloc function, 3–35, 5–48
SOMRealloc global variable, 5–48
somRenew method

for creating instances in given space, 3–7
use by <className>Renew macro, 3–5

SOM_Resolve macro, 3–18
somResolve procedure, without C/C++ bindings, 3–11
somResolveByName function, 3–12, 3–17, 3–19
SOM_ResolveNoCheck macro, 3–18
somrGetState method, 9–7
somr.h file, 9–12
SOMR_HEARTBEAT environment variable, 9–21
somriGetErrorCode function, 9–5
SOMR_INTERBEATLIMIT environment variable, 9–21
somrLock method, 9–8
somrLockNlogOp method, 9–5, 9–16, 9–18
somrReleaseLockNAbortOp method, 9–20
somrReleaseLockNAbortUpdate method, 9–20
somrReleaseNPropagateOperation method, 9–5, 9–16,

9–18
somrReleaseNPropagateUpdate method, 9–8
somrRepInit method, 9–6, 9–8, 9–10, 9–17
SOMRReplicable metaclass, 10–11
SOMRReplicableObject class, 10–11
SOMRReplicbl class, 9–2, 9–4
somrRepUninit method, 9–10

Index – 16 SOMobjects Developer Toolkit Users Guide

SOMR_RPCTIMEOUT environment variable, 9–21

SOMR_SCFDIRECTORY environment variable, 9–22

SOMR_SCFDURATION environment variable, 9–22

somrSetObjName method, 9–17

somrSetState method, 9–7

soms.h file with Sockets class, E–1

somSelf pointer, syntax in implementation template, 5–18

somSetException procedure, 3–32

somSetOutChar function, 5–51

SOMSOCKETS environment variable, 6–13, 6–50, 6–84,
12–9

somssock.idl file, E–1

somTD type definition, 3–18

SOM_Test macro, 3–30

SOM_TestC macro, 3–28

SOM_TestOn directive, 3–29

SOM_TestOn symbol, 3–18

somThis assignment, syntax in implementation template,
5–18

SOM_TraceLevel global variable, 3–28

somUninit method, use before somDestruct method,
5–29

somutSetIdString method, 8–18, 8–21, 8–23

SOM_Warn error code, 3–29

SOM_WarnLevel global variable, 3–28

SOM_WarnMsg macro, 3–28

som.xh header file for C++ programs, 3–1

Sorted sequence class (somf_TSortedSequence), 11–6

Stable object, 8–29, 8–31, 8–36, D–15

Stand–alone replicated object, 9–10

Standard exceptions, 3–31

Static methods, 3–19, 5–15

staticdata modifier, 4–26

staticdata variable declarators, syntax of, 4–27

StExcep type, 3–31

stexcep.idl file, 3–31

Storing a persistent object, 8–17, 8–18
methods called, D–16

string IDL type, 4–8

string_to_object method, 6–25, 6–68

struct IDL type, 4–5

Stub procedures, 2–7, 5–18, 5–29
for initializer methods, 5–29

Subclass, 5–4

Subclassing the Persistence Framework, D–1

Syntax of SOM IDL. See “SOM IDL syntax”

System-assigned persistent IDs, 8–18, 8–23, 8–27

System exceptions, 3–31

SYSTEM_EXCEPTION exception, 6–85

�
TCKind enumeration, 7–12
TCPIPSockets class, E–1
TCPIPSockets32 class, E–1
Technical support procedures, A–1
Testing

client programs, 3–28
method call validity checking, 3–29
with SOMMTraced metaclass, 10–9

Thread safety, 5–53
Timer events, 12–1
tk_<type> enumerator names, 7–12
Tracing methods, 3–28, 10–9
Tutorial for implementing SOM classes, 2–6

attribute definition, 2–13
attributes vs instance variables, 2–15
<className>New macro, 2–9
client program using the class, 2–9
comments, 2–7
compiling and linking client code, 2–11
customizing initializer stub procedures, 2–21
customizing the implementation template, 2–9
enum type, 2–22
example 1: defining a simple method, 2–7
example 2: defining an attribute, 2–13
example 3: overriding an inherited method, 2–17
example 4: initializing objects, 2–20
example 5: using multiple inheritance, 2–22
executing the client program, 2–12
get<attribute> method, 2–13
#ifdef __SOMIDL__ statement, 2–18
implementation statement, 2–15, 2–17
implementation template with stub procedures, 2–7
interface statement, 2–7
method declaration, 2–7
method invocation form, 2–9
method procedures, 2–8
modifiers, 2–17
multiple inheritance, 2–22
sc command to run SOM Compiler, 2–7
__set_<attribute> method, 2–14, 2–21
somc command to run SOM Compiler, 2–7
somFree method, 2–9

Type declarations in IDL, 4–4, 4–13
any, 4–5
array, 4–9
boolean, 4–5
char, 4–5
constructed types, 4–5
double, 4–4
enum, 4–5
exception, 4–10
float, 4–4
floating point types, 4–4
integral types, 4–4
long, 4–4
object types, 4–10

Index – 17SOMobjects Developer Toolkit Users Guide

Type declarations in IDL (cont’d.)
octet, 4–5
pointer, 4–9
sequence, 4–8
short, 4–4
SOM-unique extensions, 4–31
string, 4–8
struct, 4–5
template types, 4–8
union, 4–7
unsigned short or long, 4–4

TypeCode pseudo–objects, 7–11
‘any’ type usage, 7–15
‘alignment’ modifier for, 7–13
foreign data types for, 7–14
methods for, 7–12
TypeCode constants, 7–15

TypeCode types, 4–5
TypeDef class, 7–6
Types provided by SOM

somId, 3–36
somMethodProc, 3–18
somTD_<className>_<methodName>, 3–18
StExcep, 3–31

�
Uninitialization of objects, 5–32, 5–39
union IDL type, 4–7
Unloading classes and DLLs, 5–49
Unqualified modifiers, 4–17, 4–19
Unshared servers, 6–69

unsigned short or long IDL type, 4–4
Unstable object, 8–29, 8–37, D–15
update_impldef method, 6–58
Updating the implementation template file, 2–23, 4–33,

5–16, 5–21
Usage bindings, 1–3, 1–5, 3–1, 4–1, 4–33
USER environment variable, 6–13, 6–42, 6–50
Utility classes, 10–1
Utility collection classes, 11–1

See also “Collection classes”

�
va_list. See “Variable argument list”
va_arg macro, 3–12
va_list type, 3–12
Value logging, 9–4, 9–8, 9–18
Variable argument list

defining a va_list argument in .idl file, 4–15
using a va_list in programs, 3–12, 3–14

VARIABLE_MACROS for C++ bindings, 2–16
Version numbers, 3–21, 3–25

getting, 3–27
in customizing DLL loading, 5–50

�
Work procedure events, 12–2
Workgroup DSOM, 6–1
Workstation DSOM, 6–1
wregimpl utility, 6–52, 6–56

interactive interface, 6–56

Index – 18 SOMobjects Developer Toolkit Users Guide

